دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Israel Vlodavsky (editor), Ralph D. Sanderson (editor), Neta Ilan (editor) سری: ISBN (شابک) : 3030345203, 9783030345204 ناشر: Springer سال نشر: 2020 تعداد صفحات: 871 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Heparanase: From Basic Research to Clinical Applications (Advances in Experimental Medicine and Biology, 1221) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هپاراناز: از تحقیقات پایه تا کاربردهای بالینی (پیشرفت در پزشکی تجربی و زیست شناسی، 1221) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نوشته شده توسط رهبران شناخته شده بین المللی در زیست شناسی هپاراناز، هشت فصل کتاب فرصتی را برای دانشمندان، پزشکان و دانشجویان پیشرفته در زیست شناسی سلولی، زیست شناسی تومور و انکولوژی فراهم می کند تا به درک جامعی از فعالیت های چند وجهی هپاراناز در سرطان، التهاب دست یابند. ، دیابت و سایر بیماری ها و همچنین کاربردهای بالینی مرتبط با آن.
پروتئازها و دخالت آنها در پیشرفت سرطان به خوبی پرداخته
و مستند شده است. با این حال، فرض در حال ظهور ارائه شده در این
کتاب این است که هپاراناز یک تنظیم کننده اصلی فنوتیپ های سرطان
تهاجمی و تداخل با ریزمحیط تومور است. این اندوگلیکوزیداز به
بازسازی ماتریکس خارج سلولی و سطوح سلولی با واسطه تومور کمک
میکند و فراهمی زیستی فاکتورهای رشد پیشتومورزا و پیش التهابی
و سیتوکینهایی را که به سولفات هپاران متصل هستند، افزایش
میدهد. شواهد متقاعد کننده هپاراناز را با تمام مراحل پیشرفت
تومور از جمله شروع تومور، رشد، رگ زایی، متاستاز و مقاومت
شیمیایی مرتبط میداند و از این تصور حمایت میکند که هپاراناز
نقش مهمی در نتیجه ضعیف بیماران سرطانی دارد و یک هدف معتبر
برای درمان است. برخلاف هپاراناز، هپاراناز-2، همولوگ نزدیک
هپاراناز، فاقد فعالیت آنزیمی است، هپاراناز را مهار میکند و
ژنهای انتخابی را تنظیم میکند که تمایز طبیعی و سرکوب تومور
را افزایش میدهند. این جلد که توسط رهبران شناخته شده بین
المللی در زیست شناسی هپاراناز نوشته شده است، درک جامعی از
فعالیت های چند وجهی هپاراناز در سرطان، التهاب، دیابت و سایر
بیماری ها و همچنین کاربردهای بالینی مرتبط آن را برای
دانشمندان، پزشکان و دانشجویان پیشرفته در زیست شناسی سلولی،
بیولوژی تومور و انکولوژی.
Written by internationally recognized leaders in Heparanase biology, the book’s eight chapters offer an opportunity for scientists, clinicians and advanced students in cell biology, tumor biology and oncology to obtain a comprehensive understanding of Heparanase’s multifaceted activities in cancer, inflammation, diabetes and other diseases, as well as its related clinical applications.
Proteases and their involvement in cancer progression
have been well addressed and documented; however, the
emerging premise presented within this book is that
Heparanase is a master regulator of aggressive cancer
phenotypes and crosstalk with the tumor microenvironment.
This endoglycosidase contributes to tumor-mediated remodeling
of the extracellular matrix and cell surfaces, augmenting the
bioavailability of pro-tumorigenic and pro-inflammatory
growth factors and cytokines that are bound to Heparan
sulfate. Compelling evidence ties Heparanase with all steps
of tumor progression including tumor initiation, growth,
angiogenesis, metastasis, and chemoresistance, supporting the
notion that Heparanase is an important contributor to the
poor outcome of cancer patients and a validated target for
therapy. Unlike Heparanase, heparanase-2, a close homolog of
Heparanase, lacks enzymatic activity, inhibits Heparanase,
and regulates selected genes that promote normal
differentiation and tumor suppression. Written by
internationally recognized leaders in Heparanase biology,
this volume presents a comprehensive understanding of
Heparanase’s multifaceted activities in cancer, inflammation,
diabetes and other diseases, as well as its related clinical
applications to scientists, clinicians and advanced students
in cell biology, tumor biology and oncology.
