دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: حرارت ویرایش: 1 نویسندگان: Charles Forsberg سری: ISBN (شابک) : 9780128022962 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 516 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Heat Transfer Principles and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول و کاربردهای انتقال حرارت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شرح اصول و کاربردهای انتقال حرارت یک تغییر خوشایند نسبت به حجم های دایره المعارفی بیشتر است که انتقال حرارت را بررسی می کنند. این متن کوتاهتر به طور کامل اصول انتقال حرارت از جمله انتقال حرارت، همرفت، تابش و مبدلهای حرارتی را توضیح میدهد. سپس اصول اولیه برای انواع نمونه های مهندسی، از جمله موضوعات مورد علاقه خاص و جاری مانند کلکتورهای خورشیدی، خنک سازی تجهیزات الکترونیکی و صرفه جویی در انرژی در ساختمان ها اعمال می شود. این متن راه حل های تحلیلی و عددی برای مسائل انتقال حرارت را پوشش می دهد و از Excel و MATLAB® در راه حل ها استفاده قابل توجهی می کند. هر فصل دارای چندین مسئله مثال و تعداد زیادی از مسائل انتهای فصل است، اما زیاد نیست.
Description Heat Transfer Principles and Applications is a welcome change from more encyclopedic volumes exploring heat transfer. This shorter text fully explains the fundamentals of heat transfer, including heat conduction, convection, radiation and heat exchangers. The fundamentals are then applied to a variety of engineering examples, including topics of special and current interest like solar collectors, cooling of electronic equipment, and energy conservation in buildings. The text covers both analytical and numerical solutions to heat transfer problems and makes considerable use of Excel and MATLAB® in the solutions. Each chapter has several example problems and a large, but not overwhelming, number of end-of-chapter problems.
Heat Transfer Principles and Applications Copyright Unit conversions Constants Preface Acknowledgments Copyright.pdf Unit Conversions.pdf Constants.pdf Preface.pdf Acknowledgments.pdf Chapter 1 - Introduction to heat transfer 1 - Introduction to heat transfer 1.1 Introduction 1.2 Modes of heat transfer 1.3 Conduction 1.3.1 Conduction through a plane wall 1.4 Convection 1.5 Radiation 1.6 The direction of heat flow 1.7 Temperature continuity and heat balances 1.8 Unit systems 1.9 Recommended approach to problem solving Step 1 - Problem definition Step 2 - Problem givens Step 3 - Determine the appropriate equations Step 4 - Obtain the solution Step 5 - Review the solution 1.10 Significant figures 1.11 Chapter summary and final remarks 1.12 Problems References Chapter 2 - Heat conduction equation and boundary conditions 2 - Heat conduction equation and boundary conditions 2.1 Introduction 2.2 Heat conduction equation 2.2.1 Rectangular coordinates 2.2.1.1 Special cases—rectangular coordinates 2.2.2 Cylindrical coordinates 2.2.2.1 Special cases—cylindrical coordinates 2.2.3 Spherical coordinates 2.2.3.1 Special cases—spherical coordinates 2.3 Boundary conditions 2.3.1 Rectangular coordinates 2.3.1.1 Specified temperature 2.3.1.2 Specified heat flux 2.3.1.3 Insulated boundary 2.3.1.4 Convection 2.3.1.5 Radiation 2.3.1.6 Convection and radiation 2.3.1.7 Symmetry conditions 2.3.1.8 Interfacial boundary 2.3.2 Cylindrical and spherical coordinates 2.3.2.1 Symmetry conditions 2.4 Initial conditions 2.5 Chapter summary and final remarks 2.6 Problems Uncited references