دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Muralidhar Miryala
سری:
ISBN (شابک) : 9789814877657, 9781003164685
ناشر: Jenny Stanford Publishing
سال نشر: 2022
تعداد صفحات: 607
[608]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 76 Mb
در صورت تبدیل فایل کتاب High-Tc Superconducting Technology: Towards Sustainable Development Goals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری ابررسانا با Tc بالا: به سوی اهداف توسعه پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کاهش تغییرات آب و هوایی، محیط زیست پاک، صلح جهانی، رشد مالی و توسعه آینده جهان نیازمند مواد جدیدی است که کیفیت زندگی را بهبود می بخشد. ابررسانایی، به طور کلی، امکان انتقال کامل جریان بدون تلفات را فراهم می کند. این امر آن را به یک منبع ارزشمند برای پایداری در چندین جنبه تبدیل می کند. مواد ابررسانا با دمای بالا (HTSC) برای کاربردهای روزمره پایدار بسیار مهم و برای اهداف توسعه پایدار سازمان ملل جذاب تر خواهند بود. آهنرباهای ابررسانا را می توان به عنوان آهنرباهای میدان بالا در تصویربرداری تشدید مغناطیسی، رزونانس مغناطیسی هسته ای، تصفیه آب، دارورسانی مغناطیسی و غیره استفاده کرد. اگر پایداری در کشاورزی وجود داشته باشد می توان تا حدی از گرسنگی جلوگیری کرد. در آینده، انرژی الکتریکی DC از نیروگاه های خورشیدی در آفریقا می تواند با استفاده از کابل های ابررسانا در سراسر جهان، به ویژه به کشورهای سردسیر منتقل شود. فناوری ابررسانا روشی کارآمد برای ایجاد پایداری و همچنین کاهش گازهای گلخانه ای است. این کتاب آخرین دستاوردهای جهانی در پردازش و کاربردهای ابررساناهای با Tc بالا را ارائه میکند و در مورد سودمندی SDGها بحث میکند. این پیشرفتهای مرتبط در علم مواد و پیشرفتها را با توجه به SDGs خلاصه میکند. این کتاب همچنین کاربردهای در مقیاس بزرگ مواد HTSC را پوشش میدهد که به SDGs متصل خواهند شد، که توسط چندین دانشمند برجسته، از جمله پروفسور M. Murakami، رئیس موسسه فناوری شیباورا، ژاپن، مورد خطاب قرار گرفته است. پروفسور D. Cardwell، معاون رئیس دانشگاه کمبریج، انگلستان. و پروفسور N. Long، مدیر دانشگاه ویکتوریا ولینگتون، نیوزلند.
Mitigating climate change, clean environment, global peace, financial growth, and future development of the world require new materials that improve the quality of life. Superconductivity, in general, allows perfect current transmission without losses. This makes it a valuable resource for sustainability in several aspects. High-temperature superconducting (HTSC) materials will be crucial for sustainable everyday applications and more attractive for the United Nations’ SDGs. Superconducting magnets can be used as high-field magnets in magnetic resonance imaging, nuclear magnetic resonance, water purification, magnetic drug delivery, etc. Hunger can be partly avoided if there is sustainability in agriculture. In the future, DC electric energy from solar plants in Africa could be transported worldwide, especially to cold countries, using superconducting cables. Superconducting technology is an efficient way to create sustainability as well as reduce greenhouse gases. This book presents the latest global achievements in the processing and applications of high-Tc superconductors and discusses the usefulness of the SDGs. It summarizes the related advances in materials science and developments with respect to the SDGs. The book also covers large-scale applications of HTSC materials, which will be connected to the SDGs, addressed by several eminent scientists, including Prof. M. Murakami, president, Shibaura Institute of Technology, Japan; Prof. D. Cardwell, pro-vice chancellor, University of Cambridge, UK; and Prof. N. Long, director, Victoria University of Wellington, New Zealand.
