دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Aifantis K.E., Hackney S.A., Kumar R.V. (eds.) سری: ISBN (شابک) : 3527324070, 9783527324071 ناشر: Wiley سال نشر: 2010 تعداد صفحات: 283 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب High Energy Density Lithium Batteries به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب باتری های لیتیومی با چگالی انرژی بالا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مهندسی مواد برای ذخیره انرژی با چگالی بالا دانش دست اولی را در مورد طراحی باتری های ایمن و قدرتمند و روش ها و رویکردهای افزایش عملکرد باتری های نسل بعدی ارائه می دهد. این کتاب بررسی میکند که چگونه رویکردهای نوآورانهای که در حال حاضر به کار میروند، از جمله لایههای نازک، نانوذرات و نانوکامپوزیتها، راههای جدیدی را برای بهبود عملکرد هموار میکنند. پتانسیل کاربردی فوق العاده این موضوع برای مخاطبان گسترده ای از جمله دانشمندان علم مواد، فیزیکدانان، الکتروشیمیدانان، کتابخانه ها و دانشجویان فارغ التحصیل جذاب خواهد بود.
Materials Engineering for High Density Energy Storage provides first-hand knowledge about the design of safe and powerful batteries and the methods and approaches for enhancing the performance of next-generation batteries. The book explores how the innovative approaches currently employed, including thin films, nanoparticles and nanocomposites, are paving new ways to performance improvement. The topic's tremendous application potential will appeal to a broad audience, including materials scientists, physicists, electrochemists, libraries, and graduate students.
High Energy Density Lithium Batteries......Page 1
Contents......Page 9
Preface......Page 15
List of Contributors......Page 17
1.1 What are Batteries?......Page 19
1.2 Quantities Characterizing Batteries......Page 21
1.2.1 Voltage......Page 22
1.2.2.1 Electrical Double Layer......Page 25
1.2.2.4 The Tafel Equation......Page 26
1.2.2.5 Example: Plotting a Tafel Curve for a Copper Electrode......Page 27
1.2.2.7 Tafel Curves for a Battery......Page 29
1.2.3 Capacity......Page 31
1.2.5 Discharge Curve/Cycle Life......Page 32
1.2.7 Specific Energy Density......Page 33
1.2.9 Service Life/Temperature Dependence......Page 34
1.3 Primary and Secondary Batteries......Page 35
1.4 Battery Market......Page 37
1.5 Recycling and Safety Issues......Page 38
References......Page 43
2.2 The Early Batteries......Page 45
2.3.1 The Leclanché Cell......Page 49
2.3.2 The Gassner Cell......Page 50
2.3.3 Current Zinc/Carbon Cell......Page 51
2.3.3.1 Electrochemical Reactions......Page 52
2.3.3.2 Components......Page 53
2.4 Alkaline Batteries......Page 54
2.4.2 Components......Page 56
2.4.3 Disadvantages......Page 57
2.5.1 Mercury Oxide Battery......Page 58
2.5.2 Zn/Ag2O Battery......Page 59
2.5.3 Metal–Air Batteries......Page 60
2.5.3.1 Zn/Air Battery......Page 62
2.5.3.2 Aluminum/Air Batteries......Page 63
2.6 Li Primary Batteries......Page 64
2.6.1 Lithium/Thionyl Chloride Batteries......Page 65
2.6.2 Lithium/Sulfur Dioxide Cells......Page 66
2.7 Oxyride Batteries......Page 67
2.8 Damage in Primary Batteries......Page 68
References......Page 70
3: A Review of Materials and Chemistry for Secondary Batteries......Page 71
3.1 The Lead-Acid Battery......Page 72
3.1.1 Electrochemical Reactions......Page 74
3.1.2 Components......Page 75
3.1.3 New Components......Page 78
3.2 The Nickel–Cadmium Battery......Page 81
3.2.1 Electrochemical Reactions......Page 83
3.3 Nickel–Metal Hydride (Ni-MH) Batteries......Page 84
3.4.1 Components......Page 85
3.5 Secondary Lithium Batteries......Page 86
3.5.1 Lithium-Ion Batteries......Page 88
3.5.2 Li-Polymer Batteries......Page 91
