ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب High-Tc Superconducting Technology: Towards Sustainable Development Goals

دانلود کتاب فناوری ابررسانا با Tc بالا: به سوی اهداف توسعه پایدار

High-Tc Superconducting Technology: Towards Sustainable Development Goals

مشخصات کتاب

High-Tc Superconducting Technology: Towards Sustainable Development Goals

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9789814877657, 9781003164685 
ناشر: Jenny Stanford Publishing 
سال نشر: 2022 
تعداد صفحات: 607
[608] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 76 Mb 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب High-Tc Superconducting Technology: Towards Sustainable Development Goals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فناوری ابررسانا با Tc بالا: به سوی اهداف توسعه پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فناوری ابررسانا با Tc بالا: به سوی اهداف توسعه پایدار

کاهش تغییرات آب و هوایی، محیط زیست پاک، صلح جهانی، رشد مالی و توسعه آینده جهان نیازمند مواد جدیدی است که کیفیت زندگی را بهبود می بخشد. ابررسانایی، به طور کلی، امکان انتقال کامل جریان بدون تلفات را فراهم می کند. این امر آن را به یک منبع ارزشمند برای پایداری در چندین جنبه تبدیل می کند. مواد ابررسانا با دمای بالا (HTSC) برای کاربردهای روزمره پایدار بسیار مهم و برای اهداف توسعه پایدار سازمان ملل جذاب تر خواهند بود. آهنرباهای ابررسانا را می توان به عنوان آهنرباهای میدان بالا در تصویربرداری تشدید مغناطیسی، رزونانس مغناطیسی هسته ای، تصفیه آب، دارورسانی مغناطیسی و غیره استفاده کرد. اگر پایداری در کشاورزی وجود داشته باشد می توان تا حدی از گرسنگی جلوگیری کرد. در آینده، انرژی الکتریکی DC از نیروگاه های خورشیدی در آفریقا می تواند با استفاده از کابل های ابررسانا در سراسر جهان، به ویژه به کشورهای سردسیر منتقل شود. فناوری ابررسانا روشی کارآمد برای ایجاد پایداری و همچنین کاهش گازهای گلخانه ای است. این کتاب آخرین دستاوردهای جهانی در پردازش و کاربردهای ابررساناهای با Tc بالا را ارائه می‌کند و در مورد سودمندی SDGها بحث می‌کند. این پیشرفت‌های مرتبط در علم مواد و پیشرفت‌ها را با توجه به SDGs خلاصه می‌کند. این کتاب همچنین کاربردهای در مقیاس بزرگ مواد HTSC را پوشش می‌دهد که به SDGs متصل خواهند شد، که توسط چندین دانشمند برجسته، از جمله پروفسور M. Murakami، رئیس موسسه فناوری شیباورا، ژاپن، مورد خطاب قرار گرفته است. پروفسور D. Cardwell، معاون رئیس دانشگاه کمبریج، انگلستان. و پروفسور N. Long، مدیر دانشگاه ویکتوریا ولینگتون، نیوزلند.


توضیحاتی درمورد کتاب به خارجی

Mitigating climate change, clean environment, global peace, financial growth, and future development of the world require new materials that improve the quality of life. Superconductivity, in general, allows perfect current transmission without losses. This makes it a valuable resource for sustainability in several aspects. High-temperature superconducting (HTSC) materials will be crucial for sustainable everyday applications and more attractive for the United Nations’ SDGs. Superconducting magnets can be used as high-field magnets in magnetic resonance imaging, nuclear magnetic resonance, water purification, magnetic drug delivery, etc. Hunger can be partly avoided if there is sustainability in agriculture. In the future, DC electric energy from solar plants in Africa could be transported worldwide, especially to cold countries, using superconducting cables. Superconducting technology is an efficient way to create sustainability as well as reduce greenhouse gases. This book presents the latest global achievements in the processing and applications of high-Tc superconductors and discusses the usefulness of the SDGs. It summarizes the related advances in materials science and developments with respect to the SDGs. The book also covers large-scale applications of HTSC materials, which will be connected to the SDGs, addressed by several eminent scientists, including Prof. M. Murakami, president, Shibaura Institute of Technology, Japan; Prof. D. Cardwell, pro-vice chancellor, University of Cambridge, UK; and Prof. N. Long, director, Victoria University of Wellington, New Zealand.



