ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Head-related transfer function and virtual auditory display

دانلود کتاب عملکرد انتقال مربوط به سر و نمایش شنوایی مجازی

Head-related transfer function and virtual auditory display

مشخصات کتاب

Head-related transfer function and virtual auditory display

ویرایش: Second edition 
نویسندگان:   
سری:  
ISBN (شابک) : 1604270705, 1604277416 
ناشر: J. Ross Publishing 
سال نشر: 2013 
تعداد صفحات: 505 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 مگابایت 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Head-related transfer function and virtual auditory display به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب عملکرد انتقال مربوط به سر و نمایش شنوایی مجازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب عملکرد انتقال مربوط به سر و نمایش شنوایی مجازی

این کتاب به طور سیستماتیک اصول و کاربردهای توابع انتقال مرتبط با سر (HRTF) و نمایش شنوایی مجازی (VAD) را شرح می‌دهد و آخرین پیشرفت‌ها در این زمینه، به‌ویژه مواردی را که توسط گروه تحقیقاتی پیشرفته خود نویسندگان ارائه شده است، مرور می‌کند. .

در این ویرایش دوم به روز شده، عملکرد انتقال مرتبط با سر و صفحه نمایش شنیداری مجازی شنوایی دو گوش و اصول اولیه، اندازه گیری های تجربی، محاسبات، تجزیه و تحلیل ویژگی های فیزیکی، طراحی فیلتر، و سفارشی سازی HRTF ها همچنین جزئیات اصول و کاربردهای VAD از جمله بازتولید دوگوشی مبتنی بر هدفون و بلندگو، بازتولید مجازی صدای فراگیر استریوفونیک و چند کاناله، شبیه‌سازی اتاق دو گوش، سیستم‌های رندر برای محیط‌های شنیداری مجازی پویا و بلادرنگ، ارزیابی و اعتبارسنجی روان‌آکوستیک VADها و انواع کاربردهای VADها.

ویژگی های کلیدی:

--درباره اصول اولیه و کاربردهای توابع انتقال مرتبط با سر و نمایش شنوایی مجازی
بحث و خلاصه می کند
-- مرزها را بررسی می کند و آخرین رویکردها (مدل سازی، محاسبات، رندر/نمایش) در HRTF و VAD، مفید برای محققان، دانشجویان فارغ التحصیل و مهندسین در این زمینه
--کاربردهای این تحقیق را می توان در مهندسی، ارتباطات، چند رسانه ای، الکترونیک مصرفی یافت. محصولات و سرگرمی
--بیش از 600 مرجع فهرست شده است که اکثر ادبیات در این زمینه را شامل می شود


توضیحاتی درمورد کتاب به خارجی

This book systematically details the basic principles and applications of head-related transfer functions (HRTFs) and virtual auditory display (VAD), and reviews the latest developments in the field, especially those from the authors own state-of-the-art research group.

In this updated second edition, Head-Related Transfer Function and Virtual Auditory Display covers binaural hearing and the basic principles, experimental measurements, computation, physical characteristics analyses, filter design, and customization of HRTFs. It also details the principles and applications of VADs, including headphone and loudspeaker-based binaural reproduction, virtual reproduction of stereophonic and multi-channel surround sound, binaural room simulation, rendering systems for dynamic and real-time virtual auditory environments, psychoacoustic evaluation and validation of VADs, and a variety of applications of VADs.

