ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Higher-order growth curves and mixture modeling with Mplus : a practical guide

دانلود کتاب منحنی های رشد مرتبه بالاتر و مدل سازی مخلوط با Mplus: راهنمای عملی

Higher-order growth curves and mixture modeling with Mplus : a practical guide

مشخصات کتاب

Higher-order growth curves and mixture modeling with Mplus : a practical guide

ویرایش: [2 ed.] 
نویسندگان: , , ,   
سری: Multivariate applications series 
ISBN (شابک) : 9780367711269, 0367746204 
ناشر:  
سال نشر: 2022 
تعداد صفحات: [347] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 78 Mb 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Higher-order growth curves and mixture modeling with Mplus : a practical guide به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب منحنی های رشد مرتبه بالاتر و مدل سازی مخلوط با Mplus: راهنمای عملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب منحنی های رشد مرتبه بالاتر و مدل سازی مخلوط با Mplus: راهنمای عملی

این مقدمه عملی برای مدل‌های مخلوط مرتبه دوم و رشد با استفاده از Mplus، تکنیک‌های ساده و پیچیده را از طریق مراحل افزایشی معرفی می‌کند. نویسندگان منحنی‌های رشد نهفته را به منحنی رشد مرتبه دوم و مدل‌های مخلوط گسترش می‌دهند و سپس این دو را با استفاده از داده‌های نرمال و غیرعادی (به عنوان مثال، طبقه‌بندی) ترکیب می‌کنند. برای به حداکثر رساندن درک، هر مدل با معادلات ساختاری پایه، ارقام با نحو مرتبط که معنی آمار، کاربردهای Mplus و تفسیر نتایج را برجسته می‌کند، ارائه می‌شود. مثال‌هایی از رشته‌های مختلف نشان می‌دهد که استفاده از مدل‌ها و تمرین‌ها به خوانندگان اجازه می‌دهد تا درک خود را از تکنیک‌ها آزمایش کنند. مقدمه ای جامع برای تحلیل عاملی تاییدی، مدل سازی منحنی رشد نهفته، و مدل سازی مخلوط رشد ارائه شده است تا کتاب بتواند توسط خوانندگان سطوح مختلف مهارت استفاده شود. مجموعه داده های کتاب در وب موجود است. جدید در این نسخه: * دو فصل جدید یک معرفی گام به گام و راهنمای عملی برای استفاده از منحنی های رشد مرتبه دوم و مدل های مخلوط با نتایج طبقه بندی شده با استفاده از برنامه Mplus ارائه می دهد. با تمرین ها، کلیدهای پاسخ، و فایل های داده قابل دانلود کامل شود. * نمونه های مصور به روز شده با استفاده از Mplus 8.0 شامل شکل های مفهومی، نحو برنامه Mplus و تفسیر نتایج است تا به خوانندگان نشان دهد که چگونه تحلیل ها را با داده های واقعی انجام دهند. این متن برای استفاده در دوره‌های تحصیلات تکمیلی یا کارگاه‌های آموزشی معادلات ساختاری پیشرفته، مدل‌سازی متغیرهای چندسطحی، طولی یا پنهان، منحنی رشد نهفته و مدل‌سازی مخلوط، تحلیل عاملی، آمار چند متغیره، یا تکنیک‌های کمی (روش‌ها) پیشرفته در علوم اجتماعی و رفتاری ایده‌آل است. .


توضیحاتی درمورد کتاب به خارجی

This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two using normal and non-normal (e.g., categorical) data. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book's datasets are available on the web. New to this edition: * Two new chapters providing a stepwise introduction and practical guide to the application of second-order growth curves and mixture models with categorical outcomes using the Mplus program. Complete with exercises, answer keys, and downloadable data files. * Updated illustrative examples using Mplus 8.0 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. This text is ideal for use in graduate courses or workshops on advanced structural equation, multilevel, longitudinal or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) across the social and behavioral sciences.



