دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: C. Balaji, Balaji Srinivasan, Sateesh Gedupudi سری: ISBN (شابک) : 9780128185032, 0128185032 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 424 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Heat Transfer Engineering: Fundamentals and Techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی انتقال حرارت: مبانی و تکنیک ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Heat Transfer Engineering: Fundamentals and Techniques reviews the core mechanisms of heat transfer and provides modern methods to solve practical problems encountered by working practitioners, with a particular focus on developing engagement and motivation. The book reviews fundamental concepts in conduction, forced convection, free convection, boiling, condensation, heat exchangers and mass transfer succinctly and without unnecessary exposition. Throughout, copious examples drawn from current industrial practice are examined with an emphasis on problem-solving for interest and insight rather than the procedural approaches often adopted in courses. The book contains numerous important solved and unsolved problems, utilizing modern tools and computational sources wherever relevant. A subsection on common issues and recent advances is presented in each chapter, encouraging the reader to explore a greater diversity of problems.
1 - Introduction 1.1 - Thermodynamics and heat transfer 1.2 - Heat transfer and its applications 1.3 - Modes of heat transfer 1.4 - Conduction 1.5 - Convection 1.5.1 - Mechanism of convection 1.6 - Thermal radiation 1.7 - Combined modes of heat transfer 1.8 - Phase-change heat transfer 1.9 - Concept of continuum Problems References Chapter 2 - One-dimensional, steady state heat conduction 2.1 - Introduction 2.2 - Three-dimensional conduction equation 2.2.1 - Boundary conditions 2.3 - Steady state, one-dimensional conduction in a few commonly encountered systems 2.3.1 - Heat transfer in a plane wall 2.4 - Electrical analogy and thermal resistance 2.5 - Heat transfer in cylindrical coordinates 2.5.1 - Critical radius of insulation for cylinder 2.6 - Steady state conduction in a spherical shell 2.7 - Steady state conduction in a composite wall, cylinder and sphere 2.7.1 - Composite wall 2.7.1.1 - Parallel connection 2.7.1.2 - Series-parallel connection 2.7.1.3 - Thermal contact resistance 2.7.2 - Composite cylinder 2.7.3 - Composite sphere 2.8 - One-dimensional, steady state heat conduction with heat generation 2.8.1 - Plane wall with heat generation 2.9 - Fin heat transfer 2.10 - Analysis of fin heat transfer 2.10.1 - Case 1: Insulated tip Fin efficiency Effectiveness of the fin Rectangular fin 2.10.2 - Case 2: Long fin 2.10.3 - Case 3: Convecting tip 2.10.4 - Variable area fins References 3 - Conduction: One-dimensional transient and two-dimensional steady state 3.1 - Introduction 3.2 - Lumped capacitance method 3.3 - Semi-infinite approximation 3.4 - The method of separation of variables 3.5 - Analysis of two-dimensional, steady state systems References 4 - Fundamentals of convection 4.1 - Introduction 4.2 - Fundamentals of convective heat transfer 4.2.1 - Conduction, advection, and convection 4.2.2 - The microscopic picture 4.2.3 - Fundamental definition of convection 4.3 - The heat transfer coefficient 4.3.1 - Newton’s law vs. the fundamental definition 4.3.2 - Average heat transfer coefficient 4.3.3 - Methods of estimating the heat transfer coefficient 4.4 - Governing equations 4.4.1 - General approach to conservation laws 4.4.2 - Law of conservation of mass 4.4.3 - Momentum equations 4.4.4 - Energy equation 4.4.5 - Summary of equations 4.5 - Summary References Chapter 5 - Forced convection 5.1 - Introduction 5.2 - Approximation using order of magnitude analysis 5.3 - Nondimensionalization of the governing equations 5.4 - Approximate solution to the boundary layer equations Solution to integral momentum and energy equations with trial velocity and temperature profiles Integral method for fluids with  Flow over a cylinder Flow over a sphere Heat transfer in flows across a bank of tubes 5.5 - Turbulent flow Reynolds analogy 5.6 - Internal flows 5.6.1 - Governing equations and the quest for an analytical solution Noncircular ducts Thermal considerations The mean temperature Newton’s law of cooling Fully developed conditions Internal flow with constant heat flux,  Internal flow with constant wall temperature,  Analytical