Key Features:

--Discusses and summarizes the basic principles and applications of head-related transfer functions and virtual auditory display
--Reviews the frontiers and latest approaches (modeling, calculations, rendering/display) in HRTF and VAD, useful for researchers, graduate students, and engineers in the field
--Applications from this research can be found in engineering, communications, multimedia, consumer electronic products, and entertainment
--More than 600 references are listed, encompassing the majority of literature in this field



فهرست مطالب

Content: Chapter 1: Spatial Hearing and Virtual Auditory Display 1.1. Spatial Coordinate Systems1.2. The Auditory System and Auditory Filter       1.2.1. The Auditory System and its Function       1.2.2. The Critical Band and Auditory Filter1.3. Spatial Hearing1.4. Localization Cues for a Single Sound Source       1.4.1. Interaural Time Difference       1.4.2. Interaural Level Difference       1.4.3. Cone of Confusion and Head Movement       1.4.4. Spectral Cue       1.4.5. Discussion on Directional Localization Cues       1.4.6. Auditory Distance Perception1.5. Head-Related Transfer Functions1.6. Summing Localization and Spatial Hearing with Multiple Sources       1.6.1. Summing Localization of Two Sound Sources and the Stereophonic Law of Sine       1.6.2. Summing Localization Law of More Than Two Sound Sources       1.6.3. Time Difference between Sound Sources and the Precedence Effect       1.6.4. Cocktail Party Effect1.7. Room Acoustics and Spatial Hearing       1.7.1. Sound Fields in Enclosed Spaces       1.7.2. Spatial Hearing in Enclosed Spaces1.8. Binaural Recording and Virtual Auditory Display       1.8.1. Artificial Head Models       1.8.2. Binaural Recording and Playback System       1.8.3. Virtual Auditory Display       1.8.4. Comparison with Multi-channel Surround Sound1.9. SummaryChapter 2: HRTF Measurements2.1. Transfer Function of a Linear-time-invariant (LTI) System and its Measurement Principle       2.1.1. Continuous-Time LTI System       2.1.2. Discrete-Time LTI System        2.1.3. Excitation Signals2.2. Principle and Design of HRTF Measurements       2.2.1. Overview       2.2.2. Subjects in HRTF Measurements       2.2.3. Measuring Point and Microphone Position       2.2.4. Measuring Circumstances and Mechanical Devices       2.2.5. Loudspeaker and Amplifier       2.2.6. Signal Generation and Processing       2.2.7. HRTF Equalization        2.2.8. Example of HRTF Measurement        2.2.9. Evaluation of Quality and Errors in HRTF Measurements2.3. Far-field HRTF Databases2.4. Some Specific Measurement Methods and Near-field HRTF Measurements       2.4.1 Some Specific HRTF measurement methods        2.4.2 Near-field HRTF Measurement 2.5. SummaryChapter 3: Primary Features of HRTFs3.1. Time- and Frequency-domain Features of HRTFs       3.1.1. Time-domain Features of Head-related Impulse Responses (HRIRs)        3.1.2. Frequency-domain Features of HRTFs       3.1.3. Minimum-phase Characteristics of HRTFs3.2. Interaural Time Difference (ITD) Analysis       3.2.1. Methods for Evaluating ITD       3.2.2. Calculation Results for ITD3.3. Interaural Level Difference (ILD) Analysis3.4. Spectral Features of HRTFs       3.4.1. Pinna-related Spectral Notches       3.4.2. Torso-related Spectral Cues3.5. Spatial Symmetry in HRTFs       3.5.1. Front-back Symmetry        3.5.2. Left-right Symmetry       3.5.3. Symmetry of ITD3.6. Near-field HRTFs and Distance Perception Cues3.7. HRTFs and Other Issues Related to Binaural Hearing3.8. SummaryChapter 4: Calculation of HRTFs 4.1. Spherical Head Model for HRTF Calculation       4.1.1. Determining Far-field HRTFs and their Characteristics on the Basis of a Spherical Head Model        