Chapter 3 - Steady-state conduction 3 - Steady-state conduction 3.1 Introduction 3.2 One-dimensional conduction 3.2.1 Plane wall 3.2.1.1 Multilayered Walls 3.2.1.2 Electric-heat analogy and the resistance concept 3.2.1.3 Overall heat transfer coefficient and R-Value 3.2.2 Cylindrical shell 3.2.3 Spherical shell 3.3 Critical insulation thickness 3.4 Heat generation in a cylinder 3.5 Temperature-dependent thermal conductivity 3.6 Multi-dimensional conduction 3.7 Conduction shape factors 3.8 Extended surfaces (fins) 3.8.1 Fins of constant cross section 3.8.1.1 The governing differential equation and boundary conditions 3.8.1.2 The solution for temperature distribution and heat flow 3.8.1.3 Very-long-fin approximation 3.8.1.4 Insulated-at-end fin approximation 3.8.2 Fin efficiency 3.8.3 Fin effectiveness 3.8.4 Fins of varying cross section 3.8.4.1 Circumferential fins 3.8.4.2 Straight triangular fins 3.8.4.3 Conical pin fins 3.8.5 Closing comments on fins 3.9 Chapter summary and final remarks 3.10 Problems References Chapter 4 - Unsteady conduction 4 - Unsteady conduction 4.1 Introduction 4.2 Lumped systems (no spatial variation) 4.2.1 Lumped systems analysis 4.2.2 Application criterion 4.2.3 The time constant 4.3 Systems with spatial variation (large plate, long cylinder, sphere) 4.3.1 Overview 4.3.2 Large plane plates 4.3.3 Long cylinders 4.3.4 Spheres 4.4 Multidimensional systems with spatial variation 4.4.1 Overview 4.4.2 Long bar 4.4.3 Short cylinder 4.4.4 Rectangular solid 4.5 Semi-infinite solid 4.5.1 Overview 4.5.2 Temperature boundary condition 4.5.3 Heat flux boundary condition 4.5.4 Convection boundary condition 4.6 Chapter summary and final remarks 4.7 Problems References Chapter 5 - Numerical methods (steady and unsteady) 5 - Numerical methods (steady and unsteady) 5.1 Introduction 5.2 Finite-difference method 5.2.1 Steady state 5.2.2 Unsteady state 5.3 Finite element method 5.4 Chapter summary and final remarks 5.5 Problems References Chapter 6 - Forced convection 6 - Forced convection 6.1 Introduction 6.2 Basic considerations 6.3 External flow 6.3.1 Flow over a flat plate 6.3.1.1 Laminar boundary layer 6.3.1.1.1 Continuity equation 6.3.1.1.2 Momentum equation 6.3.1.1.3 Drag force 6.3.1.1.4 Energy equation 6.3.1.1.5 Thermal boundary layer thickness 6.3.1.1.6 Convective coefficient and Nusselt number 6.3.1.1.7 Reynolds-Colburn analogy 6.3.1.1.8 Constant heat flux 6.3.1.1.9 Unheated starting length 6.3.1.2 Turbulent boundary layer 6.3.2 Flow over cylinders and spheres 6.3.2.1 Cylinders 6.3.2.1.1 Circular cylinders 6.3.2.1.2 Noncircular cylinders 6.3.2.2 Spheres 6.3.3 Flow through tube banks 6.4 Internal flow 6.4.1 Entrance lengths 6.4.2 Mean velocity and mean temperature 6.4.3 Constant heat flux 6.4.4 Constant surface temperature 6.4.5 Equivalent diameter for flow through noncircular tubes 6.4.6 Correlations for the Nusselt number and convective coefficient 6.4.6.1 Laminar flow; entrance region 6.4.6.2 Laminar flow; fully developed 6.4.6.3 Turbulent flow; fully developed 6.4.7 Annular flow 6.4.7.1 Fully developed laminar flow 6.4.7.2 Fully developed turbulent flow 6.5 Chapter summary and final remarks 6.6 Problems References Chapter 7 - Natural (free) convection 7 - Natural (free) convection 7.1 Introduction 7.2 Basic considerations 7.3 Natural convection for flat plates 7.3.1 Vertical plate 7.3.1.1 