فهرست مطالب

Cover Page
Half Title Page
Title Page
Copyright Page
Table of Contents Page
Preface Page
1. Expert Opinion: Relevance of High-Tc Superconductors for SDG Goals
	1.1 Superconductivity and Sustainable Development Goals
	1.2 High-Tc Superconducting Technology: Towards Sustainable Development Goals
	1.3 The Potential of Superconductor Technology: Towards Sustainable Development Goals
	1.4 Superconducting Technology: A Step to the United Nation’s Sustainable Development Goals
	1.5 Superconductors as Friends of Our Environment
2. Dense and Robust (RE)BCO Bulk Superconductors for Sustainable Applications: Current Status and Future Perspectives
	2.1 Introduction
		2.1.1 Top-Seeded Melt Growth Technique
		2.1.2 Buffer Strategy in TSMG
		2.1.3 Generic Seed Crystals and NdBCO Film Seeds
	2.2 Infiltration and Growth Process
		2.2.1 Development of 2-Step BA-TSIG Process
		2.2.2 High-Field Studies of TSIG-Processed Samples
		2.2.3 Generic Seeds Fabricated by the TSIG Approach
	2.3 High Performance Bulk Superconductors
		2.3.1 Existing Literature on GdBCO Bulk Superconductors
		2.3.2 GdBCO Bulk Superconductors Fabricated via 2-Step BA-TSIG
		2.3.3 Trapped Field Performance
		2.3.4 Levitation Force Measurements
		2.3.5 Critical Temperature and Critical Current Density
		2.3.6 Flux Pinning Force
	2.4 Mechanical Property Measurement
	2.5 Microstructural Studies
	2.6 Reliability of Fabrication
	2.7 Novel Experiments Investigated
		2.7.1 (RE)BCO Bulk Superconductors with Artificial Holes
		2.7.2 YBCO Cavities for Magnetic Shielding
		2.7.3 Multi-Seeding Experiments
		2.7.4 Reinforcement Studies
	2.8 Summary and Conclusions
3. Growth, Microstructure, and Superconducting Properties of Ce Alloyed YBCO Bulk Single-Grain Superconductors
	3.1 Introduction
	3.2 Influence of Addition of Nanosize Barium Cerate on the Microstructure and Properties of TSMG YBCO Bulk Superconductors
	3.3 Influence of CeO2 on Microstructure, Cracking, and Trapped Field of TSIG YBCO Single-Grain Superconductors
	3.4 Microstructural Aspects of Infiltration Growth YBCO Bulks with Chemical Pinning
	3.5 Influence of Sm2O3 Microalloying and Yb Contamination on Y211 Particles Coarsening and Superconducting Properties of IG YBCO Bulk Superconductors
	3.6 Relationship between Local Microstructure and Superconducting Properties of Commercial YBa2Cu3O7-δ Bulk
4. Superconductivity in Biomedicine: Enabling Next Generation's Medical Tools for SDGs
	4.1 Introduction
	4.2 The Basic Phenomenon of Superconductivity
		4.2.1 Zero Resistance
		4.2.2 Meissner Effect
		4.2.3 Type I vs. Type II Superconductors
		4.2.4 Josephson Effect
		4.2.5 BCS Theory
		4.2.6 Critical Current
		4.2.7 The Cooper Effect
		4.2.8 London Penetration Depth
		4.2.9 Isotope Effect
	4.3 The Prominent Role of Superconductors in Biomedical Applications
		4.3.1 Magnetic Resonance Imaging
		4.3.2 Ultra-Low Field Magnetic Resonance Imaging (ULF-MRI)
		4.3.3 Nuclear Magnetic Resonance
		4.3.4 Diagnostic Techniques Using SQUIDs
		4.3.5 Magnetic Drug Delivery System