فهرست مطالب

Cover
Endorsement Page
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface
Acknowledgments
Authors
Part I Growth Curve Modeling
	Chapter 1 Introduction
		A Layout of Incrementally Related SEMs: An Organizing Guide
		Illustrative Example 1.1: Examining Alternative Growth Curve Models
		Adolescents’ Internalizing Symptoms (IS) Trajectories
		Datasets Used in Illustrations
		Measures
		References
	Chapter 2 Latent Growth Curves
		Introduction
		Growth Curve Modeling
			Conventional Latent Growth Curve Models (LGCM
				Linear Growth Curve Modeling
				Investigating Longitudinal Covariance Patterns
		Illustrative Example 2.1: Examining the Longitudinal Covariance Pattern of
 Indicators
			Estimating an Unconditional Linear Latent Growth Curve Model (LGCM)
 Using Mplus
		Illustrative Example 2.2: Estimating a Linear Latent Growth Curve Model
 (LGCM
		Curvilinear Growth Curve Modeling (i.e., a Quadratic Growth Curve
 Model
		Illustrative Example 2.3: Estimating a Quadratic Latent Growth Curve Model
 (LGCM
			Model Fit Indices
			Comparing Nested Models
		Illustrative Example 2.4: Nested Model Comparison between Linear and
 Quadratic Models
		Illustrative Example 2.5: Nested Model Comparison between Models with and
 without Correlated Errors
		Illustrative Example 2.6: Non-Nested Model Comparison between Linear and
 Piecewise Models
		Adding Covariates to an Unconditional Model
		Illustrative Example 2.7: Adding a Predictor and Outcome to a Linear
 LGCM
		Illustrative Example 2.8: Adding a Predictor and Outcome to a Quadratic
 LGCM
		Methodological Concerns in Longitudinal Analysis: Why Growth Curves
			The Need to Preserve the Continuity of Change
			The Need to Investigate Different Growth Parameters
			The Need to Incorporate Growth Parameters as Either Predictors or Outcomes
 in the Same Model
			The Need to Incorporate Time-Varying Predictors
		Limitations
		Beyond Latent Growth Curve Modeling
		Revisiting the Layout of Models: Figures 1.1, 1.2, and 1.3
			First-Order Structural Equation Models
			Second-Order Growth Curve Modeling
			Growth Mixture Modeling
		Chapter 2 Exercises
		References
	Chapter 3 Longitudinal Confirmatory Factor Analysis and Curve-of-Factors  Growth Curve Models
		Introduction
		Confirmatory Factor Analysis (CFA) (Step 1
			Specification of a Simple CFA
			CFA Model Identification
			Scale Setting in a CFA
		Longitudinal Confirmatory Factor Analysis (LCFA): Model Specification
 (Step 2
		A Second-Order Growth Curve: A Curve-of-Factors Model (Step 3
			Specification of a Curve-of-Factors Model (CFM
			Why Analyze a Curve-of-Factors Model? Improvements Over a Conventional
 LGCM
				Equal Contribution of Items to the Composite Measure
				Longitudinal Measurement Invariance (Factorial Invariance
				Variance Components of Indicators: Measurement Error and Time-Specific
 Variance
		Chapter 3 Exercises
		References
	Chapter 4 Estimating Curve-of-Factors Growth Curve Models
		Introduction
		Steps for Estimating a Curve-of-Factors Model (CFM
			Investigating the Longitudinal Correlation Patterns of Subdomain Indicators
 (Step 1
		Illustrative Example 4.1: Examining the Longitudinal Correlation Patterns
 among Indicators
			Performing an Unconstrained Longitudinal Confirmatory Factor Analysis
 (LCFA) (Step 2
		Illustrative Example 4.2: Longitudinal Confirmatory Factor Analysis (LCFA)
 Using Mplus
			Measurement Invariance of the LCFA Model (Step 3
		Illustrative Example 4.3: Systematic Incremental Testing Sequences for Assessing
 Measurement Invariance
			Nested Model Comparison for Measurement Invariance
			Taking Autocorrelations among Indicators in a LCFA into Account as a
 Trait Factor
