دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Fourth edition
نویسندگان: Lechner. Norbert
سری:
ISBN (شابک) : 9781118849453, 1118849450
ناشر: John Wiley & Sons
سال نشر: 2015;2014
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 118 مگابایت
کلمات کلیدی مربوط به کتاب گرمایش ، سرمایش ، روشنایی: روشهای طراحی پایدار برای معماران: فن آوری و مهندسی--ساخت و ساز--گرمایش، تهویه و تهویه مطبوع، ساختمان های پایدار--طراحی و ساخت، تهویه مطبوع، گرمایش، روشنایی، کتاب های الکترونیک، ساختمان های پایدار - طراحی و ساخت، فناوری و مهندسی - ساخت و ساز ، تهویه و تهویه مطبوع
در صورت تبدیل فایل کتاب Heating, cooling, lighting: sustainable design methods for architects به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گرمایش ، سرمایش ، روشنایی: روشهای طراحی پایدار برای معماران نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کنترل زیست محیطی پایدار از طریق طراحی ساختمان گرمایش، سرمایش و روشنایی متن استاندارد صنعت در مورد سیستم های کنترل محیطی با تاکید بر طراحی پایدار است. این کتاب با بیان جزئیات بسیاری از عواملی که به راحتی در یک ساختمان کمک می کند، به معماران کمک می کند تا سیستم های مکانیکی و مصرف انرژی را در طول عمر ساختمان با مکان یابی، طراحی ساختمان و محوطه سازی به حداقل برسانند تا گرمایش طبیعی، سرمایش و روشنایی را به حداکثر برسانند. این نسخه چهارم جدید شامل اطلاعات جدیدی در مورد استراتژی های طراحی یکپارچه و طراحی مناطق استوایی است. منابع شامل مطالعات موردی مفید، چکلیستها، نمودارها و یک وبسایت همراه با موارد اضافی، بانک تصاویر و مطالب مدرس است. طراحی ساختمان هایی که به انرژی کمتری برای گرم کردن، خنک کردن و نور نیاز دارند به این معنی است که انرژی طبیعی خورشید و باد باعث کاهش بار سیستم های مکانیکی و الکتریکی می شود. تصمیمات اولیه طراحی در مورد اندازه، جهت گیری و فرم تاثیر زیادی بر پایداری، هزینه و راحتی ساختمان دارد. گرمایش، سرمایش و روشنایی راهنمایی دقیق برای هر مرحله از پروژه طراحی ارائه می دهد. خوانندگان: -مفهوم پایداری را که در مورد منابع انرژی به کار می رود درک کنند -اصول اساسی آسایش حرارتی و نقش حیاتی آب و هوا را مرور کنند -مبانی طراحی پاسخگوی خورشیدی شامل سیستم های خورشیدی فعال و غیر فعال و همچنین فتوولتائیک ها را بیاموزند -نحوه مکان یابی را بیاموزند. طراحی معماری و محوطهسازی میتواند الزامات سیستمهای مکانیکی و الکتریکی را کاهش دهد در طراحی پایدار، سیستمهای مکانیکی و الکتریکی باید فقط برای انجام کارهایی استفاده شوند که معمار با طراحی خود ساختمان قادر به انجام آن نیست. با در نظر گرفتن این موضوع، طراحان نیاز به درک جامعی از خواص انرژی و عوامل انسانی دخیل در آسایش حرارتی دارند. گرمایش، سرمایش و روشنایی منبع کامل و پیشرو در صنعت برای طراحان علاقه مند به کنترل زیست محیطی پایدار است.
