دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Viktor P. Astakhov
سری:
ISBN (شابک) : 1032203536, 9781032203539
ناشر: CRC Press
سال نشر: 2024
تعداد صفحات: 502
[503]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 271 Mb
در صورت تبدیل فایل کتاب High-Productivity Drilling Tools به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ابزارهای حفاری با بهره وری بالا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این حجم کاملاً بهروز شده طراحی، ساخت و بازرسی ابزارهای حفاری با بهرهوری بالا (HPDT) را پوشش میدهد و به مشکلات رایج در اجزای سیستم حفاری میپردازد. با معرفی مفاهیم و قواعد معتبر علمی و فنی با توضیحات مفصل و مثالهای عملی متعدد، مفاهیم و باورهای قدیمی را کنار میگذارد. ابزارهای حفاری با بهره وری بالا: طراحی و هندسه توسعه مفهوم طراحی مته با بهره وری بالا (HP) و ویژگی های ساخت و کاربرد آن را معرفی می کند. این کتاب به توسعه مفهوم سیستم حفاری در ویرایش جدید ادامه میدهد و شامل نمونههای عملی جدید است. نحوه درست طراحی و ساخت ابزارهای حفاری برای یک کاربرد خاص را توضیح میدهد و شامل توضیح مفصلی در مورد ویژگیهای طراحی، شیوههای ساخت و اجرای ابزار، اندازهشناسی ابزارهای حفاری و حفاری، و تجزیه و تحلیل خرابی ابزار است. با استفاده از قانون انسجام به عنوان دستورالعملهای معرفی شده در ویرایش اول، ویرایش جدید نشان میدهد که چگونه الزامات اجزای سیستم حفاری را فرموله کنیم، و اشاره میکند که ابزار حفاری جزء کلیدی است که باید بهبود یابد. این کتاب کاربردی باید در قفسههای همه مهندسان صنایع، کسانی که در تولید و ساخت کار میکنند، طراحان فرآیند، طراحان مواد ابزار، طراحان ابزار برش و متخصصان کیفیت باشد. محققان، دانشجویان ارشد و دانشجویان کارشناسی ارشد نیز این کتاب را مملو از اطلاعات مرجع بسیار مفید خواهند یافت.
This completely updated volume covers the design, manufacturing, and inspection of High Productivity Drilling Tools (HPDT) and addresses common issues with drilling system components. It discards old notions and beliefs as it introduces scientifically and technically sound concepts and rules with detailed explanations and multiple practical examples. High-Productivity Drilling Tools: Design and Geometry introduces the development of the concept of high-productivity (HP) drill design and its manufacturing and application features. The book continues to develop the concept of a drilling system in the new edition and includes new practical examples. It explains how to properly design and manufacture drilling tools for a specific application and includes a detailed explanation of the design features, tool manufacturing and implementation practices, metrology of drilling and drilling tools, and the tool failure analysis. Using the coherency law as the guidelines introduced in the first edition, the new edition shows how to formulate the requirements for the components of the drilling system, pointing out that the drilling tool is the key component to be improved. This practical book should be on the shelves of all industrial engineers, those working in production and manufacturing, process designers, tool material designers, cutting tool designers, and quality specialists. Researchers, senior undergraduate students, and graduate students will also find this book full of very helpful reference information.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgments Author Chapter 1 Basics of Drilling and Drilling System 1.1 Basic Drilling Operations 1.2 Machining Regime in Drilling Operations 1.2.1 Cutting Speed 1.2.2 Feed, Feed per Tooth, and Feed Rate 1.2.3 Depth of Cut and Material Removal Rate 1.2.4 Cut and its Dimensions 1.2.5 Selecting Machining Regime: General Idea 1.2.6 Cutting Force and Power in Drilling Operations 1.3 Drilling System 1.3.1 System Concept 1.3.2 Structure of the Drilling System 1.3.3 Coherency Law 1.3.4 System Objective 1.4 Concept of Cutting Tool Quality 1.5 Case for HP Drills 1.6 Design of Drilling Systems 1.6.1 Part Drawing Analysis and Design of the Tool Layout 1.6.2 Drill Selection 1.6.3 HP Drill Design/Geometry Selection References Chapter 2 Geometry and Design Components of Drilling Tools 2.1 Drills 2.1.1 Classification 2.1.2 Nomenclature/Terminology 