Constant temperature surface 7.3.1.2 Constant heat flux surface 7.3.2 Horizontal plate 7.3.2.1 Constant temperature surface 7.3.2.2 Constant heat flux surface 7.3.3 Inclined plate 7.4 Natural convection for cylinders 7.4.1 Horizontal cylinder 7.4.2 Vertical cylinder 7.5 Natural convection for spheres 7.6 Natural convection for other objects 7.7 Natural convection for enclosed spaces 7.7.1 Enclosed rectangular space 7.7.1.1 Horizontal rectangular enclosure 7.7.1.2 Vertical rectangular enclosure 7.7.1.3 Inclined rectangular enclosure 7.7.2 Annular space between concentric cylinders 7.7.3 Space between concentric spheres 7.8 Natural convection between vertical fins 7.9 Chapter summary and final remarks 7.10 Problems References Chapter 8 - Heat exchangers 8 - Heat exchangers 8.1 Introduction 8.2 Types of heat exchangers 8.2.1 Temperature distribution in double-pipe heat exchangers 8.3 The overall heat transfer coefficient 8.4 Analysis methods 8.4.1 Log mean temperature difference method 8.4.1.1 Double-pipe heat exchangers 8.4.1.2 Non–double-pipe heat exchangers 8.4.2 Effectiveness–number of transfer unit method 8.5 Chapter summary and final remarks 8.6 Problems References Chapter 9 - Radiation heat transfer 9 - Radiation heat transfer 9.1 Introduction 9.2 Blackbody emission 9.3 Radiation properties 9.4 Radiation shape factors 9.5 Radiative heat transfer between surfaces 9.5.1 Radiation heat transfer for a two-surface enclosure 9.5.1.1 For surface 1 9.5.1.2 For surface 2 9.5.2 Radiation heat transfer for a three-surface enclosure 9.5.2.1 For surface 1 9.5.2.2 For surface 2 9.5.2.3 For surface 3 9.5.2.4 Three-surface enclosure with an insulated surface 9.6 Radiation shields 9.7 Sky radiation and solar collectors 9.8 Chapter summary and final remarks 9.9 Problems References Further reading Chapter 10 - Multimode heat transfer 10 - Multimode heat transfer 10.1 Introduction 10.2 Procedure for solution of multimode problems 10.3 Examples 10.4 Chapter summary and final remarks 10.5 Problems Chapter 11 - Mass transfer 11 - Mass transfer 11.1 Introduction 11.2 Concentrations in a gas mixture 11.3 Fick\'s law of diffusion 11.3.1 Binary gas diffusion coefficient 11.3.2 Binary gas–liquid diffusion coefficient 11.4 Diffusion in gases 11.4.1 Stefan\'s law 11.4.2 Equimolar counterdiffusion 11.5 The mass-heat analogy 11.5.1 Mass transfer through walls and membranes 11.5.2 Transient diffusion 11.6 Gas–liquid diffusion 11.7 Mass transfer coefficient 11.7.1 Dimensionless parameters 11.7.2 Wet-bulb and dry-bulb psychrometer 11.8 Chapter summary and final remarks 11.9 Problems References Chapter 12 - Special topics 12 - Special topics 12.1 Introduction 12.2 Internal heat generation 12.2.1 Heat generation in a plane wall 12.2.2 Heat generation in a sphere 12.3 Contact resistance 12.4 Condensation and boiling 12.4.1 Condensation heat transfer 12.4.1.1 Film condensation for vertical and inclined plates 12.4.1.1.1 Vertical plates 12.4.1.1.2 Inclined plates 12.4.1.2 Film condensation for vertical cylinders 12.4.1.3 Film condensation for horizontal cylinders and for spheres 12.4.2 Boiling heat transfer 12.4.2.1 Regions of pool boiling 12.4.2.2 Nucleate pool boiling 12.4.2.3 Film boiling 12.5 Energy usage in buildings 12.6 Chapter summary and final remarks 12.7 Problems References Index A B C D E F G H I K L M N O R S T U V W Blank Page