Sustainable environmental control through building design Heating, Cooling, and Lighting is the industry standardtext on environmental control systems with the emphasis onsustainable design. By detailing the many factors that contributeto the comfort in a building, this book helps architects minimizemechanical systems and energy usage over the life of the buildingby siting, building design, and landscaping to maximize naturalheating, cooling, and lighting. This new fourth edition includesnew information on integrated design strategies and designing forthe Tropics. Resources include helpful case studies, checklists, diagrams, and a companion website featuring additional cases, animage bank, and instructor materials. Designing buildings that require less energy to heat, cool, andlight means allowing the natural energy of the sun and wind toreduce the burden on the mechanical and electrical systems. Basicdesign decisions regarding size, orientation, and form have a greatimpact on the sustainability, cost, and comfort of a building. Heating, Cooling, and Lighting provides detailed guidancefor each phase of a design project. Readers will: -Understand the concept of sustainability as applied to energysources -Review the basic principles of thermal comfort, and thecritical role of climate -Learn the fundamentals of solar responsive design, includingactive and passive solar systems as well as photovoltaics -Discover how siting, architectural design, and landscaping canreduce the requirements for mechanical and electrical systems In sustainable design, mechanical, and electrical systems shouldbe used to only accomplish what the architect could not by thedesign of the building itself. With this in mind, designers requirea comprehensive understanding of both the properties of energy andthe human factors involved in thermal comfort. Heating, Cooling, and Lighting is the complete, industry-leading resource fordesigners interested in sustainable environmental control.
Machine generated contents note: 1. Heating, Cooling, And Lighting As Form-Givers In Architecture --
1.1. Introduction --
1.2. Indigenous and Vernacular Architecture --
1.3. Formal Architecture --
1.4. Architectural Approach to Sustainable Design --
1.5. Dynamic versus Static Buildings --
1.6. Resilient Design --
1.7. Biophilic Design --
1.8. Color and Ornamentation --
1.9. Energy and Architecture --
1.10. Climate and Architecture --
1.11. Sustainability Codes and Voluntary Programs --
1.12. Integrated Design --
1.13. Decision Making --
1.14. Conclusion --
Key Ideas of Chapter 1 --
2. Sustainable Design And Energy Sources --
2.1. Easter Island: Learning from the Past --
2.2. Sustainable Design --
2.3. Reuse, Recycle, and Regenerate by Design --
2.4. Sustainability Movement --
2.5. Population and Affluence --
2.6. Growth --
2.7. Exponential Growth --
2.8. Amoeba Analogy --
2.9. Supply versus Efficiency --
2.10. Sustainable-Design Issues --
2.11. Climate Change --
2.12. Global Greenhouse --
2.13. Ozone Hole --
2.14. Efficiency versus Renewable Energy --
2.15. Energy Sources --
2.16. Energy Use in Ancient Greece --
2.17. Nonrenewable Energy Sources --
2.18. Renewable Energy Sources --
2.19. Hydrogen --
2.20. Conclusion --
Key Ideas of Chapter 2 --
3. Basic Principles --
3.1. Introduction --
3.2. Heat --
3.3. Sensible Heat --
3.4. Latent Heat --
3.5. Evaporative Cooling --
3.6. Convection --
3.7. Transport --
3.8. Energy-Transfer Mediums --
3.9. Radiation --
3.10. Greenhouse Effect --
3.11. Equilibrium Temperature of a Surface --
3.12. Mean Radiant Temperature --
3.13. Heat Flow --
3.14. Heat Sink --
3.15. Heat Capacity --