solution for Nusselt number for a fully developed flow Correlation for turbulent flow inside tubes and ducts Problems References Chapter 6 - Natural convection 6.1 - Introduction 6.2 - Natural convection over a flat plate 6.3 - Boundary layer equations and nondimensional numbers 6.4 - Empirical correlations for natural convection References Chapter 7 - Heat exchangers 7.1 - Introduction 7.2 - Classification of heat exchangers Based on the nature of the heat exchange process Based on the direction of fluid flow Based on the mechanical design Based on the physical state of working fluid Based on the compactness 7.3 - Heat exchanger analysis 7.4 - The LMTD method 7.4.1 - The parallel-flow heat exchanger 7.4.2 - The counterflow heat exchanger 7.4.3 - Heat exchangers with phase change 7.4.4 - When is LMTD not applicable? 7.4.5 - Shell and tube heat exchanger 7.4.6 - Cross-flow heat exchanger 7.5 - The effectiveness-NTU method 7.5.1 - Effectiveness of a parallel-flow heat exchanger 7.5.2 - Effectiveness of a counterflow heat exchanger 7.5.3 - Comparison between parallel-flow and counterflow heat exchangers 7.6 - Comparison between the LMTD and effectiveness-NTU methods 7.7 - Other considerations in the design of a heat exchanger References Chapter 8 - Thermal radiation 8.1 - Introduction 8.2 - Concepts and definitions in radiation 8.3 - Black body and laws of black body radiation 8.3.1 - Black body 8.3.2 - Spectral directional intensity 8.3.3 - Planck’s distribution 8.3.4 - Wien’s displacement law 8.3.5 - Stefan-Boltzmann law 8.3.6 - Universal black body curve 8.4 - Properties of real surfaces 8.4.1 Emissivity (ε) 8.4.2 - Apportioning of radiation falling on a surface 8.4.3 - Spectral directional absorptivity 8.5 - Kirchoff’s law 8.6 - Net radiative heat transfer from a surface 8.7 - Radiation heat transfer between surfaces 8.8 - Radiation view factor and its determination 8.8.1 - View factor algebra 8.9 - The radiosity-irradiation method 8.10 - Introduction to gas radiation 8.11 - Equation of transfer or radiative transfer equation (RTE) 8.11.1 - Determination of heat fluxes 8.11.2 - Enclosure analysis in the presence of an absorbing or emitting gas 8.11.3 - Calculation of emissivities and absorptivities for a mixture of gases References Chapter Numerical heat transfer 9.1 - Introduction 9.2 - Three broad approaches to numerical methods 9.3 - Equations and their classification 9.3.1 - Classification based on linearity and order 9.3.2 - Classification based on information propagation 9.4 - Basics of the finite difference method 9.4.1 - Taylor series and finite difference formulae 9.4.2 - Overall process for the finite difference method 9.5 - Steady conduction 9.6 - Unsteady conduction 9.7 - Introduction to methods for convection 9.8 - Practical considerations in engineering problems Chapter 10 - Machine learning in heat transfer 10.1 - Introduction 10.2 - Physics versus data methods 10.2.1 - Physics and data in heat transfer 10.2.2 - Artificial intelligence and machine learning 10.2.3 - Common algorithms in machine learning 10.3 - Neural networks for heat transfer 10.3.1 - The learning paradigm 10.3.2 - Linear regression 10.3.3 - Neural networks 10.4 - Practical considerations in engineering problems 10.5 - Applications in heat transfer 10.6 - Summary References Chapter 11 - Boiling and condensation 11.1 - Introduction 11.2 - Boiling 11.3 - Pool boiling 11.3.1 - Pool boiling curve 11.3.2 - Nucleation 11.3.3 - Nucleate boiling 11.3.4 - Critical heat flux 11.3.5 - Film boiling 11.4 - Flow boiling 11.4.1 - Flow boiling regimes 11.4.2 - The Chen correlation 11.4.3 - Critical heat flux in flow boiling 11.4.4 - A brief overview of flow boiling in micro-channels 11.5 - Condensation 11.6 - Film condensation on a vertical plate 11.7 - Condensation on horizontal tubes 11.8 - Two-phase pressure drop 11.8.1 - Total pressure drop Problems References Chapter 12 - Introduction to convective mass transfer 12.1 - Introduction 12.2 - Fick’s law of diffusion 12.3 - The convective mass transfer coefficient 12.4 - The velocity, thermal, and concentration boundary layers 12.5 - Analogy between momentum, heat transfer, and mass transfer 12.5.1 - The Reynolds analogy 12.5.2 - The Chilton-Colburn analogy 12.6 - Convective mass transfer relations 12.6.1 - Flow over a flat plate 12.6.2 - Internal flow 12.7 - A note on the convective heat and mass analogy 12.8 - Simultaneous heat and mass transfer References