Cover Page Half Title Page Title Page Copyright Page Table of Contents Page Preface Page 1. Expert Opinion: Relevance of High-Tc Superconductors for SDG Goals 1.1 Superconductivity and Sustainable Development Goals 1.2 High-Tc Superconducting Technology: Towards Sustainable Development Goals 1.3 The Potential of Superconductor Technology: Towards Sustainable Development Goals 1.4 Superconducting Technology: A Step to the United Nation’s Sustainable Development Goals 1.5 Superconductors as Friends of Our Environment 2. Dense and Robust (RE)BCO Bulk Superconductors for Sustainable Applications: Current Status and Future Perspectives 2.1 Introduction 2.1.1 Top-Seeded Melt Growth Technique 2.1.2 Buffer Strategy in TSMG 2.1.3 Generic Seed Crystals and NdBCO Film Seeds 2.2 Infiltration and Growth Process 2.2.1 Development of 2-Step BA-TSIG Process 2.2.2 High-Field Studies of TSIG-Processed Samples 2.2.3 Generic Seeds Fabricated by the TSIG Approach 2.3 High Performance Bulk Superconductors 2.3.1 Existing Literature on GdBCO Bulk Superconductors 2.3.2 GdBCO Bulk Superconductors Fabricated via 2-Step BA-TSIG 2.3.3 Trapped Field Performance 2.3.4 Levitation Force Measurements 2.3.5 Critical Temperature and Critical Current Density 2.3.6 Flux Pinning Force 2.4 Mechanical Property Measurement 2.5 Microstructural Studies 2.6 Reliability of Fabrication 2.7 Novel Experiments Investigated 2.7.1 (RE)BCO Bulk Superconductors with Artificial Holes 2.7.2 YBCO Cavities for Magnetic Shielding 2.7.3 Multi-Seeding Experiments 2.7.4 Reinforcement Studies 2.8 Summary and Conclusions 3. Growth, Microstructure, and Superconducting Properties of Ce Alloyed YBCO Bulk Single-Grain Superconductors 3.1 Introduction 3.2 Influence of Addition of Nanosize Barium Cerate on the Microstructure and Properties of TSMG YBCO Bulk Superconductors 3.3 Influence of CeO2 on Microstructure, Cracking, and Trapped Field of TSIG YBCO Single-Grain Superconductors 3.4 Microstructural Aspects of Infiltration Growth YBCO Bulks with Chemical Pinning 3.5 Influence of Sm2O3 Microalloying and Yb Contamination on Y211 Particles Coarsening and Superconducting Properties of IG YBCO Bulk Superconductors 3.6 Relationship between Local Microstructure and Superconducting Properties of Commercial YBa2Cu3O7-δ Bulk 4. Superconductivity in Biomedicine: Enabling Next Generation's Medical Tools for SDGs 4.1 Introduction 4.2 The Basic Phenomenon of Superconductivity 4.2.1 Zero Resistance 4.2.2 Meissner Effect 4.2.3 Type I vs. Type II Superconductors 4.2.4 Josephson Effect 4.2.5 BCS Theory 4.2.6 Critical Current 4.2.7 The Cooper Effect 4.2.8 London Penetration Depth 4.2.9 Isotope Effect 4.3 The Prominent Role of Superconductors in Biomedical Applications 4.3.1 Magnetic Resonance Imaging 4.3.2 Ultra-Low Field Magnetic Resonance Imaging (ULF-MRI) 4.3.3 Nuclear Magnetic Resonance 4.3.4 Diagnostic Techniques Using SQUIDs 4.3.5 Magnetic Drug Delivery System 4.3.6 Particle Beam Applications for Biomedical Diagnosis 4.4 Relevance to Sustainable Development Goals 4.5 Conclusion 5. Overview of Shaping YBa2Cu3O7 Superconductor 5.1 Introduction 5.2 Experimental Procedures and Results 5.2.1 2D Thick-Film YBCO Fabrics 5.2.2 3D YBCO Superconducting Foams 5.2.3 3D Multiple Holes Textured YBCO 5.3 Conclusion 6. Development of MgB2 Superconducting Super-Magnets: Its Utilization towards Sustainable Development Goals 6.1 Introduction 6.2 Experimental 6.2.1 Characterization 6.3 Innovative Activities to Improve The Performance of Bulk MgB2: Sintering Temperature 6.4 Innovative Activities to Improve the Performance of Bulk MgB2: Sintering Time 6.5 Innovative Activities to Improve the Performance of Bulk MgB2: Silver Addition 6.6 Superconducting Properties of Bulk MgB2 with MgB4 Addition 6.7 Innovative Activities to Improve the Performance of Bulk MgB2: Utilizing