Contents Contributors About the Editors Part I: Historical and General Background Chapter 1: Forty Years of Basic and Translational Heparanase Research 1.1 Historical Introduction 1.1.1 Key Observations Made Prior to Cloning of the HPSE Gene (Chronological Order) 1.2 Heparanase Gene Cloning 1.3 Studies Performed Following Cloning of the HPSE Gene 1.3.1 Introductory Notes 1.3.2 Key Observations Made After Cloning of the HPSE Gene Structural Aspects Gene Regulation Angiogenesis & Metastasis Animal Models Heparanase Uptake and Cellular Traffic Nuclear Heparanase and Its Transcriptional Activity Heparanase Non-Enzymatic and Signaling Function Heparanase Inhibitors Various Tumors Multiple Myeloma Tumor Microenvironment Inflammation and Cells of the Immune System Vaccination Diabetes, Diabetic Complications and Other Disorders Aterosclerosis & Thrombosis Viral Infection 1.4 Concluding Remarks and Perspectives References Chapter 2: Heparanase – Discovery and Targets 2.1 Introduction 2.2 Heparanase, Early Findings 2.3 Stereochemistry of Heparanase Target 2.4 How Many Heparanases? 2.5 Heparanase and Polysaccharide Metabolism 2.6 Heparanase and the GAGosome References Chapter 3: Heparanase: Historical Aspects and Future Perspectives 3.1 Introduction 3.2 Historical Overview and General Properties of Heparanase 3.3 Overview of Substrate Specificity of Heparanase 3.4 Functions Dependent on Heparanase Enzymatic Activity 3.4.1 HS Turnover 3.4.2 Involvement in Cell Invasion 3.4.3 Involvement in Release of ECM Bound Proteins 3.4.4 Involvement in Depletion of Intracellular Anti-Oxidant Stores of HS 3.4.5 Facilitator of Spread of HS-Binding Viruses 3.4.6 Inhibitors of Heparanase Enzymatic Activity 3.5 Functions Independent of Heparanase Enzymatic Activity 3.5.1 Cell Adhesion Molecule 3.5.2 Promoter of Signal Transduction 3.5.3 Transcription Factor 3.6 Future Perspectives 3.6.1 How Does Heparanase Initiate Signalling Pathways? 3.6.2 Do Nuclear Heparanase and HS Interact? 3.6.3 Relationship Between Heparanase-1 and Heparanase-2 3.6.4 Drug Development: Where to Next? 3.7 Concluding Remarks References Chapter 4: Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation 4.1 Introduction 4.1.1 The Syndecan Family of Heparan Sulfate Proteoglycans 4.1.2 Heparanase – A Key Enzyme in ECM Remodeling 4.2 The Heparanase-Syndecan Axis 4.2.1 Heparanase Mediated Sdc1 Shedding 4.2.2 Heparanase and Sdc1 in the Nucleus 4.2.3 Effects on Exosome Formation and Function 4.2.4 Effects on Growth Factor Signaling 4.3 Functional Cooperation of Syndecan-1 and Heparanase in Inflammation 4.3.1 Lessons from Mouse Models Role of Sdc1 and Heparanase in Delayed-Type Hypersensitivity Role of Sdc1 and Heparanase in Anti-Glomerular Basement Membrane Glomerulonephritis Sdc1 and Heparanase in Experimental Autoimmune Encephalitis (EAE) Role of Sdc1 and Heparanase in Inflammatory Bowel Disease and Colitis-Associated Colon Cancer 4.4 Syndecan-1 and Heparanase as Pathogenesis Factors and Therapeutic Targets in Malignant Disease 4.5 Concluding Remarks References Part II: Crystal Structure, Substrate Specificity and Gene Regulation Chapter 5: An Overview of the Structure, Mechanism and Specificity of Human Heparanase 5.1 Introduction 5.2 Heparan Sulfate – The Biochemical Basics 5.3 Historical Developments in HPSE Research 5.3.1 Identification of a Specific Heparan Sulfate Degrading Enzyme 5.3.2 Isolation of Heparanase Enzyme and Cloning of the HPSE Gene 5.3.3 Production of