دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Second نویسندگان: Jarosław Guziński, Haithem Abu-Rub, Atif Iqbal سری: ISBN (شابک) : 9781119590781, 1119590787 ناشر: سال نشر: 2021 تعداد صفحات: 622 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 45 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب High performance control of AC drives with MATLAB/Simulink به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل عملکرد بالا درایوهای AC با MATLAB/Simulink نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Page Contents Acknowledgment Biographies Preface to Second Edition Preface to First Edition About the Companion Website Chapter 1 Introduction to High-Performance Drives 1.1 Preliminary Remarks 1.2 General Overview of High-Performance Drives 1.3 Challenges and Requirements for Electric Drives for Industrial Applications 1.3.1 Power Quality and LC Resonance Suppression 1.3.2 Inverter Switching Frequency 1.3.3 Motor-Side Challenges 1.3.4 High dv/dt and Wave Reflection 1.3.5 Use of Inverter Output Filters 1.4 Wide Bandgap (WBG) Devices Applications in Electric Motor Drives 1.4.1 Industrial Prototype Using WBG 1.4.2 Major Challenges for WBG Devices for Electric Motor Drive Applications 1.5 Organization of the Book References Chapter 2 Mathematical and Simulation Models of AC Machines 2.1 Preliminary Remarks 2.2 DC Motors 2.2.1 Separately Excited DC Motor Control 2.2.2 Series DC Motor Control 2.3 Squirrel Cage Induction Motor 2.3.1 Space Vector Representation 2.3.2 Clarke Transformation (ABC to aß) 2.3.3 Park Transformation (aß to dq) 2.3.4 Per Unit Model of Induction Motor 2.3.5 Double Fed Induction Generator (DFIG) 2.4 Mathematical Model of Permanent Magnet Synchronous Motor 2.4.1 Motor Model in dq Rotating Frame 2.4.2 Example of Motor Parameters for Simulation 2.4.3 PMSM Model in Per Unit System 2.4.4 PMSM Model in a-ß (x-y)-Axis 2.5 Problems References Chapter 3 Pulse-Width Modulation of Power Electronic DC–AC Converter 3.1 Preliminary Remarks 3.2 Classification of PWM Schemes for Voltage Source Inverters 3.3 Pulse-Width Modulated Inverters 3.3.1 Single-Phase Half-Bridge Inverters 3.3.2 Single-Phase Full-Bridge or H-Bridge Inverters 3.4 Three-Phase PWM Voltage Source Inverter 3.4.1 Carrier-Based Sinusoidal PWM 3.4.2 Third-Harmonic Injection Carrier-Based PWM 3.4.3 MATLAB/Simulink Model for Third-Harmonic Injection PWM 3.4.4 Carrier-Based PWM with Offset Addition 3.4.5 Space Vector PWM (SVPWM) 3.4.6 Discontinuous Space Vector PWM 3.4.7 MATLAB/Simulink Model for Space Vector PWM 3.4.8 Space Vector PWM in Overmodulation Region 3.4.9 MATLAB/Simulink Model to Implement Space Vector PWM in Overmodulation Regions 3.4.10 Harmonic Analysis 3.4.11 Artificial Neural Network-Based PWM 3.4.12 MATLAB/Simulink Model of Implementing ANN-Based SVPWM 3.5 Relationship Between Carrier-Based PWM and SVPWM 3.5.1 Modulating Signals and Space Vectors 3.5.2 Relationship Between Line-to-Line Voltages and Space Vectors 3.5.3 Modulating Signals and Space Vector Sectors 3.6 Low-Switching Frequency PWM 3.6.1 Types of Symmetries and Fourier Analysis 3.6.2 Selective Harmonics Elimination in a two-Level VSI 3.6.3 MATLAB Code 3.7 Multilevel Inverters 3.7.1 Neutral-Point-Clamped (Diode-Clamped) Multilevel Inverters 3.7.2 Flying Capacitor-Type Multilevel Inverter 3.7.3 Cascaded H-Bridge Multilevel Inverter 3.8 Space Vector Modulation and DC-Link Voltage Balancing in Three-Level Neutral-Point-Clamped Inverters 3.8.1 The Output Voltage of Three-Level NPC Inverter in the Case of the DC-Link Voltage Unbalance 3.8.2 The Space Vector PWM for NPC Inverters 3.8.3 MATLAB/Simulink of SVPWM 3.9 Space Vector PWM for Multilevel-Cascaded H-Bridge Converter with DC-Link Voltage Balancing 3.9.1 Control of a Multilevel CHB Converter 3.9.2 The Output Voltage of a Single H-Bridge 3.9.3 Three-Level CHB Inverter 3.9.4 