		Illustrative Example 4.4: Longitudinal Confirmatory Factor Analysis (LCFA)
 with “Trait” Factors (IT Model
			Estimating a Second-Order Growth Curve: A Curve-of-Factors Model
 (CFM) (Step 4
		Illustrative Example 4.5: Estimating a Curve-of-Factors Model (CFM
		Scale Setting Approaches and Second-Order Growth Model Parameters (Curve-of-
 Factors Model, CFM
			Marker Variable Approach
		Illustrative Example 4.6: Using the Marker Variable Approach for CFA Scale
 Setting
			Fixed Factor Approach
		Illustrative Example 4.7: Using the Fixed Factor Scale Setting Approach in a
 CFA
			Effect Coding Approach
		Illustrative Example 4.8: Using the Effect Coding Scale Setting Approach in a
 CFA
		Adding Covariates to a Curve-of-Factors Model (CFM
			Time-Invariant Covariate (TIC) Model
				Incorporating a single indicator variable (W) as a predictor
		Illustrative Example 4.9: Adding a Time-Invariant Covariate (TIC) as a CFM
 Predictor
			Incorporating a Multiple-Indicator Latent Variable (P) as a Predictor
		Illustrative Example 4.10: Adding a Multiple-Indicator Latent Factor as a CFM
 Predictor
			Predicting Both Time-Specific Latent Factors and Second-Order Growth
 Parameters
		Illustrative Example 4.11: Predicting Both Second-Order Growth Parameters and
 First-Order Latent Factors
			Predicting Distal Outcomes (D) of Second-Order Growth Factors
		Illustrative Example 4.12: Predicting Distal Outcomes of Second-Order Growth
 Factors
			Time-Varying Covariate (TVC) Model
				Time-Varying Covariate (TVC) as a Predictor of Manifest Outcomes
		Illustrative Example 4.13: Incorporating a Time-Varying Covariate as a Direct
 Predictor of Manifest Indicators
			A Parallel Process Second-Order Model Using a Dyadic Model Framework
 as an Example
		Illustrative Example 4.14: Incorporating a Time-Varying Covariate as a Parallel
 Process
		Chapter 4 Exercises
		References
	Chapter 5 Extending a Parallel Process Latent Growth Curve Model (PPM) to a  Factor-of-Curves Model (FCM
		Introduction
		Parallel Process Latent Growth Curve Model (PPM
			Estimating a Parallel Process Model (PPM
			Correlation of Measurement Errors in a PPM
			Influence of Growth Factors of One Subdomain on the Growth Factors of
 Other Subdomains
			Modeling Sequentially Contingent Processes over Time
		Extending a Parallel Process Latent Growth Curve Model (PPM) to a Factor-of-
 Curves Growth Curve Model (FCM
		Second-Order Growth Factors
		Chapter 5 Exercises
		References
	Chapter 6 Estimating a Factor-of-Curves Model (FCM) and Adding Covariates
		Introduction
		Estimating a Factor-of-Curves Model (FCM)
		Investigating the Longitudinal Correlation Patterns among Repeated Measures of  Each Subdomain (Step 1)
		Illustrative Example 6.1: Investigating the Longitudinal Correlation Patterns
 among Repeated Measures of Each Subdomain
		Estimating a Parallel Process Growth Curve Model (PPM) (Step 2)
		Illustrative Example 6.2: Estimating a Parallel Process Growth Curve Model  (PPM)
		Estimating a Factor-of-Curves Model (FCM) (Step 3)
		Illustrative Example 6.3: Estimating a Factor-of-Curves Model (FCM)
		Illustrative Example 6.4: Comparing Two Competing Models Empirically
		Estimating a Conditional FCM (Step 4)
			Adding Time-Invariant Covariates (TICs) to a FCM
				Predicting Both First-Order and Second-Order Growth Factors
		Illustrative Example 6.5: Adding Time-Invariant Covariates (TIC) to a
 FCM
			Primary and Secondary Growth Factors of the FCM as Predictors of Latent  Distal Outcomes (D)
		Illustrative Example 6.6: Incorporating a Latent Distal Outcome into a
 FCM
			Adding Time-Varying Covariates (TVC) to a FCM
			A Time-Varying Covariate (TVC) as a Direct Predictor of Indicators