Homogenous Recombinant HPSE 5.4 Heparanase – Insights from Crystal Structures 5.4.1 3-Dimensional Structure of Mature HPSE 5.4.2 Structural Insights into HPSE Substrate Interactions HPSE Interactions at the −1 Subsite HPSE Interactions at the −2 Subsite HPSE Interactions at the +1 Subsite Beyond the +1 Subsite 5.4.3 3-Dimensional Structure of proHPSE 5.5 HPSE Within the Broader CAZy Classification 5.5.1 Structural Determinants of exo vs. endo-Glycosidase Activity in the GH79 Family AcGH79 BpHep (pro)HPSE 5.6 Concluding Remarks and Future Challenges References Chapter 6: Molecular Aspects of Heparanase Interaction with Heparan Sulfate, Heparin and Glycol Split Heparin 6.1 Introduction 6.2 Mechanism of Enzymatic Hydrolysis 6.3 Heparanase and its Active Site Structure as Predicted by Homology and x-Ray Diffraction Models 6.4 Hse/HS Binding 6.5 Glycol Split Heparin Inhibitors 6.6 Conclusions References Chapter 7: Heparanase: Cloning, Function and Regulation 7.1 Introduction 7.1.1 Identification of Heparanase 7.1.2 Normal Expression of Heparanase 7.2 Gene Cloning 7.2.1 Race of Four: The Cloning of Human Heparanase 7.2.2 Identification of an 8 kDa Peptide in the Active HPSE Enzyme 7.2.3 Cloning of Heparanase From Other Organisms 7.2.4 Cloning of Heparanase for In Vitro Analysis Bacterial Expression Systems Insect Cell Expression Systems 7.3 Function 7.3.1 Heparan Sulfate Proteoglycans as HPSE Targets 7.3.2 Regulation of Syndecan Function by HPSE 7.3.3 HPSE in the Immune System 7.3.4 HPSE Function in Pathogenesis 7.4 Regulation of Heparanase 7.4.1 A Lack of Methylation at the HPSE Promoter Increases HPSE Expression 7.4.2 Regulation of HPSE Expression by Transcription Factors 7.4.3 Regulation of Heparanase by MicroRNAs 7.4.4 Regulation of Heparanase Activity by the Presence of the Linker Domain 7.4.5 Regulating HPSE Activity by HS Masking 7.4.6 The Effect of Small Biological Molecules on HPSE Expression 7.4.7 Active Site Inhibitors of Heparanase References Chapter 8: Mechanism of HPSE Gene SNPs Function: From Normal Processes to Inflammation, Cancerogenesis and Tumor Progression 8.1 The HPSE Gene SNPs Characterization, Distribution, and Linkage Disequilibrium 8.2 Correlation Between the HPSE Gene SNPs and Heparanase Expression Among Healthy Individuals 8.3 HPSE Gene SNPs and Inflammation 8.4 Involvement of HPSE Gene SNPs in Cancer Development and Progression 8.5 HPSE Gene SNPs and the Risk of Acute Graft Vs. Host Disease (aGVHD) 8.6 Summary References Part III: Tumor Biology Chapter 9: Heparanase-The Message Comes in Different Flavors 9.1 Introduction 9.2 Heparanase and Cancer Progression 9.1.1 Heparanase Induction in Human Cancer 9.1.2 Basal and Inducible Heparanase Gene Transcription 9.1.3 Gene Methylation and Egr1 9.1.4 ARE and Post-Transcriptional Gene Regulation 9.1.5 Heparanase Regulation by Hormones, Tumor Suppressors, Oncogenes and Micro-RNA 9.3 Heparanase Signaling-A Message from within 9.1.6 HS-Dependent Signaling 9.1.7 HS-Independent Signaling 9.4 Heparanase Uptake – Is the Message within Lysosomes? 9.1.8 The Lysosome as a Signaling Organelle 9.5 Heparanase Inhibitors – Are We Targeting Well? 9.6 Is Hpa2 the Answer? 9.1.9 Hpa2 in Cancer Progression-an Opposite Answer 9.7 Heparanase Message Revisited References Chapter 10: Heparanase Involvement in Exosome Formation 10.1 Important Messages, Inserted into an Envelope 10.2 The Making of An Exosome 10.3 The Reception of an Exosome 10.4 Virus-Like Vesicles, Exosome-Like Viruses? 