		4.3.6 Particle Beam Applications for Biomedical Diagnosis
	4.4 Relevance to Sustainable Development Goals
	4.5 Conclusion
5. Overview of Shaping YBa2Cu3O7 Superconductor
	5.1 Introduction
	5.2 Experimental Procedures and Results
		5.2.1 2D Thick-Film YBCO Fabrics
		5.2.2 3D YBCO Superconducting Foams
		5.2.3 3D Multiple Holes Textured YBCO
	5.3 Conclusion
6. Development of MgB2 Superconducting Super-Magnets: Its Utilization towards Sustainable Development Goals
	6.1 Introduction
	6.2 Experimental
		6.2.1 Characterization
	6.3 Innovative Activities to Improve The Performance of Bulk MgB2: Sintering Temperature
	6.4 Innovative Activities to Improve the Performance of Bulk MgB2: Sintering Time
	6.5 Innovative Activities to Improve the Performance of Bulk MgB2: Silver Addition
	6.6 Superconducting Properties of Bulk MgB2 with MgB4 Addition
	6.7 Innovative Activities to Improve the Performance of Bulk MgB2: Utilizing Carbon-Encapsulated Boron
	6.8 Role of Excess Mg in Enhancing Superconducting Properties of Ag-Added Carbon-Coated Boron-Based Bulk MgB2
	6.9 Realizing High-Trapped Field MgB2 Bulk Magnets for Addressing SDGs
	6.10 Concluding Remarks
7. Powder Technology of Magnesium Diboride and Its Applications
	7.1 Introduction
	7.2 Tuning Magnesium and Boron in Undoped Samples
		7.2.1 Boron Powders
		7.2.2 Mixed Boron Precursors
		7.2.3 Nominal Magnesium Non-Stoichiometry
		7.2.4 MgB4 as Precursor for Reaction with Mg
			7.2.4.1 Influence of heat treatment conditions
			7.2.4.2 Influence of nominal Mg content and heat treatment conditions
	7.3 Addition with Rare Earth Oxides
	7.4 Large-Scale Applications
	7.5 Concluding Remarks
8. Ultrasonication: A Cost-Effective Way to Synthesize High-Jc Bulk MgB2
	8.1 Introduction
	8.2 Experimental
		8.2.1 High-Energy Ultrasonication
		8.2.2 Boron Ultrasonication
		8.2.3 Synthesis of MgB2
		8.2.4 Characterization of MgB2
	8.3 Results and Discussion
		8.3.1 Boron XRD
		8.3.2 Microstructural Analysis of Ultrasonicated Boron
		8.3.3 MgB2 XRD
		8.3.4 Superconducting Performance Measurements
	8.4 Conclusion
9. New Potential Family of Iron-Based Superconductors towards Practical Applications: CaKFe4As4 (1144)
	9.1 Introduction
	9.2 Structural Properties of 1144
	9.3 Transition Temperature (TC) and Upper Critical Field (HC2)
	9.4 Critical Current Properties
	9.5 Development towards Application
		9.5.1 Polycrystalline Sample
		9.5.2 Superconducting Wires and Tapes
	9.6 Conclusions
10. Quasi 1D Layered Nb2PdxSy Superconductor for Industrial Applications
	10.1 Introduction
	10.2 Preparation Method
		10.2.1 Nb2PdxSy Superconductor
	10.3 Structural and Superconducting Properties
		10.3.1 Crystal Structure and Morphology of Nb2PdxSy Superconductor
		10.3.2 Superconducting Properties
			10.3.2.1 Temperature-dependent electrical resistivity r (T)
			10.3.2.2 Magnetic measurement
			10.3.2.3 Anisotropy in upper critical field
			10.3.2.4 Specific heat
			10.3.2.5 Superconducting gap
	10.4 Factors Affecting Critical Parameters (Tc and HC2)