3.16. Thermal Resistance --
3.17. Heat-Flow Coefficient --
3.18. Time Lag --
3.19. Insulating Effect of Mass --
3.20. Energy Conversion --
3.21. Combined Heat and Power --
3.22. Fuel Cells --
3.23. Embodied Energy --
3.24. Conclusion --
Key Ideas of Chapter 3 --
4. Thermal Comfort --
4.1. Biological Machine --
4.2. Thermal Barriers --
4.3. Metabolic Rate --
4.4. Thermal Conditions of the Environment --
4.5. Psychrometric Chart --
4.6. Dew Point and Wet-Bulb Temperatures --
4.7. Heat Content of Air --
4.8. Thermal Comfort --
4.9. Shifting of the Comfort Zone --
4.10. Adaptive Comfort --
4.11. Clothing and Comfort --
4.12. Strategies --
4.13. Conclusion --
Key Ideas of Chapter 4 --
5. Climate --
5.1. Introduction --
5.2. Climate --
5.3. Microclimate --
5.4. Climatic Anomalies --
5.5. Climate Regions of the United States and Canada --
5.6. Explanations of the Climatic Data Tables --
5.7. Relative Heating and Cooling Loads --
5.8. Additional Climate Information --
5.9. Climate Information for Other Countries --
Data Tables for Climate Regions, United States --
5.10. Design Strategies --
Key Ideas of Chapter 5 --
6. Solar Geometry --
6.1. Introduction --
6.2. Sun --
6.3. Elliptical Orbit --
6.4. Tilt of the Earth's Axis --
6.5. Consequences of the Altitude Angle --
6.6. Winter --
6.7. Sun Revolves Around the Earth! --
6.8. Sky Dome --
6.9. Determining Altitude and Azimuth Angles --
6.10. Solar Time --
6.11. Horizontal Sun-Path Diagrams --
6.12. Vertical Sun-Path Diagrams --
6.13. Drawing Sunbeams --
6.14. Sun-Path Models --
6.15. Solar Heat Gain --
6.16. Solar Site-Evaluation Tools --
6.17. Heliodons --
6.18. Sundials for Model Testing --
6.19. Conceptually Clear Heliodons --
6.20. Conclusion --
Key Ideas of Chapter 6 --
7. Passive Solar --
7.1. History --
7.2. Solar in America --
7.3. Solar Hemicycle --
7.4. Latest Rediscovery of Passive Solar --
7.5. Passive Solar --
7.6. Direct-Gain Systems --
7.7. Design Guidelines for Direct-Gain Systems --
7.8. Example --
7.9. Trombe Wall Systems --
7.10. Design Guidelines for Trombe Wall Systems --
7.11. Example --
7.12. Sunspaces --
7.13. Balcomb House --
7.14. Sunspace Design Guidelines --
7.15. Comparison of the Three Main Passive Heating Systems --
7.16. General Considerations For Passive Solar Systems --
7.17. Heat-Storage Materials --
7.18. Other Passive Heating Systems --
7.19. Maximizing Passive Solar --
7.20. Conclusion --
Key Ideas of Chapter 7 --
8. Photovoltaics And Active Solar --
8.1. Introduction --
8.2. Almost Ideal Energy Source --
8.3. History of PV --
8.4. PV Cell --
8.5. Types of PV Systems --
8.6. Balance of System Equipment --
8.7. Building-Integrated Photovoltaics --
8.8. Orientation and Tilt --
8.9. Roofs Clad with PV --
8.10. Facades Clad with PV --
8.11. Glazing and PV --
8.12. PV Shading Devices --
8.13. PV: Part of the Second Tier --
8.14. Sizing a PV System --
8.15. Finding the PV Array Size for a Stand-Alone Building by the Short Calculation Method --
8.16. Design Guidelines --
8.17. Promise of PV --
8.18. Cost-Effectiveness of PV and Active Solar Applications --
8.19. Active Solar Swimming-Pool Heating --
8.20. Solar Hot-Water Systems --
8.21. Solar Hot-Air Collectors --
8.22. Designing an Active Solar System --
8.23. Active/Passive Solar Systems --
8.24. Preheating of Ventilation Air --
8.25. Future of Active Solar --
8.26. Conclusion --
Key Ideas of Chapter 8 --
9. Shading And Light Colors --
9.1. History of Shading --
9.2. Shading --
9.3. Fixed Exterior Shading Devices --
9.4. Movable Shading Devices --
9.5. Shading Periods of the Year --
9.6. Overhangs --
9.7. Design of Horizontal Overhangs --