The Space Vector Modulation for Three-Level CHB Inverter 3.9.5 The Space Vector Modulation for Multilevel CHB Inverter 3.9.6 MATLAB/Simulink Simulation of SVPWM 3.10 Impedance Source or Z-source Inverter 3.10.1 Circuit Analysis 3.10.2 Carrier-Based Simple Boost PWM Control of a Z-source Inverter 3.10.3 Carrier-Based Maximum Boost PWM Control of a Z-source Inverter 3.10.4 MATLAB/Simulink Model of Z-source Inverter 3.11 Quasi Impedance Source or qZSI Inverter 3.11.1 MATLAB/Simulink Model of qZ-source Inverter 3.12 Dead Time Effect in a Multiphase Inverter 3.13 Summary Problems References Chapter 4 Field-Oriented Control of AC Machines 4.1 Introduction 4.2 Induction Machines Control 4.2.1 Control of Induction Motor Using V/f Methods 4.2.2 Vector Control of Induction Motor 4.2.3 Direct and Indirect Field-Oriented Control 4.2.4 Rotor and Stator Flux Computation 4.2.5 Adaptive Flux Observers 4.2.6 Stator Flux Orientation 4.2.7 Field Weakening Control 4.3 Vector Control of Double Fed Induction Generator (DFIG) 4.3.1 Introduction 4.3.2 Vector Control of DFIG Connected with the Grid (aß Model) 4.3.3 Variables Transformation 4.3.4 Simulation Results 4.4 Control of Permanent Magnet Synchronous Machine 4.4.1 Introduction 4.4.2 Vector Control of PMSM in dq Axis 4.4.3 Vector Control of PMSM in a-ß Axis Using PI Controller 4.4.4 Scalar Control of PMSM Exercises Additional Tasks Possible Tasks for DFIG Questions References Chapter 5 Direct Torque Control of AC Machines 5.1 Preliminary Remarks 5.2 Basic Concept and Principles of DTC 5.2.1 Basic Concept 5.2.2 Principle of DTC 5.3 DTC of Induction Motor with Ideal Constant Machine Model 5.3.1 Ideal Constant Parameter Model of Induction Motors 5.3.2 Direct Torque Control Scheme 5.3.3 Speed Control with DTC 5.3.4 MATLAB/Simulink Simulation of Torque Control and Speed Control with DTC 5.4 DTC of Induction Motor with Consideration of Iron Loss 5.4.1 Induction Machine Model with Iron Loss Consideration 5.4.2 MATLAB/SIMULINK Simulation of the Effects of Iron Losses in Torque Control and Speed Control 5.4.3 Modified Direct Torque Control Scheme for Iron Loss Compensation 5.5 DTC of Induction Motor with Consideration of Both Iron Losses and Magnetic Saturation 5.5.1 Induction Machine Model with Consideration of Iron Losses and Magnetic Saturation 5.5.2 MATLAB/Simulink Simulation of Effects of Both Iron Losses and Magnetic Saturation in Torque Control and Speed Control 5.6 Modified Direct Torque Control of Induction Machine with Constant Switching Frequency 5.7 Direct Torque Control of Sinusoidal Permanent Magnet Synchronous Motors (SPMSM) 5.7.1 Introduction 5.7.2 Mathematical Model of Sinusoidal PMSM 5.7.3 Direct Torque Control Scheme of PMSM 5.7.4 MATLAB/Simulink Simulation of SPMSM with DTC References Chapter 6 Nonlinear Control of Electrical Machines Using Nonlinear Feedback 6.1 Introduction 6.2 Dynamic System Linearization Using Nonlinear Feedback 6.3 Nonlinear Control of Separately Excited DC Motors 6.3.1 MATLAB/Simulink Nonlinear Control Model 6.3.2 Nonlinear Control Systems 6.3.3 Speed Controller 6.3.4 Controller for Variable m 6.3.5 Field Current Controller 6.3.6 Simulation Results 6.4 Multiscalar Model (MM) of Induction Motor 6.4.1 Multiscalar Variables 6.4.2 Nonlinear Linearization of Induction Motor Fed by Voltage Controlled VSI 6.4.3 Design of System Control 6.4.4 Nonlinear Linearization of Induction Motor Fed by Current Controlled VSI 6.4.5 Stator-Oriented Nonlinear Control System (based on Ψs, is) 6.4.6 Rotor–Stator Fluxes-Based Model 6.4.7 Stator-Oriented Multiscalar Model 6.4.8 Multiscalar Control of Induction Motor 6.4.9 Induction Motor Model 6.4.10 State Transformations 6.4.11 Decoupled IM Model 6.4.11.1 Control System 6.4.11.2 Simulation Results 6.5 MM of Double-Fed Induction Machine (DFIM) 6.6 Nonlinear Control of Permanent Magnet