		10.4.1 Effect of Doping Elements
		10.4.2 Effect of Diameter of Fibers
	10.5 Hall Effect
	10.6 Normal-State Temperature-Dependent Electrical Resistivity
	10.7 Conclusion
11. High-Temperature Superconducting Cable Application to Ship Magnetic Deperming and Its Contribution toward SDG
	11.1 Introduction
	11.2 Magnetic Silencing of Ship
		11.2.1 Degaussing of Ship
	11.3 Magnetic Deperming of Ship
		11.3.1 Deperming Field for Ship
		11.3.2 Conventional Deperming Methods
			11.3.2.1 Wound cable on ship-hull
			11.3.2.2 Running through the coil
			11.3.2.3 Cage-type coil
			11.3.2.4 Variations of wound-on-hull
		11.3.3 Electric Current and Power for Each Type of Deperming Coil
	11.4 HTS Superconducting Deperming
		11.4.1 Magnetic Field by Deperming Coil
		11.4.2 Superconducting Cable for Seabed Deperming Coil
			11.4.2.1 NbTi and Nb3Sn at 4.2 K
			11.4.2.2 BSCCO at 70 K
			11.4.2.3 ReBCO
			11.4.2.4 MgB2
			11.4.2.5 Summary
		11.4.3 Expected Goal of Complete System
			11.4.3.1 Refrigeration of cable
			11.4.3.2 Electromagnetic force
		11.4.4 Research Step toward the Complete System
	11.5 Contribution to Sustainable Development Goal
12. High-Tc Superconducting Bearings Design: Towards High-Performance Machines
	12.1 Introduction to Bulk Superconducting Levitation
	12.2 Bearing Materials and Cryogenics
		12.2.1 Permanent Magnet Materials
		12.2.2 Superconducting Materials
		12.2.3 Bulk YBaCuO Properties
		12.2.4 Performance of Materials in Cryogenics
			12.2.4.1 Mechanical properties
			12.2.4.2 Thermal properties
			12.2.4.3 Electric resistivity and magnetic susceptibility
	12.3 Superconducting Bearings Classification
		12.3.1 According to Their Motion Degree of Freedom
		12.3.2 Meissner and Mixed State Bearings
		12.3.3 According to Their Load Bearing Configuration
		12.3.4 Active and Passive Superconducting Bearings
	12.4 Fundamentals of Design of Passive SMB
		12.4.1 State of the Superconducting Bearing
			12.4.1.1 Bearings in the Meissner state
			12.4.1.2 Mixed state: Field cooled bearings
		12.4.2 Thrust Bearings: Force and Stiffness
		12.4.3 Journal Bearings
		12.4.4 Improved Magnetic Arrangement
		12.4.5 Linear Bearings
		12.4.6 Force Relaxation
		12.4.7 Hysteresis and Damping
		12.4.8 Temperature Influence
		12.4.9 Vibration Isolation
		12.4.10 Coefficient of Friction
	12.5 Applications of Superconducting Bearings
		12.5.1 Introduction
		12.5.2 Cryogenic Machinery
		12.5.3 Aerospace Applications
		12.5.4 Energy Storage
		12.5.5 Transportation
		12.5.6 Conclusions
13. Low-Frequency Rotational Loss in an HTS Bearing and Its Application in Sensitive Devices
	13.1 A Brief Overview of HTS Bearings
		13.1.1 Brief Introduction of HTS Bearing
		13.1.2 Classification of HTS Bearing
		13.1.3 Application of HTS Bearing in Flywheel
	13.2 Rotational Loss of HTS Bearings
		13.2.1 Rotational Loss Phenomenon and Coefficient of Friction
			13.2.1.1 Rotational loss phenomenon
			13.2.1.2 Coefficient of friction
		13.2.2 Loss Sources Consideration and Theory