		Illustrative Example 6.7: Incorporating a Time-Varying Covariate (TVC) as a
 Direct Predictor
			Incorporating a TVC as a Secondary Growth Curve: A Second-Order
 Parallel Process Dyadic Model
		Illustrative Example 6.8: Incorporating a Time-Varying Predictor as a Parallel
 Process
		A Multiple-Group FCM (Multi-Group Longitudinal Modeling)
		Illustrative Example 6.9: Estimating a FCM for Multiple Groups
		Multivariate FCM
		Illustrative Example 6.10: Estimating a Multivariate FCM
		Model Selection: Factor-of-Curves vs. Curve-of-Factors
		Illustrative Example 6.11: Empirically Comparing CFM and FCM
 Approaches
		Combining a CFM and a FCM: A Factor-of-Curves-of-Factors (FCF)
 Model
		Illustrative Example 6.12: Estimating a Factor-of-Curves-of-Factors (FCF)
 Model
		Chapter 6 Exercises
		References
		Growth Mixture Modeling
Part II Growth Mixture Modeling
	Chapter 7 An Introduction to Growth Mixture Models (GMMs
		Introduction
		A Conventional Latent Growth Curve Model (LGCM
		Potential Heterogeneity in Individual Trajectories
		Growth Mixture Modeling (GMM
		Latent Class Growth Analysis (LCGA): A Simplified GMM
		Specifying a Growth Mixture Model (GMM
			Specifying Trajectory Classes: Class-Specific Equations
			Specifying a Latent Class Growth Analysis (LCGA
		Building A Growth Mixture Model (GMM) Using MSpecify a Traditional
 Growth Curve Model (LGCM) (Step 1
			Estimating a Latent Class Growth Analysis (LCGA) (Step Two
		Illustrative Example 7.1: Mplus Syntax for a Latent Class Growth Analysis
 (LCGA
			Specifying a Growth Mixture Model (GMM) (Step 3
		Illustrative Example 7.2: Mplus Syntax for a Growth Mixture Model
 (GMM
			Addressing Estimation Problems (Step Four
				Estimation Problems Related to a Non-Normal Probability
 Distribution
		Illustrative Example 7.3: A Non-Normal Distribution
			Estimation Problems Related to Local Maxima
			Estimation Problems Due to Model Non-Identification and Inappropriate
 Data
			Selecting the Optimal Class Model (Enumeration Indices) (Step 5
				Information Criteria (IC) Statistics
				Entropy and Average Posterior Probabilities
				Likelihood Ratio Test (LRT): LMR-LRT and Bootstrapped LRT
 (BLRT
				Other Considerations
		Illustrative Example 7.4: Identifying the Optimal Model
		Summary of a Model-Building Strategy
		Chapter 7 Exercises
		References
	Chapter 8 Estimating a Conditional Growth Mixture Model (GMM
		Introduction
		Growth Mixture Models: Predictors and Distal Outcomes
		The One-Step Approach to Incorporating Covariates into a GMM
			Predictors of Latent Classes (Multinomial Regression
		Illustrative Example 8.1: Incorporating a Time-Invariant Predictor into a
 GMM
			Predictors of Latent Growth Factors Within Classes
		Illustrative Example 8.2: Adding Within-Class Effects of Predictors to a
 GMM
			Adding Distal Outcomes of Latent Classes (Categorical and Continuous
		Illustrative Example 8.3: Incorporating a Binary Distal Outcome into a
 GMM
		Illustrative Example 8.4: Incorporating a Continuous Distal Outcome into a
 GMM
			Uncertainty of Latent Class Membership with the Addition of Covariates
		The Three-Step Approach: The “Manual” Method
		Illustrative Example 8.5: The Three-Step Procedure for Incorporating
 Predictor(s
		Illustrative Example 8.6: The Three-Step Procedure for Incorporating Distal
 Outcome(s
		AUXILIARY Option for the Three-Step Approach
		Illustrative Example 8.7: Utilizing the Auxiliary Option with the Three-Step
 Approach
		Illustrative Example 8.8: Utilizing the Auxiliary Option
		Chapter 8 Exercises
		References
	Chapter 9 Second-Order Growth Mixture Models (SOGMMs
		Introduction
		Estimating a Second-Order Growth Mixture Model: A Curve-of-Factors Model