Basic Method --
9.8. Shading Design for South Windows --
9.9. Design Guidelines for Fixed South Overhangs --
9.10. Design Guidelines for Movable South Overhangs --
9.11. Shading for East and West Windows --
9.12. Design of East and West Horizontal Overhangs --
9.13. Design of Fins on North Windows --
9.14. Design Guidelines for Eggcrate Shading Devices --
9.15. Special Shading Strategies --
9.16. Shading Outdoor Spaces --
9.17. Using Physical Models for Shading Design --
9.18. Glazing as the Shading Element --
9.19. Interior Shading Devices --
9.20. Solar Heat Gain Coefficient --
9.21. Roof and Wall Reflectivity --
9.22. Conclusion --
Key Ideas of Chapter 9 --
10. Passive Cooling --
10.1. Introduction to Cooling --
10.2. Historical and Indigenous Use of Passive Cooling --
10.3. Passive Cooling Systems --
10.4. Comfort Ventilation versus Night-Flush Cooling --
10.5. Basic Principles of Airflow --
10.6. Airflow through Buildings --
10.7. Example of Ventilation Design --
10.8. Comfort Ventilation --
10.9. Night-Flush Cooling --
10.10. Double-Skin Facades and Operable Roofs --
10.11. Radiant Cooling --
10.12. Evaporative Cooling --
10.13. Cool Towers --
10.14. Earth Cooling --
10.15. Dehumidification with a Desiccant --
10.16. Solar Chimney --
10.17. Conclusion --
Key Ideas of Chapter 10 --
11. Site Design, Community Planning, And Landscaping --
11.1. Introduction --
11.2. Site Selection --
11.3. Solar Access --
11.4. Shadow Patterns --
11.5. Site Planning --
11.6. Solar Zoning --
11.7. Physical Models --
11.8. Wind and Site Design --
11.9. Plants and Vegetation --
11.10. Vegetated Roofs --
11.11. Lawns --
11.12. Landscaping --
11.13. Community Design --
11.14. Cooling Our Communities --
11.15. Conclusion --
Key Ideas of Chapter 11 --
12. Lighting --
12.1. Introduction --
12.2. Light --
12.3. Reflectance/Transmittance --
12.4. Color --
12.5. Vision --
12.6. Perception --
12.7. Performance of a Visual Task --
12.8. Characteristics of the Visual Task --
12.9. Illumination Level --
12.10. Brightness Ratios --
12.11. Glare --
12.12. Equivalent Spherical Illumination --
12.13. Activity Needs --
12.14. Biological Needs --
12.15. Light and Health --
12.16. Poetry of Light --
12.17. Rules for Lighting Design --
12.18. Career Possibilities --
12.19. Conclusion --
Key Ideas of Chapter 12 --
13. Daylighting --
13.1. History of Daylighting --
13.2. Why Daylighting? --
13.3. Nature of Daylight --
13.4. Conceptual Model --
13.5. Illumination and the Daylight Factor --
13.6. Light without Heat? --
13.7. Cool Daylight --
13.8. Goals of Daylighting --
13.9. Basic Daylighting Strategies --
13.10. Basic Window Strategies --
13.11. Advanced Window Strategies --
13.12. Window Glazing Materials --
13.13. Top Lighting --
13.14. Skylight Strategies --
13.15. Clerestories, Monitors, and Light Scoops --
13.16. Special Daylighting Techniques --
13.17. Translucent Walls and Roofs --
13.18. Electric Lighting as a Supplement to Daylighting --
13.19. Physical Modeling --
13.20. Guidelines for Daylighting --
13.21. Conclusion --
Key Ideas of Chapter 13 --
14. Electric Lighting --
14.1. History of Light Sources --
14.2. Light Sources --
14.3. Incandescent and Halogen Lamps --
14.4. Discharge Lamps --
14.5. Fluorescent Lamps --
14.6. High Intensity Discharge Lamps (Mercury, Metal Halide, and High Pressure Sodium) --
14.7. Solid State Lighting --
14.8. Comparison of the Major Lighting Sources --
14.9. Luminaires --
14.10. Lenses, Diffusers, and Baffles --
14.11. Lighting Systems --
14.12. Remote-Source Lighting Systems --
14.13. Visualizing Light Distribution --
14.14. Architectural Lighting --
14.15. Outdoor Lighting --