			13.2.2.1 Air drag loss
			13.2.2.2 Hysteresis loss
			13.2.2.3 Eddy current loss
		13.2.3 Effects of Bearing Structures and Scales
			13.2.3.1 Small-scale HTS bearing
			13.2.3.2 Medium-scale HTS bearing
			13.2.3.3 Large-scale HTS bearing
		13.2.4 Effects of Mechanics and Dynamic Behavior with Rotational Frequency
		13.2.5 Effects of Superconducting Material Properties
		13.2.6 Effects of Magnetic Rotor Structures
		13.2.7 Effects of Magnetization and Working Conditions
			13.2.7.1 Magnetization and levitation heights
			13.2.7.2 Low Tc Cooling Conditions
		13.2.8 Rotation Properties at Extreme Low Frequencies
	13.3 Low-Frequency Applications of HTS Bearings
		13.3.1 Lunar Telescopes
		13.3.2 Polarimeter
		13.3.3 Micro-Thrust Measurement Devices
			13.3.3.1 Traditional micro-thrust measurement methods
			13.3.3.2 Micro-thrust stand using HTS bearing
			13.3.3.3 Prototype design
			13.3.3.4 Use for EMDrive and Mach-effect thruster
	13.4 Summary
14. Superconducting Motor Using HTS Bulk
	14.1 Introduction
		14.1.1 Growing Air Transport
		14.1.2 Electrification of Aircraft
		14.1.3 Electrification of Propeller
		14.1.4 State of the Art of Electrical Motor
		14.1.5 Superconducting Motor
			14.1.5.1 History of superconducting machine
			14.1.5.2 Superconducting bulk
			14.1.5.3 Bean’s model
			14.1.5.4 Magnetization of superconducting bulk
			14.1.5.5 Superconducting screen
			14.1.5.6 Topology of superconducting machine using bulk
	14.2 Sizing of a Superconducting Motor
		14.2.1 Specifications
		14.2.2 Structure of the Machine
		14.2.3 Sizing
			14.2.3.1 Polarity of the motor
			14.2.3.2 General relationship for design
			14.2.3.3 Calculus of inductor field
			14.2.3.4 Calculus of armature
			14.2.3.5 AC losses in superconducting bulk
		14.2.4 Optimization
			14.2.4.1 Considering only active element
			14.2.4.2 Considering the whole machine
			14.2.4.3 Superconducting machine and cooling system
			14.2.4.4 Improvement margin for high-power machines
			14.2.4.5 Comparison with conventional technology
	14.3 Realization of the Motor
		14.3.1 Cooling System
		14.3.2 Superconducting Coil
		14.3.3 Rotating Part
		14.3.4 Armature
		14.3.5 Motor and Test Bench
	14.4 Experimental Results
		14.4.1 Characterization of Superconducting Coil
		14.4.2 Flux Modulation
		14.4.3 No Load Tests
		14.4.4 Cool Down
	14.5 Conclusion
15. Superconducting Fault Current Limiter
	15.1 Resistive SFCL
	15.2 Flux-Flow Resistive SFCL
	15.3 Saturated-Core SFCL
	15.4 Magnetic-Shielded SFCL
	15.5 Coreless SFCL
	15.6 Transformer SFCL
	15.7 Flux-Lock SFCL
	15.8 Bridge SFCL
	15.9 Resonance SFCL
	15.10 Hybrid SFCL
	15.11 Three-Phase SFCL
		15.11.1 Transformer Three-Phase SFCL
		15.11.2 SFCL Three-Phase Reactor
		15.11.3 Three-Phase Winding and Magnetic Shield Combined SFCL
16. Mechanical Properties and Fracture Behaviors of Superconducting Bulk Materials
	16.1 Introduction
	16.2 Evaluation Methods of Mechanical Properties
	16.3 Mechanical Properties and Fracture Behaviors
	16.4 Conclusion
Index




نظرات کاربران