10.5 Syntenin, Adapting ESCRT Machinery to Endocytosed Syndecans Supports the Biogenesis of Exosomes 10.6 Heparan Sulfate Involvement in Exosome Internalization 10.7 Heparanase Activates the Syndecan-Syntenin-ALIX Exosomal Pathway 10.8 Heparanase, Integrating Syndecan Lateral Associations and Spatial Constraints? 10.9 Heparanase Effects on Exosomal Cargo 10.10 Heparanase as Exosomal Cargo 10.11 Conclusion and Prospects References Chapter 11: Heparanase in Cancer Metastasis – Heparin as a Potential Inhibitor of Cell Adhesion Molecules 11.1 Introduction 11.2 Cell Adhesion Promotes Tumor Cell and Leukocyte Migration 11.3 Cell Adhesion as Determinant of Metastasis 11.3.1 Selectin as Mediators of Metastasis 11.3.2 Selected Aspects of Integrins during Cancer Metastasis 11.4 Heparin as an Inhibitor of Cell Adhesion 11.5 The Role of Heparin in Cancer Treatment – Clinical Evidence 11.6 Heparanase – Another Player in Cancer Progression 11.7 Heparin as an Inhibitor of Heparanase in Metastasis 11.8 Dissecting the Role of Heparin in Cancer Progression 11.9 Conclusions References Chapter 12: Heparanase: A Dynamic Promoter of Myeloma Progression 12.1 Introduction 12.2 Heparanase Promotes Shedding of Syndecan-1 from the Myeloma Tumor Cell Surface 12.3 Heparanase Modulates the Expression of Proteases by Myeloma Cells 12.4 Heparanase Regulates Gene Expression in Myeloma Cells by Altering Histone Acetylation 12.5 How Does Heparanase Promote, Myeloma Growth, Metastasis, Angiogenesis and Osteolysis? 12.5.1 Down-Regulation of CXCL10 Cytokine 12.5.2 Upregulation of HGF Expression and Activity 12.5.3 Enhanced Angiogenesis and Polarized Migration of Myeloma Cells Upregulation of VEGF Expression and Endothelial Invasion Activation of VEGFR2 Downstream of Heparanase Activity Promotes Polarized Migration of Myeloma Cells and Angiogenesis 12.6 Impact of Heparanase on Exosome Biogenesis by Myeloma Cells and on Exosome Docking with Target Cells 12.6.1 Exosome Biogenesis 12.6.2 Docking of Exosomes with Target Cells 12.7 Heparanase Modulates Sensitivity of Myeloma Cells to Therapy 12.8 Heparanase Inhibitor for Myeloma Therapy 12.9 Concluding Remarks References Chapter 13: Involvement of Heparanase in Gastric Cancer Progression and Immunotherapy 13.1 Introduction 13.2 Heparanase in Gastric Cancer Progression 13.2.1 Heparanase Expression in Gastric Cancer 13.2.2 Heparanase in Gastric Cancer Metastasis and Progression 13.2.3 Regulation of Heparanase Expression in Gastric Cancer 13.3 Heparanase as an Immunotherapeutic Target in Gastric Cancer 13.3.1 Heparanase Gene-Based Immunotherapy 13.3.2 Heparanase Peptide-Based Immunotherapy 13.3.3 Multiple Antigen Peptide (MAP)-Based Immunotherapy 13.3.4 Heparanase in CAR T-Cell Therapy 13.4 Conclusions and Perspectives References Chapter 14: Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogenesis of Brain Tumors 14.1 Malignant Brain Tumors 14.1.1 Incidence and Symptoms of Brain Tumors 14.1.2 Glioma and Glioblastoma 14.1.3 Genetic and Epigenetic Alterations in Glioblastoma 14.1.4 Aberrant Signaling Pathways in Glioblastoma 14.1.5 Molecular Classification of Glioblastoma 14.1.6 Medulloblastoma (MB) 14.1.7 Molecular Subtypes of Medulloblastoma 14.2 Cancer Stem Cells 14.2.1 The Concept of Cancer Stem Cells 14.2.2 Models of Cancer Stem Cells from Brain Tumors 14.3 Heparan Sulfate and Heparanase in Neural Development 14.3.1 Heparan Sulfate and Heparanase in Development 14.3.2 Heparan Sulfate-Dependent