Carbon-Encapsulated Boron 6.8 Role of Excess Mg in Enhancing Superconducting Properties of Ag-Added Carbon-Coated Boron-Based Bulk MgB2 6.9 Realizing High-Trapped Field MgB2 Bulk Magnets for Addressing SDGs 6.10 Concluding Remarks 7. Powder Technology of Magnesium Diboride and Its Applications 7.1 Introduction 7.2 Tuning Magnesium and Boron in Undoped Samples 7.2.1 Boron Powders 7.2.2 Mixed Boron Precursors 7.2.3 Nominal Magnesium Non-Stoichiometry 7.2.4 MgB4 as Precursor for Reaction with Mg 7.2.4.1 Influence of heat treatment conditions 7.2.4.2 Influence of nominal Mg content and heat treatment conditions 7.3 Addition with Rare Earth Oxides 7.4 Large-Scale Applications 7.5 Concluding Remarks 8. Ultrasonication: A Cost-Effective Way to Synthesize High-Jc Bulk MgB2 8.1 Introduction 8.2 Experimental 8.2.1 High-Energy Ultrasonication 8.2.2 Boron Ultrasonication 8.2.3 Synthesis of MgB2 8.2.4 Characterization of MgB2 8.3 Results and Discussion 8.3.1 Boron XRD 8.3.2 Microstructural Analysis of Ultrasonicated Boron 8.3.3 MgB2 XRD 8.3.4 Superconducting Performance Measurements 8.4 Conclusion 9. New Potential Family of Iron-Based Superconductors towards Practical Applications: CaKFe4As4 (1144) 9.1 Introduction 9.2 Structural Properties of 1144 9.3 Transition Temperature (TC) and Upper Critical Field (HC2) 9.4 Critical Current Properties 9.5 Development towards Application 9.5.1 Polycrystalline Sample 9.5.2 Superconducting Wires and Tapes 9.6 Conclusions 10. Quasi 1D Layered Nb2PdxSy Superconductor for Industrial Applications 10.1 Introduction 10.2 Preparation Method 10.2.1 Nb2PdxSy Superconductor 10.3 Structural and Superconducting Properties 10.3.1 Crystal Structure and Morphology of Nb2PdxSy Superconductor 10.3.2 Superconducting Properties 10.3.2.1 Temperature-dependent electrical resistivity r (T) 10.3.2.2 Magnetic measurement 10.3.2.3 Anisotropy in upper critical field 10.3.2.4 Specific heat 10.3.2.5 Superconducting gap 10.4 Factors Affecting Critical Parameters (Tc and HC2) 10.4.1 Effect of Doping Elements 10.4.2 Effect of Diameter of Fibers 10.5 Hall Effect 10.6 Normal-State Temperature-Dependent Electrical Resistivity 10.7 Conclusion 11. High-Temperature Superconducting Cable Application to Ship Magnetic Deperming and Its Contribution toward SDG 11.1 Introduction 11.2 Magnetic Silencing of Ship 11.2.1 Degaussing of Ship 11.3 Magnetic Deperming of Ship 11.3.1 Deperming Field for Ship 11.3.2 Conventional Deperming Methods 11.3.2.1 Wound cable on ship-hull 11.3.2.2 Running through the coil 11.3.2.3 Cage-type coil 11.3.2.4 Variations of wound-on-hull 11.3.3 Electric Current and Power for Each Type of Deperming Coil 11.4 HTS Superconducting Deperming 11.4.1 Magnetic Field by Deperming Coil 11.4.2 Superconducting Cable for Seabed Deperming Coil 11.4.2.1 NbTi and Nb3Sn at 4.2 K 11.4.2.2 BSCCO at 70 K 11.4.2.3 ReBCO 11.4.2.4 MgB2 11.4.2.5 Summary 11.4.3 Expected Goal of Complete System 11.4.3.1 Refrigeration of cable 11.4.3.2 Electromagnetic force 11.4.4 Research Step toward the Complete System 11.5 Contribution to Sustainable Development Goal 12. High-Tc Superconducting Bearings Design: Towards High-Performance Machines 12.1 Introduction to Bulk Superconducting Levitation 12.2 Bearing Materials and Cryogenics 12.2.1 Permanent Magnet Materials 12.2.2 Superconducting Materials 12.2.3 Bulk YBaCuO Properties 12.2.4 Performance of Materials in Cryogenics 12.2.4.1 Mechanical properties 12.2.4.2 Thermal properties 12.2.4.3 Electric resistivity and magnetic susceptibility 12.3 Superconducting Bearings Classification 12.3.1 According to Their Motion Degree of Freedom 12.3.2 Meissner and Mixed State Bearings 12.3.3 According to Their Load Bearing Configuration 12.3.4 Active and Passive Superconducting Bearings 12.4 Fundamentals of Design of Passive SMB 12.4.1 State of the Superconducting Bearing 