2.1.3 Design and Geometry: Advanced Users’ Perspective 2.1.4 Microgeometry 2.1.5 Tool Design/Development/Research Perspective 2.1.6 Generalization 2.2 Reamers 2.2.1 Definition and Current ISO Standards 2.2.2 General Classification 2.2.3 Nomenclature/Terminology of Reamer Elements and Associated Terms 2.2.4 Basic Reamers Geometry and Its Relevant Particularities 2.2.5 Trends in the Development 2.2.6 Process and Design Parameters to Consider 2.3 Taps 2.3.1 Introduction Words 2.3.2 Definition of Tapping and Tap 2.3.3 Classification 2.3.4 Nomenclature 2.3.5 Taps Cutting Geometry 2.3.6 Thread Profile and Tolerances 2.3.7 Methodology to Calculate the Drilling Tool Diameter for Tap Holes 2.3.8 Synchronization Issue in Tapping 2.3.9 Some Notes on Thread Formers/Forming Taps References Chapter 3 Deep-Hole Drilling Tools 3.1 Introduction 3.2 Common Classification of Deep-Hole Machining Operations 3.3 Gundrills: Basic Design and Geometry 3.3.1 History 3.3.2 Common Design and Geometry: Advanced Users’ Perspective 3.3.3 Tool Design/Development/Research Perspective 3.4 STS Drills 3.4.1 Short History 3.4.2 Basic Operations 3.4.3 Force Balance 3.4.4 Basic Geometry of STS Drills 3.4.5 Power and Force 3.4.6 Problem with the Core 3.4.7 Problem with the Pressure Distribution 3.4.8 Addressing the Problems with the Pressure Distribution and the Core 3.5 Ejector Drills References Chapter 4 PCD Drilling Tools 4.1 Challenges of Work Materials – Why Diamond as a Tool Material Is Needed? 4.1.1 MMCs 4.1.2 CFRP 4.1.3 Diamond Tool as the Most Feasible Option 4.1.4 Application Particularities 4.2 Diamond: Word Origin and Early History 4.3 Structure and Important Properties 4.3.1 Structure and Bonding in Graphite and Diamond 4.3.2 Important Properties 4.4 Applications 4.5 Types 4.6 Synthetic Diamond 4.6.1 History 4.6.2 Synthetic Diamond Brief Classification 4.6.3 Synthetic Diamond Technology: High-Pressure Equipment 4.6.4 Synthetic Diamond Technology: The Synthesis 4.7 Blanks for Drilling Tools 4.7.1 PDC and PCD 4.7.2 Available PCD Blanks/Disk 4.7.3 Manufacturing of PCD Disks 4.7.4 Powder Mix 4.7.5 Grain Size 4.7.6 Interfaces 4.7.7 Quality Control 4.8 Thermal Stability 4.8.1 Effect of Temperature on PCD Structure 4.8.2 Improving Thermal Stability of PCDs 4.8.3 PCD Overheating – Results 4.8.4 PCD Overheating – Causes 4.9 Brazing 4.9.1 Examples of Poor Brazing 4.9.2 Literature Support 4.9.3 Factors to be Considered 4.10 Roughing/Trimming and Finishing 4.10.1 EDM 4.10.2 Electric Discharge Grinding 4.10.3 Laser Cutting of PCD 4.10.4 Abrasive Grinding 4.11 PCD Drilling Tools Design 4.11.1 PCD-Tipped Drilling Tools 4.11.2 Full-Face (Cross) PCD Drills 4.11.3 Full-Head PCD Drills References Appendix: Basics of the Tool Geometry A.1 Basic Terms and Definitions A.1.1 Workpiece Surfaces A.1.2 Tool Surfaces and Elements A.1.3 Types of Cutting A.1.4 Important Nomenclature of a Single-Point Tool A.2 Systems of Consideration of the Cutting Tool Geometry A.2.1 Standard and Proposed Systems A.2.2 What Does It Mean “The Tool Geometry”? A.3 Reference System A.3.1 General A.3.2 Reference Plane A.4 Tool-in-Hand System (T-hand-S) A.4.1 Reference Plane, P[sub(r)] A.4.2 Working Plane, P[sub(f)] A.4.3 Back Plane, P[sub(p)] A.4.4 Tool Cutting Edge Plane, P[sub(s)] A.4.5 Tool Orthogonal, P[sub(o)] and Tool Normal, P[sub(n)] Planes A.4.6 Reference System for the Minor Cutting Edge A.4.7 Angles in the Reference Plane P[sub(r)] A.4.8 Angles in the Working and Back Planes A.4.9 Angles in the Orthogonal Plane A.4.10 Angles in the Cutting Edge and Normal Planes A.4.11 Minor Cutting Edge A.4.12 Geometrical Relationship Among Angles in T-hand-S A.4.13 Drilling Tool Geometry in T-hand-S A.5 Tool-in-Holder System (T-hold-S) A.6 Tool-in-Machine System (T-mach-S) A.7 Tool-in-Use System (T-use-S) A.7.1 T-use-S Reference Planes A.7.2 T-use-S Angles A.8 Importance of the Introduced Angles A.8.1 Clearance Angle A.8.2 Rake Angle A.8.3 Tool Cutting Edge Angle A.8.4 Minor Cutting Edge A.8.5 Inclination Angle References Index