Signaling in the Neural Stem Cell Niche 14.3.3 Heparan Sulfate and Heparanase in Stem Cell In Vitro Differentiation 14.4 Heparan Sulfate and Heparanase in Cancer Stem Cells 14.4.1 HS, HPSE and Cancer Stem Cells 14.4.2 HPSE in GBM Stem Cells 14.5 Heparan Sulfate and Other Proteoglycans in Brain Tumors 14.5.1 ECM Remodeling as Part of the Brain Tumor-Supporting Microenvironment 14.5.2 Characteristics of the Extracellular Matrix in the Brain 14.5.3 Analyzing Proteoglycans in Brain Tumors 14.5.4 Examining the Cancer Genome Atlas for Proteoglycans with Deregulated Expression in Glioblastoma Patients 14.5.5 Heparan Sulfate and Chondroitin Sulfate Biosynthetic Enzymes in Glioblastoma 14.5.6 Heparan Sulfate Modifying Enzymes in Glioblastoma 14.5.7 Heparanase in Glioma and Medulloblastoma 14.6 Heparanase Inhibition as a Novel Brain Tumor Therapeutics? 14.6.1 Rationale for Heparanase Inhibition 14.6.2 Low Molecular-Weight Heparin 14.6.3 PI-88 (Mupafostat) 14.6.4 SST0001 (Roneparstat) 14.6.5 M402 (Necuparanib) 14.6.6 PG545 (Pixatimod) 14.6.7 Small Molecule Approaches to HPSE Inhibition 14.7 Challenges to Brain Tumor Treatment 14.7.1 Invasiveness 14.7.2 Heterogeneity 14.7.3 The Blood-Brain Barrier 14.7.4 Drug Penetration in Brain Tumor Tissue 14.8 Summarizing the Role of Heparanase for Brain Tumor Hallmarks 14.8.1 Promoting Proliferation 14.8.2 Evading Cell Death 14.8.3 Stimulating Angiogenesis 14.8.4 Stimulating Migration and Invasion 14.8.5 Concluding Remark References Chapter 15: Heparanase: A Potential Therapeutic Target in Sarcomas 15.1 Sarcomas 15.2 Heparanase in Sarcomas 15.3 Bone Sarcomas 15.3.1 HSPGs and Heparanase in Bone Development and Biology 15.3.2 HSPGs and Heparanase in Bone Disorders 15.3.3 HSPGs and Heparanase in Osteochondromas and Chondrosarcomas 15.3.4 HSPGs and Heparanase in Osteosarcomas 15.4 Targeting Heparanase in Sarcomas 15.5 Concluding Remarks References Part IV: Immune Cells Chapter 16: Heparanase is Involved in Leukocyte Migration 16.1 Introduction 16.2 Early Findings on the Expression of Hpse in Immune Cells 16.3 Involvement of Heparan Sulfate Proteoglycans in Transmigration 16.4 Engagement of Hpse Triggered by Intracellular Trafficking of This Enzyme in Monocytes 16.5 Appearance of a “Drilling Device” on Migrating Macrophages 16.6 Neutrophil Migration and Invasion Associated With Intracellular Trafficking of Hpse 16.7 Evidence Provided by the Use of Hpse Gene-Deficient Mice 16.8 Therapeutic Use of Hpse Inhibitors 16.9 Perspectives References Chapter 17: Role of Heparanase in Macrophage Activation 17.1 Introduction 17.2 The Core 17.3 The Details 17.3.1 Macrophages Polarization toward Non-resolving Inflammation in the Presence of Microbial Products 17.3.2 Heparanase Effects on Macrophage Responses in the Setting of Non-infectious “Aseptic” Inflammation Heparanase Shapes the Cancer-Promoting Phenotype of Tumor-Associated Macrophages in Pancreatic Carcinoma Heparanase Fosters Macrophage Activation in Kidney Disease References Chapter 18: Immunomodulatory Activities of the Heparan Sulfate Mimetic PG545 18.1 Diversity of Mechanism of PG545 18.2 Inhibition of Angiogenesis 18.3 Inhibition of Tumor Cell Migration 18.4 Tumor Cell Apoptosis 18.5 Prolonged ER Stress Response 18.6 Cell Autophagy 18.7 NK Activation Through TLR9-MyD88 Pathway 18.8 Summary References Part V: Heparanase Inhibitors and Clinical Considerations Chapter 19: PI-88 and Related Heparan Sulfate Mimetics 19.1 Introduction 19.2 Synthesis