 (SOGMM of a CFM
		Illustrative Example 9.1: A Second-Order Growth Mixture Model of a CFM
 (SOGMM-CF
		Illustrative Example 9.2: Avoiding Convergence Problems
		Estimating a Second-Order Growth Mixture Model: A Factor-of-Curves Model
 (SOGMM of a FCM
		Illustrative Example 9.3: A Second-Order Growth Mixture Model of a FCM
 (SOGMM-FC
		Comparison of Classification between a First-Order GMM with Composite
 Measures and Second-Order GMMs
		Estimating a Conditional Model (Conditional SOGMM
			The Three-Step Approach (Using the AUXILIARY Option) to Add
 Predictors of Second-Order Trajectory Classes
		Illustrative Example 9.4: Estimating a Conditional SOGMM with
 Predictors
			The Three-Step Approach (Using the AUXILIARY Option) to Add
 Outcomes of Second-Order Trajectory Classes
		Illustrative Example 9.5: Estimating a Conditional SOGMM with
 Outcomes
		Estimating a Multidimensional Growth Mixture Model (MGMM
		Illustrative Example 9.6: Estimating a Multidimensional Growth Mixture
 Model
		Conclusion
		Chapter 9 Exercises
		References
		Latent Growth Curves with Non-Normal Variables
Part III Latent Growth Curves with Non-Normal Variables
	Chapter 10 Latent Growth Curve Model with Non-Normal Variables
		Introduction
		Introduction
		Latent Response Variable (LRV) Transformation
			LRV Transformation of a Binary Response Variable Using the Standard
 Logistic Distribution
				The LRV Transformation
				Converting Logistic Coefficients to Probabilities of Yi Being 1
			Extending Logit Transformation to Latent Growth Curves with Binary
 Indicator Variables
		Illustrative Example 10.1: Estimating a Categorical LGCM with Binary
 Outcomes
		A Categorical LGCM with Time-Invariant Covariates
		Illustrative Example 10.2: Estimating a Conditional Categorical LGCM with
 Time-Invariant Covariates
		Applying Probit Transformation for Categorical LGCM
		Parameterization and Estimator
		Illustrative Example 10.3: Estimating a Categorical LGCM with Binary
 Outcomes (Using Probit Transformation
			Extending Probit Transformations to a Categorical LGCM with Ordinal
 Outcomes
		Latent Growth Curves with Count Variables
		Poisson Model (Log-link Functioning
		Illustrative Example 10.4: Estimating a Count LGCM
			Alternative Count Models (Negative Binominal and Zero-Inflated Count
 Models
				Negative Binomial (NB) Models
				Zero-Inflated (ZI) Models
		Illustrative Example 10.5: Estimating Count LGCMs (Using Negative
 Binomial and Zero-Inflated Model
		Conclusion
		Chapter 10 Exercises
		Note
		References
	Chapter 11 Growth Mixture Models with Non-Normal Variables
		Introduction
		Estimating a GMM with Binary Variables
			Building a GMM with Binary Variables Using Mplus
				Mplus Syntax for a LCGA with Binary Outcomes (Step 2
				Mplus Syntax for a GMM with Binary Outcomes (Step 3
				Assessing Estimation Problems (Step 4
				Selecting the Optimal Class Model (Step 5
			Interpreting Results from the Optimal Class Model with Binary
 Variables
			A GMM with Time-Invariant Covariates
		A GMM with Ordinal Variables
		A GMM with Count Variables
		Building a GMM with Count Variables Using Mplus
		Illustrative Example 11.1: Estimating the Two-Class Model of a Zero-Inflated
 LCGA
			Interpreting Results From the Optimal Class Model with Count
 Variables
		A Brief Introduction to a Second-Order Growth Mixture Model (SOGMM) with
 Categorical Variables
		Conclusion
		Chapter 11 Exercises
		References
	Answers to Chapter Exercises
		Chapter 2 Exercises
		Chapter 3 Exercises
		Chapter 4 Exercises
		Chapter 5 Exercises
		Chapter 6 Exercises
		Chapter 7 Exercises
		Chapter 8 Exercises
		Chapter 9 Exercises
		Chapter 10 Exercises
		Chapter 11 Exercises
Index




نظرات کاربران