3.5.3 Evaluation of Li Battery Materials and Chemistry......Page 92
3.6 Lithium–Sulfur Batteries......Page 94
References......Page 98
4.1 Portable Electronic Devices......Page 99
4.2 Hybrid and Electric Vehicles......Page 100
4.3.1 Heart Pacemakers......Page 103
4.3.2 Neurological Pacemakers......Page 104
4.4 Application of Secondary Li Ion Battery Systems in Vehicle Technology......Page 105
4.4.1 Parallel Connection......Page 109
4.4.2 Series Connections......Page 111
4.4.3 Limitations and Safety Issues......Page 115
References......Page 118
5.1 Energy Density and Thermodynamics......Page 121
5.2 Materials Chemistry and Engineering of Voltage Plateau......Page 129
5.3 Multitransition Metal Oxide Engineering for Capacity and Stability......Page 137
References......Page 144
6.1 Introduction......Page 147
6.2 Chemical Attack by the Electrolyte......Page 148
6.3 Mechanical Instabilities during Electrochemical Cycling......Page 150
6.4 Nanostructured Anodes......Page 153
6.5.1 Sn-Based Thin Film Anodes......Page 154
6.5.2 Si-Based Thin Film Anodes......Page 155
6.6.1 Sn-Based Nanofiber/Nanowire Anodes......Page 160
6.6.2 Si-Nanowire Anodes......Page 161
6.7.1.1 Sn–Sb Alloys......Page 164
6.7.1.2 SnS2 Nanoplates......Page 166
6.7.1.3 Sn–C Nanocomposites......Page 167
6.7.2.1 Si–SiO2–C Composites......Page 169
6.7.2.2 Si–C Nanocomposites......Page 171
6.8.1 Sb-Based Anodes......Page 175
6.8.2 Al-Based Anodes......Page 176
6.8.3 Bi-Based Anodes......Page 178
References......Page 180
7.1 Introduction......Page 183
7.2.1 Li-Ion Liquid Electrolytes......Page 188
7.2.2 Why Polymer Electrolytes?......Page 190
7.2.3 Metal Ion Salts for Polymer Electrolytes......Page 191
7.3 Preparation and Characterization of Polymer Electrolytes......Page 192
7.3.1.3 Ion-Exchanged Li-MMT-Containing Polymer Composite Electrolytes......Page 193
7.3.2.1 Morphologies and Structural Properties......Page 194
7.3.2.2 Thermal Properties......Page 196
7.3.2.3 Electrochemical Properties......Page 198
7.3.3.1 Morphologies and Structural Properties......Page 203
7.3.3.2 Thermal Properties......Page 206
7.3.3.3 Electrochemical Properties......Page 207
7.3.4.1 Structural Properties......Page 209
7.3.4.2 Thermal Properties......Page 210
7.3.4.3 Electrochemical Properties......Page 211
7.3.5.1 Morphologies and Structural Properties......Page 215
7.3.5.2 Thermal Properties......Page 218
7.3.5.3 Electrochemical Properties......Page 219
7.4 Conclusions......Page 221
References......Page 223
8.1 Introduction......Page 227
8.2 Mechanics Considerations During Battery Life......Page 229
8.3.1 Fracture in a Bilayer Configuration......Page 232
8.3.2 Elasticity and Fracture in an Axially Symmetric Configuration......Page 234
8.3.3 Fracture and Damage Evolution for Thin Film Case......Page 238
8.3.5 Spherical Active Sites......Page 241
8.3.6 Stability Plots......Page 244
8.3.7 Volume Fraction and Particle Size Considerations......Page 245
8.3.7.2 Griffith’s Criterion......Page 246
8.3.8 Critical Crack Length......Page 248
8.3.9 Mechanical Stability of Sn/C Island Structure Anode......Page 249
8.4 Multiscale Phenomena and Considerations in Modeling......Page 253
8.4.1 Macroscale Modeling......Page 254
8.5 Particle Models of Coupled Diffusion and Stress Generation......Page 257
8.5.1 Li+Transport During Extraction and Insertion from a Host......Page 258
8.5.2 Electrochemical Reaction Kinetics......Page 260
8.5.4 Representative Results......Page 261
8.6.1 Multiscale Electrochemical Interactions......Page 266
8.6.2 Diffusion Stresses in Low Symmetry Composition Fields......Page 270
References......Page 272
Index......Page 275