4.1.2. Analysis of Interaural Localization Cues       4.1.3. Influence of Ear Location        4.1.4. Effect of Source Distance       4.1.5. Further Discussion on the Spherical Head Model4.2. Snowman Model for HRTF Calculation       4.2.1. Basic Concept of the Snowman Model       4.2.2. Results for the HRTFs of the Snowman Model4.3. Numerical Methods for HRTF Calculation        4.3.1. Boundary Element Method (BEM) for Acoustic Problems       4.3.2. Calculation of HRTFs by BEM       4.3.3. Results for BEM-based HRTF Calculation       4.3.4 Simplification of Head Shape        4.3.5. Other Numerical Methods for HRTF Calculation 4.4. SummaryChapter 5: HRTF Filter Models and Implementation5.1. Error Criteria for HRTF Approximation5.2. HRTF Filter Design: Model and Considerations       5.2.1. Filter Model for Discrete-time Linear-time-invariant (LTI) System       5.2.2. Basic Principles and Model Selection in HRTF Filter Design       5.2.3. Length and Simplification of Head-related Impulse Responses (HRIRs)        5.2.4. HRTF Filter Design Incorporating Auditory Properties 5.3. Methods for HRTF Filter Design       5.3.1. Finite Impulse Response (FIR) Representation       5.3.2. Infinite Impulse Response (IIR) Representation by Conventional Methods       5.3.3. Balanced Model Truncation for IIR Filter       5.3.4. HRTF Filter Design Using the Logarithmic Error Criterion       5.3.5. Common-acoustical-pole and Zero Model of HRTFs       5.3.6. Comparison of Results of HRTF Filter Design 5.4. Structure and Implementation of HRTF Filter5.5. Frequency-warped Filter for HRTFs       5.5.1. Frequency Warping       5.5.2. Frequency-warped Filter for HRTFs5.6. SummaryChapter 6: Spatial Interpolation and Decomposition of HRTFs 6.1. Directional Interpolation of HRTFs       6.1.1. Basic Concept of HRTF Directional Interpolation       6.1.2. Some Common Schemes for HRTF Directional Interpolation       6.1.3. Performance Analysis of HRTF Directional Interpolation       6.1.4. Problems and Improvements of HRTF Directional Interpolation6.2. Spectral Shape Basis Function Decomposition of HRTFs        6.2.1. Basic Concept of Spectral Shape Basis Function Decomposition       6.2.2. Principal Components Analysis (PCA) of HRTFs        6.2.3. Discussion of Applying PCA to HRTFs        6.2.4. PCA Results for HRTFs       6.2.5. Directional Interpolation under PCA Decomposition of HRTFs       6.2.6. Subset Selection of HRTFs6.3. Spatial Basis Function Decomposition of HRTFs        6.3.1. Basic Concept of Spatial Basis Function Decomposition       6.3.2. Azimuthal Fourier Analysis and Sampling Theorem of HRTFs       6.3.3. Analysis of Required Azimuthal Measurements of HRTFs       6.3.4. Spherical Harmonic Function Decomposition of HRTFs        6.3.5. Spatial Principal Components Analysis and Recovery of HRTFs from a Small Set of Measurements6.4. HRTF Spatial Interpolation and Signal Mixing for Multi-channel Surround Sound       6.4.1. Signal Mixing for Multi-channel Surround Sound       6.4.2. Pairwise Signal Mixing       6.4.3. Sound Field Signal Mixing       6.4.4. Further Discussion on Multi-channel Sound Reproduction6.5. Simplification of Signal Processing for Binaural Virtual Source Synthesis       6.5.1. Virtual Loudspeaker-based Algorithms       6.5.2. Basis Function Decomposition-based Algorithms6.6. Beamforming Model for Synthesizing Binaural Signals and HRTFs       6.6.1. Spherical Microphone Array for Synthesizing Binaural Signals        6.6.2. Other Array Beamforming Models for Synthesizing Binaural Signals and HRTFs 6.7. SummaryChapter 7: Customization of Individualized HRTFs7.1. Anthropometric Measurements and their Correlation with Localization Cues       7.1.1. Anthropometric Measurements       7.1.2. Correlations