and Structural Characterization of PI-88 19.3 Inhibition of Heparanase 19.4 Nonclinical/Preclinical Studies 19.5 Clinical Studies 19.6 Synthetic Studies 19.7 PI-88 Analogs and Next-Generation Heparanase Inhibitors 19.8 Discovery of PG545 (Pixatimod) 19.9 Conclusions References Chapter 20: Non-Anticoagulant Heparins as Heparanase Inhibitors 20.1 Introduction 20.2 Heparan Sulfate 20.3 Heparanase: Discovery and Characterization 20.4 Heparosan-Related Heparanase Inhibitors 20.4.1 Natural and Semi-Synthetic Derivatives 20.5 Heparin Derivatives 20.5.1 LMWs, Ultra LMWHs and Derivatives 20.5.2 Supersulfated Heparins 20.5.3 O-Desulfated Heparins 20.5.4 N-Acyl-N-Desulfated Heparins 20.5.5 Glycol-Split Heparins: Semisynthesis and Activities 20.6 New Glycol-Split Non-anticoagulant Heparin as Heparanase Inhibitors 20.6.1 N-Desulfated ROHs 20.6.2 Dicarboxylated Oxy-Heparins (DCoxyHs) 20.6.3 New Biotin-Conjugated N-Acetyl-Glycol Split Heparins 20.7 Clinical Candidates and New Applications 20.7.1 Heparin Derivatives and Oligomers Interacting with Viral Envelope 20.7.2 Sevuparin (DF F01) and Tafoxiparin (DFX232) 20.7.3 Necuparanib (M 402) 20.7.4 Roneparstat (G4000, 100NA-ROH, SST0001) 20.7.5 CX-O1 (ODSH) 20.8 Concluding Remarks References Chapter 21: Roneparstat: Development, Preclinical and Clinical Studies 21.1 Introduction 21.2 Ronepartstat 21.3 Roneparstat Preclinical Studies in Multiple Myeloma (MM) 21.4 Roneparstat Preclinical Studies in Other Cancers 21.5 Roneparstat in Other Disease Models 21.6 Clinical Experience with Roneparstat 21.7 Conclusions References Chapter 22: Heparanase Inhibition by Pixatimod (PG545): Basic Aspects and Future Perspectives 22.1 Introduction 22.2 Targets of Pixatimod 22.3 In Vitro Activity 22.4 In Vivo Activity 22.4.1 Colorectal Cancer 22.4.2 Pancreatic Cancer 22.4.3 Ovarian Cancer 22.4.4 Lung Cancer 22.4.5 Mesothelioma 22.4.6 Liver Cancer 22.4.7 Lymphoma 22.4.8 Breast Cancer 22.4.9 Other Cancers 22.5 Clinical Development 22.6 Conclusion References Chapter 23: The Control of Heparanase Through the Use of Small Molecules 23.1 Introduction 23.2 Heparanase Inhibitors 23.2.1 Natural Products 23.2.2 Synthetic Small Molecule Compounds Urea Derivatives Benzazoles Indoles, Carbazoles and Fluorenes Diphenylethers Rhodanines Triazolo-Thiadiazoles Furanthiazole Quinolines and Quinazolines DMBO and Related Spiroheterocyclic Compounds Azasugars and Related Glycopolymers Acetylsalicylic Acid and Derivatives Miscellanea 23.3 Heparanase-Inhibitor Complex Models 23.4 Heparin Mimetics 23.4.1 Heparanase Inhibitors Advanced to Clinical Trials Roneparstat, SST0001 Necuparanib, M402 Muparfostat, PI-88 Pixatimod, PG545 23.5 Conclusions and Prospects References Part VI: Other Diseases and Indications Chapter 24: Heparanase and Type 1 Diabetes 24.1 Introduction 24.2 Heparan Sulfate (HS) Is Highly Expressed in Normal Pancreatic Islets 24.2.1 Peri-Islet Basement Membrane 24.2.2 Beta Cells 24.2.3 Alpha Cells 24.3 Islet Cell Heparanase 24.4 Exogenous Heparanase: A Novel Destructive Mechanism in the Pathogenesis of T1D 24.5 Dual Activity Heparanase Inhibitors/HS Replacers Represent a New Class of Therapeutic for T1D 24.6 Intracellular Roles for Heparanase in Modulating Gene Transcription, Cell Differentiation/Function and Disease 24.6.1 Direct Role for Heparanase in Regulating a Gene Transcription Complex 24.6.2 Indirect Intracellular Functions of Heparanase Signalling Effects of High Glucose on Heparanase Levels and Gene