دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: نویسندگان: Andreas Malmendier, Tony Shaska, Editors سری: Contemporary Mathematics 703 ISBN (شابک) : 9781470428563 ناشر: American Mathematical Society سال نشر: 2018 تعداد صفحات: 234 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Higher Genus Curves in Mathematical Physics and Arithmetic Geometry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب منحنی های جنس عالی در فیزیک ریاضی و هندسه حسابی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover......Page 1
Title page......Page 2
Contents......Page 4
Preface......Page 6
1. Introduction......Page 10
2. Preliminaries......Page 11
3. Bounding Actions by the Length of the Tail......Page 14
4. A Lower Bound for ��_{��_{��},��}......Page 18
References......Page 19
1. Introduction......Page 22
2. Quasi-platonic group actions and regular Belyi functions......Page 24
3. The Galois action on quasi-platonic actions......Page 30
4. Examples of Galois actions on quasi-platonic actions......Page 37
References......Page 41
Equations of Riemann surfaces with automorphisms......Page 42
1. The main algorithm......Page 43
2. Example: A genus 7 Riemann surface with 54 automorphisms......Page 47
3. Selected results......Page 49
References......Page 53
1. Introduction......Page 56
2. Preliminaries......Page 59
3. Field of moduli of superelliptic curves......Page 61
4. Superelliptic curves of genus at most 10......Page 63
5. Tables of superelliptic curves of genus between 5 and 10......Page 65
References......Page 70
1. Introduction......Page 72
2. Reduction of binary quintics and sextics......Page 74
3. Julia quadratic of genus two curves with extra automorphisms......Page 81
4. Minimal models of curves with extra involutions......Page 84
5. Some heuristics for curves with extra involutions defined over Q......Page 87
References......Page 91
1. Introduction......Page 92
2. A database of integral binary sextics......Page 94
3. Heights of genus two curves......Page 95
4. Genus 2 curves over C......Page 97
5. Algebraic invariants......Page 100
6. Automorphisms......Page 106
7. Genus 2 curves defined over Q......Page 109
8. Minimal discriminant for Weierstrass equations......Page 112
9. Constructing the databases......Page 115
Creating the databases......Page 119
Appendix B. Basic Invariants and relations among them......Page 120
References......Page 122
1. Introduction......Page 126
2. Hypersurfaces in toric varieties......Page 129
3. Elliptic curves......Page 131
4. Experimental evidence for strong mirror symmetry......Page 132
5. Picard-Fuchs equations......Page 134
References......Page 137
1. Introduction......Page 140
2. Preliminaries......Page 142
3. Inose type surface for the Jacobian of a curve of genus 2......Page 143
4. Fibration with two ����* fibers......Page 146
References......Page 149
1. Introduction......Page 152
2. Preliminaries and notation......Page 154
3. A basis of holomorphic q-differentials......Page 155
4. Weights of branch points......Page 158
References......Page 164
Introduction......Page 166
1. Limits and Invariants......Page 167
2. Monodromy of ��-gons......Page 174
References......Page 177
1. Introduction......Page 180
2. Notation and definitions......Page 181
3. Runge’s method......Page 183
5. Main theorem......Page 185
6. Relation to Runge’s method......Page 187
7. Algebraic curves......Page 188
8. Higher-dimensional varieties......Page 194
References......Page 196
1. Introduction......Page 198
2. Self-inversive polynomials......Page 199
3. Superelliptic curves and self-inversive polynomials......Page 207
4. Self-reciprocal polynomials and reduction theory......Page 210
5. Self-reciprocal polynomials and codes......Page 213
References......Page 216
1. Introduction......Page 218
2. Divisors on Hurwitz spaces......Page 220
3. The generic splitting type......Page 225
4. The divisor class of mu......Page 226
References......Page 230
Back Cover......Page 234