دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Vidyasagar M.
سری: Princeton Series in Applied Mathematics
ISBN (شابک) : 0691133158, 9780691133157
ناشر: Princeton University Press
سال نشر: 2014
تعداد صفحات: 303
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Hidden Markov Processes: Theory and Applications to Biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرآیندهای پنهان مارکوف: نظریه و کاربردها در زیست شناسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب جنبههای مهم فرآیندهای مارکوف و پنهان مارکوف و کاربردهای این ایدهها در مسائل مختلف زیستشناسی محاسباتی را بررسی میکند. کتاب از اصول اول شروع می شود، به طوری که نیازی به آگاهی قبلی از احتمال نیست. با این حال، کار دقیق و ریاضی است، و آن را برای مهندسان و ریاضیدانان، حتی کسانی که علاقه ای به کاربردهای بیولوژیکی ندارند، مفید می کند. مجموعهای از تمرینها، از جمله تمرینهایی برای آشنایی خواننده با مفاهیم و مسائل پیشرفتهتر که نیاز به تفکر عمیق در مورد تئوری دارد، ارائه میشود. کاربردهای بیولوژیکی از زیست شناسی پس ژنومیک، به ویژه ژنومیک و پروتئومیکس گرفته شده است.
موضوعات مورد بررسی شامل مطالب استانداردی مانند قضیه پرون-فروبنیوس، حالت های گذرا و عود کننده، احتمالات و زمان های برخورد، تخمین حداکثر احتمال، الگوریتم ویتربی و الگوریتم بام-ولچ می باشد. این کتاب شامل بحثهایی درباره موضوعات بسیار مفیدی است که معمولاً در سطح پایه دیده نمیشوند، مانند ارگودیکی بودن فرآیندهای مارکوف، زنجیره مارکوف مونت کارلو (MCMC)، نظریه اطلاعات و نظریه انحراف بزرگ برای هر دو فرآیند i.i.d و مارکوف. این کتاب همچنین تئوری تحقق مدرن را برای مدلهای پنهان مارکوف ارائه میکند. در میان کاربردهای بیولوژیکی، نگاهی عمیق به الگوریتم BLAST (تکنیک جستجوی هم ترازی محلی پایه) ارائه می دهد، از جمله توضیح جامعی از نظریه اساسی. برنامههای کاربردی دیگر مانند مدلهای مارکوف پنهان نمایه نیز بررسی میشوند.
This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics.
The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.
Content: Preface xi PART 1. PRELIMINARIES 1 Chapter 1. Introduction to Probability and Random Variables 3 1.1 Introduction to Random Variables 3 1.1.1 Motivation 3 1.1.2 Definition of a Random Variable and Probability 4 1.1.3 Function of a Random Variable, Expected Value 8 1.1.4 Total Variation Distance 12 1.2 Multiple Random Variables 17 1.2.1 Joint and Marginal Distributions 17 1.2.2 Independence and Conditional Distributions 18 1.2.3 Bayes\' Rule 27 1.2.4 MAP and Maximum Likelihood Estimates 29 1.3 Random Variables Assuming Infinitely Many Values 32 1.3.1 Some Preliminaries 32 1.3.2 Markov and Chebycheff Inequalities 35 1.3.3 Hoeffding\'s Inequality 38 1.3.4 Monte Carlo Simulation 41 1.3.5 Introduction to Cramer\'s Theorem 43 Chapter 2. Introduction to Information Theory 45 2.1 Convex and Concave Functions 45 2.2 Entropy 52 2.2.1 Definition of Entropy 52 2.2.2 Properties of the Entropy Function 53 2.2.3 Conditional Entropy 54 2.2.4 Uniqueness of the Entropy Function 58 2.3 Relative Entropy and the Kullback-Leibler Divergence 61 Chapter 3. Nonnegative Matrices 71 3.1 Canonical Form for Nonnegative Matrices 71 3.1.1 Basic Version of the Canonical Form 71 3.1.2 Irreducible Matrices 76 3.1.3 Final Version of Canonical Form 78 3.1.4 Irreducibility, Aperiodicity, and Primitivity 80 3.1.5 Canonical Form for Periodic Irreducible Matrices 86 3.2 Perron-Frobenius Theory 89 3.2.1 Perron-Frobenius Theorem for Primitive Matrices 90 3.2.2 Perron-Frobenius Theorem for Irreducible Matrices 95 PART 2. HIDDEN MARKOV PROCESSES 99 Chapter 4. Markov Processes 101 4.1 Basic Definitions 101 4.1.1 The Markov Property and the State Transition Matrix 101 4.1.2 Estimating the State Transition Matrix 107 4.2 Dynamics of Stationary Markov Chains 111 4.2.1 Recurrent and Transient States 111 4.2.2 Hitting Probabilities and Mean Hitting Times 114 4.3 Ergodicity of Markov Chains 122 Chapter 5. Introduction to Large Deviation Theory 129 5.1 Problem Formulation 129 5.2 Large Deviation Property for I.I.D. Samples: Sanov\'s Theorem 134 5.3 Large Deviation Property for Markov Chains 140 5.3.1 Stationary Distributions 141 5.3.2 Entropy and Relative Entropy Rates 143 5.3.3 The Rate Function for Doubleton Frequencies 148 5.3.4 The Rate Function for Singleton Frequencies 158 Chapter 6. Hidden Markov Processes: Basic Properties 164 6.1 Equivalence of Various Hidden Markov Models 164 6.1.1 Three Different-Looking Models 164 6.1.2 Equivalence between the Three Models 166 6.2 Computation of Likelihoods 169 6.2.1 Computation of Likelihoods of Output Sequences 170 6.2.2 The Viterbi Algorithm 172 6.2.3 The Baum-Welch Algorithm 174 Chapter 7. Hidden Markov Processes: The Complete Realization Problem 177 7.1 Finite Hankel Rank: A Universal Necessary Condition 178 7.2 Nonsuffciency of the Finite Hankel Rank Condition 180 7.3 An Abstract Necessary and Suffcient Condition 190 7.4 Existence of Regular Quasi-Realizations 195 7.5 Spectral Properties of Alpha-Mixing Processes 205 7.6 Ultra-Mixing Processes 207 7.7 A Sufficient Condition for the Existence of HMMs 211 PART 3. APPLICATIONS TO BIOLOGY 223 Chapter 8. Some Applications to Computational Biology 225 8.1 Some Basic Biology 226 8.1.1 The Genome 226 8.1.2 The Genetic Code 232 8.2 Optimal Gapped Sequence Alignment 235 8.2.1 Problem Formulation 236 8.2.2 Solution via Dynamic Programming 237 8.3 Gene Finding 240 8.3.1 Genes and the Gene-Finding Problem 240 8.3.2 The GLIMMER Family of Algorithms 243 8.3.3 The GENSCAN Algorithm 246 8.4 Protein Classification 247 8.4.1 Proteins and the Protein Classification Problem 247 8.4.2 Protein Classification Using Profile Hidden Markov Models 249 Chapter 9. BLAST Theory 255 9.1 BLAST Theory: Statements of Main Results 255 9.1.1 Problem Formulations 255 9.1.2 The Moment Generating Function 257 9.1.3 Statement of Main Results 259 9.1.4 Application of Main Results 263 9.2 BLAST Theory: Proofs of Main Results 264 Bibliography 273 Index 285