Synchronous Machine 6.6.1 Nonlinear Control of PMSM for a dq Motor Model 6.6.2 Nonlinear Vector Control of PMSM in a-ß Axis 6.6.3 PMSM Model in a-ß (x-y) Axis 6.6.4 Transformations 6.6.5 Control System 6.6.6 Simulation Results Problems References Chapter 7 Five-Phase Induction Motor Drive System 7.1 Preliminary Remarks 7.2 Advantages and Applications of Multiphase Drives 7.3 Modeling and Simulation of a Five-Phase Induction Motor Drive 7.3.1 Five-Phase Induction Motor Model 7.3.2 Five-Phase Two-Level Voltage Source Inverter Model 7.3.3 PWM Schemes of a Five-Phase VSI 7.4 Direct Rotor Field-Oriented Control of Five-Phase Induction Motor 7.4.1 MATLAB/Simulink Model of Field-Oriented Control of Five-Phase Induction Machine 7.5 Field-Oriented Control of Five-Phase Induction Motor with Current Control in the Synchronous Reference Frame 7.6 Direct Torque Control of a Five-Phase Induction Motor 7.6.1 Control of Inverter Switches Using DTC Technique 7.6.2 Virtual Vector for Five-Phase Two-Level Inverter 7.7 Model Predictive Control (MPC) 7.7.1 MPC Applied to a Five-Phase Two-Level VSI 7.7.2 MATLAB/Simulink of MPC for Five-Phase VSI 7.7.3 Using Eleven Vectors with γ = 0 7.7.4 Using Eleven Vectors with γ = 1 7.8 Summary 7.9 Problems References Chapter 8 Sensorless Speed Control of AC Machines 8.1 Preliminary Remarks 8.2 Sensorless Control of Induction Motor 8.2.1 Speed Estimation Using Open-Loop Model and Slip Computation 8.2.2 Closed-Loop Observers 8.2.3 MRAS (Closed-Loop) Speed Estimator 8.2.4 The Use of Power Measurements 8.3 Sensorless Control of PMSM 8.3.1 Control System of PMSM 8.3.2 Adaptive Backstepping Observer 8.3.3 Model Reference Adaptive System for PMSM 8.3.4 Simulation Results 8.4 MRAS-Based Sensorless Control of Five-Phase Induction Motor Drive 8.4.1 MRAS-Based Speed Estimator 8.4.2 Simulation Results References Chapter 9 Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters 9.1 Drives and Filters – Overview 9.2 Three-Phase to Two-Phase Transformations 9.3 Voltage and Current Common Mode Component 9.3.1 MATLAB/Simulink Model of Induction Motor Drive with PWM Inverter and Common Mode Voltage 9.4 Induction Motor Common Mode Circuit 9.5 Bearing Current Types and Reduction Methods 9.5.1 Common Mode Choke 9.5.2 Common Mode Transformers 9.5.3 Common Mode Voltage Reduction by PWM Modifications 9.6 Inverter Output Filters 9.6.1 Selected Structures of Inverter Output Filters 9.6.2 Inverter Output Filters Design 9.6.3 Motor Choke 9.6.4 MATLAB/Simulink Model of Induction Motor Drive with PWM Inverter and Differential Mode LC Filter 9.7 Estimation Problems in the Drive with Filters 9.7.1 Introduction 9.7.2 Speed Observer with Disturbances Model 9.7.3 Simple Observer Based on Motor Stator Models 9.8 Motor Control Problems in the Drive with Filters 9.8.1 Introduction 9.8.2 Field-Oriented Control 9.8.3 Nonlinear Field-Oriented Control 9.8.4 Nonlinear Multiscalar Control 9.9 Predictive Current Control in the Drive System with Output Filter 9.9.1 Control System 9.9.2 Predictive Current Controller 9.9.3 EMF Estimation Technique 9.10 Problems Questions References Chapter 10 Medium Voltage Drives – Challenges and Trends 10.1 Introduction 10.2 Medium Voltage Drive Topologies 10.3 Challenges and Requirements of MV Drives 10.3.1 Power Quality and LC Resonance Suppression 10.3.2 Inverter Switching Frequency 10.3.3 Motor Side Challenges 10.4 Summary References Chapter 11 Current Source Inverter Fed Drive 11.1 Introduction 11.2 Current Source Inverter Structure 11.3 Pulse Width Modulation of Current Source Inverter 11.4 Mathematical Model of the Current Source Inverter Fed Drive 11.5 Control System of an Induction Machine Supplied by a Current Source Inverter 11.5.1 Open-Loop Control 11.5.2 Direct Field Control of Induction Machine 11.6 Control System Model in Matlab/Simulink References Index EULA