Transcription 24.7 Heparanase, a Contributor to the Secondary Complications of Diabetes 24.8 Concluding Remarks References Chapter 25: Implications of Heparan Sulfate and Heparanase in Amyloid Diseases 25.1 Amyloidosis and Amyloids 25.1.1 Amyloid Production and Aggregation 25.1.2 Aβ-Associated Amyloidosis (Alzheimer’s Disease) 25.1.3 IAPP-Associated Amyloidosis (Type 2 Diabetes) 25.1.4 AA Amyloidosis (Inflammatory-Associated Amyloid Disease) 25.1.5 TTR-Associated Amyloidosis (Cardiomyopathy and Polyneuropathy) 25.2 Detection of HSPG and HS in Amyloid Plaques 25.2.1 HS in the Brain of AD Patients and Mouse Models 25.2.2 HS in Cardiomyopathy (ATTR) 25.2.3 HS in the Islets of Type 2 Diabetes (AIAPP) 25.2.4 HS in the Organs of AA Amyloidosis 25.3 In Vitro Studies on the Interaction of HS/HSPG With Amyloid Proteins 25.4 In Vivo Observations of HS and Heparanase on Amyloid Deposition 25.4.1 Effect of HS/HSPG-Heparanase on Amyloid Deposition 25.4.2 Implications of HS in Amyloid Toxicity 25.5 Heparanase in Amyloid Diseases 25.6 Concluding Remarks References Chapter 26: Heparanase in Kidney Disease 26.1 Glomerular Filtration Barrier in Healthy Situation 26.2 Heparan Sulfate in Charge-Selective Filtration 26.3 Activation of Heparanase 26.4 Heparanase in Proteinuric Diseases 26.5 Regulatory Factors of Heparanase in Proteinuric Diseases 26.6 Heparanase as Key Player in Diabetic Nephropathy 26.7 Immune Cells in Glomerular Diseases and Heparanase Mediated Sensitization 26.8 Heparanase As a Pharmacological Target References Chapter 27: Impact of Heparanse on Organ Fibrosis 27.1 Introduction 27.2 Kidney Fibrosis 27.3 Peritoneal Fibrosis 27.4 Liver Fibrosis 27.5 Lung Fibrosis 27.6 Conclusions References Chapter 28: Heparanase in Acute Kidney Injury 28.1 Introduction 28.1.1 Heparanase Secretion in Stress 28.2 ER Stress 28.3 Lysosomes 28.4 Heparanase Synthesis, Secretion, and Activity in AKI 28.5 Non-catalytic Actions of Heparanase 28.6 Heparanase Actions on Glycocalyx and ECM 28.7 Heparanase and Activation of TLR and Inflammation 28.8 Heparanase and Coagulation 28.9 Heparanase in AKI 28.10 Heparanase in Kidney Transplantation 28.11 Use of Heparanase Related Biomarkers for AKI Detection 28.12 Novel Heparanase Mechanisms-Based Therapies for AKI 28.13 Summary and Future Perspective References Chapter 29: Heparanase in Acute Pancreatitis 29.1 Epidemiology and Subsets of Acute Pancreatitis 29.2 Pathogenesis and Cellular Mechanisms of Acute Pancreatitis 29.3 Acute Pancreatitis – Current Treatments 29.4 Heparanase and Activation of Toll-like Receptors During Inflammation 29.5 Heparanase in Acute Pancreatitis 29.6 Novel Heparanase Mechanism-Based Therapies for Acute Pancreatitis: Heparanase Inhibitors 29.7 Summary and Perspectives References Chapter 30: Involvement of Heparanase in Endothelial Cell-Cardiomyocyte Crosstalk 30.1 Introduction 30.2 Diabetic Cardiomyopathy 30.3 Cardiomyocyte Metabolism under Physiological Conditions 30.3.1 Glucose 30.3.2 Fatty Acids 30.4 Lipoprotein Lipase (LPL) 30.5 Vascular Endothelial Growth Factors 30.5.1 Vascular Endothelial Growth Factor a 30.5.2 Vascular Endothelial Growth Factor B 30.6 Heparanase 30.6.1 Heparanase 1 30.6.2 Heparanase 2 (Hpa-2) 30.7 Aberrant Fuel Utilization Following Diabetes 30.8 Conclusion References Chapter 31: The Lacritin-Syndecan-1-Heparanase Axis in Dry Eye Disease 31.1 Introduction 31.2 The Approach 31.2.1 Discovery of Lacritin 31.2.2 Restoration of Homeostasis 31.3 Cell Surface