12.4.1.1 Bearings in the Meissner state 12.4.1.2 Mixed state: Field cooled bearings 12.4.2 Thrust Bearings: Force and Stiffness 12.4.3 Journal Bearings 12.4.4 Improved Magnetic Arrangement 12.4.5 Linear Bearings 12.4.6 Force Relaxation 12.4.7 Hysteresis and Damping 12.4.8 Temperature Influence 12.4.9 Vibration Isolation 12.4.10 Coefficient of Friction 12.5 Applications of Superconducting Bearings 12.5.1 Introduction 12.5.2 Cryogenic Machinery 12.5.3 Aerospace Applications 12.5.4 Energy Storage 12.5.5 Transportation 12.5.6 Conclusions 13. Low-Frequency Rotational Loss in an HTS Bearing and Its Application in Sensitive Devices 13.1 A Brief Overview of HTS Bearings 13.1.1 Brief Introduction of HTS Bearing 13.1.2 Classification of HTS Bearing 13.1.3 Application of HTS Bearing in Flywheel 13.2 Rotational Loss of HTS Bearings 13.2.1 Rotational Loss Phenomenon and Coefficient of Friction 13.2.1.1 Rotational loss phenomenon 13.2.1.2 Coefficient of friction 13.2.2 Loss Sources Consideration and Theory 13.2.2.1 Air drag loss 13.2.2.2 Hysteresis loss 13.2.2.3 Eddy current loss 13.2.3 Effects of Bearing Structures and Scales 13.2.3.1 Small-scale HTS bearing 13.2.3.2 Medium-scale HTS bearing 13.2.3.3 Large-scale HTS bearing 13.2.4 Effects of Mechanics and Dynamic Behavior with Rotational Frequency 13.2.5 Effects of Superconducting Material Properties 13.2.6 Effects of Magnetic Rotor Structures 13.2.7 Effects of Magnetization and Working Conditions 13.2.7.1 Magnetization and levitation heights 13.2.7.2 Low Tc Cooling Conditions 13.2.8 Rotation Properties at Extreme Low Frequencies 13.3 Low-Frequency Applications of HTS Bearings 13.3.1 Lunar Telescopes 13.3.2 Polarimeter 13.3.3 Micro-Thrust Measurement Devices 13.3.3.1 Traditional micro-thrust measurement methods 13.3.3.2 Micro-thrust stand using HTS bearing 13.3.3.3 Prototype design 13.3.3.4 Use for EMDrive and Mach-effect thruster 13.4 Summary 14. Superconducting Motor Using HTS Bulk 14.1 Introduction 14.1.1 Growing Air Transport 14.1.2 Electrification of Aircraft 14.1.3 Electrification of Propeller 14.1.4 State of the Art of Electrical Motor 14.1.5 Superconducting Motor 14.1.5.1 History of superconducting machine 14.1.5.2 Superconducting bulk 14.1.5.3 Bean’s model 14.1.5.4 Magnetization of superconducting bulk 14.1.5.5 Superconducting screen 14.1.5.6 Topology of superconducting machine using bulk 14.2 Sizing of a Superconducting Motor 14.2.1 Specifications 14.2.2 Structure of the Machine 14.2.3 Sizing 14.2.3.1 Polarity of the motor 14.2.3.2 General relationship for design 14.2.3.3 Calculus of inductor field 14.2.3.4 Calculus of armature 14.2.3.5 AC losses in superconducting bulk 14.2.4 Optimization 14.2.4.1 Considering only active element 14.2.4.2 Considering the whole machine 14.2.4.3 Superconducting machine and cooling system 14.2.4.4 Improvement margin for high-power machines 14.2.4.5 Comparison with conventional technology 14.3 Realization of the Motor 14.3.1 Cooling System 14.3.2 Superconducting Coil 14.3.3 Rotating Part 14.3.4 Armature 14.3.5 Motor and Test Bench 14.4 Experimental Results 14.4.1 Characterization of Superconducting Coil 14.4.2 Flux Modulation 14.4.3 No Load Tests 14.4.4 Cool Down 14.5 Conclusion 15. Superconducting Fault Current Limiter 15.1 Resistive SFCL 15.2 Flux-Flow Resistive SFCL 15.3 Saturated-Core SFCL 15.4 Magnetic-Shielded SFCL 15.5 Coreless SFCL 15.6 Transformer SFCL 15.7 Flux-Lock SFCL 15.8 Bridge SFCL 15.9 Resonance SFCL 15.10 Hybrid SFCL 15.11 Three-Phase SFCL 15.11.1 Transformer Three-Phase SFCL 15.11.2 SFCL Three-Phase Reactor 15.11.3 Three-Phase Winding and Magnetic Shield Combined SFCL 16. Mechanical Properties and Fracture Behaviors of Superconducting Bulk Materials 16.1 Introduction 16.2 Evaluation Methods of Mechanical Properties 16.3 Mechanical Properties and Fracture Behaviors 16.4 Conclusion Index