14.16. Emergency Lighting --
14.17. Controls --
14.18. Maintenance --
14.19. Rules for Energy-Efficient Electric Lighting Design --
14.20. Laws and Standards --
14.21. Conclusion --
Key Ideas of Chapter 14 Note continued: 15. Thermal Envelope: Keeping Warm And Staying Cool --
15.1. Background --
15.2. Heat Loss --
15.3. Heat Gain --
15.4. Solar Reflectivity (Albedo) --
15.5. Compactness, Exposed Area, and Thermal Planning --
15.6. Insulation Materials --
15.7. Thermal Envelope --
15.8. Heat Bridges --
15.9. Windows --
15.10. Movable Insulation --
15.11. Insulating Effect From Thermal Mass --
15.12. Earth Sheltering --
15.13. Infiltration and Ventilation --
15.14. Moisture Control --
15.15. Radon --
15.16. Appliances --
15.17. Conclusion --
Key Ideas of Chapter 15 --
16. Mechanical Equipment For Heating And Cooling --
16.1. Introduction --
16.2. Heating --
16.3. Thermal Zones --
16.4. Heating Systems --
16.5. Electric Heating --
16.6. Hot-Water (Hydronic) Heating --
16.7. Hot-Air Systems --
16.8. Cooling --
16.9. Refrigeration Cycles --
16.10. Heat Pumps --
16.11. Geo-Exchange --
16.12. Cooling Systems --
16.13. Air-Conditioning for Small Buildings --
16.14. Air-Conditioning for Large Multistory Buildings --
16.15. Design Guidelines for Mechanical Systems --
16.16. Air Supply (Ducts and Diffusers) --
16.17. Ventilation --
16.18. Energy-Efficient Ventilation Systems --
16.19. Air Filtration and Odor Removal --
16.20. Special Systems --
16.21. Integrated and Exposed Mechanical Equipment --
16.22. Low Energy Heating and Cooling --
16.23. Conclusion --
Key Ideas of Chapter 16 --
17. Tropical Architecture --
17.1. Introduction --
17.2. Traditional Tropical Architecture --
17.3. Tropical Climate --
17.4. Solar Geometry of the Tropics --
17.5. Shading in Tropical Climates --
17.6. Daylighting in the Tropics --
17.7. Passive Cooling --
17.8. Air-Conditioned Buildings in the Tropics --
17.9. Conclusion --
Key Ideas of Chapter 17 --
18. Recommended Low Energy Case Studies --
18.1. Introduction --
18.2. Case Studies --
19. Checklist For Designing Integrated Sustainable Buildings --
19.1. Introduction --
19.2. Site Selection --
19.3. Form --
19.4. Plan --
19.5. Windows --
19.6. Daylighting --
19.7. Shading --
19.8. Color --
19.9. Thermal Envelope --
19.10. Thermal Mass --
19.11. Glazing --
19.12. Air Barrier --
19.13. Passive Systems --
19.14. Electric Lighting --
19.15. Mechanical Equipment --
Appendix A Horizontal Sun-Path Diagrams --
Appendix B Vertical Sun-Path Diagrams --
Appendix C Solar Altitude And Azimuth Angles --
Appendix D Methods For Estimating The Height Of Trees, Buildings, Etc. --
D.1. Proportional-Shadow Method --
D.2. Similar-Triangle Method --
D.3. 45° Right-Triangle Method --
D.4. Trigonometric Method --
D.5. Tools for Measuring Vertical Angles --
Appendix E Sundials --
Appendix F Sun-Path Models --
F.1. Introduction --
F.2. Directions for Constructing a Sun-Path Model --
Appendix G Water Table For Ventilation Studies --
G.1. Introduction --
G.2. Construction of a Water Table --
Appendix H Site Evaluation Tools --
H.1. Introduction --
H.2. Solar Pathfinder --
H.3. SunEye --
H.4. Sun Locator --
H.5. Do-It-Yourself Solar Site Evaluator --
Appendix I Heliodons --
I.1. Introduction --
I.2. Sun Simulator Heliodon --
I.3. Sun Emulator Heliodon --
I.4. Tabletop Heliodon --
I.5. Bowling Ball Heliodon --
Appendix J Tables Of R-Values --
Appendix K Resources --
K.1. Books --
K.2. Journals --
K.3. Videos --
K.4. Organizations --
K.5. Web-Based Resources --
Appendix L Conversion Factors Between The Inch-Pound (I-P) System And The International System Of Units (SI).