Targeting: Lacritin-Syndecan-1-Heparanase Axis 31.4 Clinical: Deficiency or Absence of Active Lacritin Monomer in Dry Eye 31.5 Concluding Remarks References Chapter 32: Heparanase, Heparan Sulfate and Viral Infection 32.1 Heparan Sulfate 32.2 Stages of Viral Infection 32.3 Roles of Heparanase in Viral Infection 32.3.1 Heparanase Is Upregulated upon Infection and Drives Viral Release 32.3.2 Active Heparanase Drives Hallmark Features of Viral Pathogenesis 32.4 Roles of HPSE in Pathogenesis Validated across Viral Families 32.5 Conclusions and Future Directions References Chapter 33: Heparanase in the Coagulation System 33.1 The Coagulation System 33.2 Tissue Factor, Heparanase and Tissue Factor Pathway Inhibitor 33.3 Heparanase Inhibitory Peptides and Heparanase Procoagulant Peptides 33.4 Measuring Heparanase Procoagulant Activity 33.5 Pregnancy and Oral Contraceptives Increase Heparanase Procoagulant Activity 33.6 Cancer and Heparanase Procoagulant Activity 33.7 Additional Clinical Data Supporting the Procoagulant Effect of Heparanase 33.8 Concluding Remarks References Part VII: Heparanase-2 (Hpa2) Chapter 34: Hpa2 Gene Cloning 34.1 History of Oxford GlycoSciences (OGS) 34.2 Discovery of Heparanase 2 (Hpa2/HPSE2) 34.2.1 Hpa2/HPSE2 Cloning 34.2.2 Tissue Distribution 34.2.3 Key Amino Acid Features of a Beta-D- Endoglucuronidase Heparanase 1 Enzyme 34.2.4 Heparin Binding Sites Cardin Weintraub Consensus Motif CPC Clip Motif 34.2.5 HPSE2c Structure Homology Model 34.2.6 HPSE2 Expression and Functional Roles 34.3 Role of HPSE2 in Disease 34.3.1 Oncology Head and Neck Cancer Bladder Cancer Pancreatic Cancer 34.3.2 HPSE2 as a Biomarker 34.3.3 Alzheimer 34.3.4 Ochoa’s Syndrome Human HPSE2 Gene Mutations Xenopus HPSE2 Morpholino Knockdown Studies Mouse HPSE2 Gene Knockouts LRIG2 Mutations 34.3.5 Is HPSE2 a Pseudoenzyme of HPSE1? 34.3.6 Does HPSE2 Have an Elusive Substrate? 34.3.7 Cellular Localization 34.3.8 Conclusion and Future Perspectives The yin & Yang of the Heparanase Family Proteins References Chapter 35: Heparanase 2 and Urofacial Syndrome, a Genetic Neuropathy 35.1 Introduction 35.2 Heparanase 2 and the Urofacial Syndrome 35.3 Emerging Roles for Heparanses in Neurobiology 35.4 LRIG2 Mutations in Urofacial Syndrome References Chapter 36: The Good and Bad Sides of Heparanase-1 and Heparanase-2 36.1 Extracellular Matrix: At the Crossroads of Cell-Cell and Cell-Microenvironment Relationships 36.1.1 Glycosaminoglycans and Proteoglycans 36.2 Heparanase: A Key Modulator of ECM Architecture at the Crossroads of Homeostasis and Diseases 36.2.1 General Aspects 36.2.2 Heparanase Favors Blood Coagulation 36.2.3 Heparanase and the Tumor Microenvironment 36.2.4 Exosomes 36.2.5 Heparanase Inhibitors 36.3 Heparanase-2 the Ugly Duckling or the Beautiful Swan 36.3.1 Heparanase-2 Cloning 36.3.2 Heparanase-2 and Urofacial Syndrome 36.3.3 What Can we Learn from Heparanase-2 Knockout/Knockdown Studies? 36.3.4 Colorectal Cancer 36.3.5 Breast Cancer 36.3.6 Cervical and Endometrial Cancer 36.3.7 Ovarian Cancer 36.3.8 Bladder Cancer 36.3.9 Thyroid and Head and Neck Cancer 36.3.10 Heparanase-2 and Alzheimer’s Disease 36.3.11 Heparanase-2 as a Tumor Suppressor 36.4 Conclusions References Chapter 37: Opposing Effects of Heparanase and Heparanase-2 in Head & Neck Cancer 37.1 Head and Neck Cancer 37.2 Heparanase 37.3 Involvement of Heparanase in Head and Neck Cancer 37.4 Heparanase 2 in Head and Neck Cancer 37.5 Concluding Remarks References Index