among Anthropometric Parameters and HRTFs or Localization Cues7.2. Individualized Interaural Time Difference (ITD) Model and Customization       7.2.1. Extension of the Spherical Head ITD Model       7.2.2. ITD Model Based on Azimuthal Fourier Analysis7.3. Anthropometry-based Customization of HRTFs       7.3.1. Anthropometry Matching Method       7.3.2. Frequency Scaling Method       7.3.3. Anthropometry-based Linear Regression Method7.4. Subjective Selection-based HRTF Customization7.5. Notes on Individualized HRTF Customization7.6. Structural Model of HRTFs       7.6.1. Basic Idea and Components of the Structural Model       7.6.2. Discussion and Improvements of the Structural Model7.7. SummaryChapter 8: Binaural Reproduction through Headphones8.1. Equalization of the Characteristics of Headphone-to-Ear Canal Transmission       8.1.1. Principle of Headphone Equalization        8.1.2. Free-field and Diffuse-field Equalization8.2. Repeatability and Individuality of Headphone-to-ear-canal Transfer Functions (HpTFs)        8.2.1. Repeatability of HpTF Measurement       8.2.2. Individuality of HpTFs8.3. Directional Error in Headphone Reproduction8.4. Externalization and Control of Perceived Virtual Source Distance in Headphone Reproduction       8.4.1. In-head Localization and Externalization       8.4.2. Control of Perceived Virtual Source Distance in Headphone Reproduction8.5. SummaryChapter 9: Binaural Reproduction through Loudspeakers9.1. Basic Principle of Binaural Reproduction through Loudspeakers        9.1.1. Binaural Reproduction through a Pair of Frontal Loudspeakers       9.1.2. General Theory for Binaural Reproduction through Loudspeakers 9.2. Head Rotation and Loudspeaker Reproduction        9.2.1. Virtual Source Distribution in Two-Front Loudspeaker Reproduction       9.2.2. Transaural Synthesis for Four-Loudspeaker Reproduction        9.2.3. Analysis of Dynamic Localization Cues in Loudspeaker Reproduction       9.2.4. Stability of the Perceived Virtual Source Azimuth against Head Rotation9.3. Head Translation and Stability of Virtual Sources in Loudspeaker Reproduction        9.3.1. Preliminary Analysis of Head Translation and Stability       9.3.2. Stereo Dipole        9.3.3. Quantitative Analysis of Stability against Head Translation       9.3.4. Linear System Theory for the Stability of Crosstalk Cancellation9.4. Effects of Mismatched HRTFs and Loudspeaker Pairs       9.4.1. Effect of Mismatched HRTFs        9.4.2. Effect of Mismatched Loudspeaker Pairs9.5. Coloration and Timbre Equalization in Loudspeaker Reproduction       9.5.1. Coloration and Timbre Equalization Algorithms       9.5.2. Analysis of Timbre Equalization Algorithms 9.6. Some Issues on Signal Processing in Loudspeaker Reproduction       9.6.1. Causality and Stability of a Crosstalk Canceller       9.6.2. Basic Implementation Methods for Signal Processing in Loudspeaker Reproduction        9.6.3. Other Implementation Methods for Signal Processing in Loudspeaker Reproduction        9.6.4. Bandlimited Implementation of Crosstalk Cancellation9.7. Some Approximate Methods for Solving the Crosstalk Cancellation Matrix       9.7.1. Cost Function Method for Solving the Crosstalk Cancellation Matrix       9.7.2. Adaptive Inverse Filter Scheme for Crosstalk Cancellation9.8. SummaryChapter 10: Virtual Reproduction of Stereophonic and Multi-channel Surround Sound 10.1 Binaural Reproduction of Stereophonic and Multi-channel Surround Sound through Headphones       10.1.1 Binaural Reproduction of Stereophonic Sound through Headphones       10.1.2 Basic Algorithm for Headphone-based Binaural Reproduction of 5.1 Channel Surround Sound        10.1.3 Improved Algorithm for Binaural Reproduction of 5.1 Channel Surround Sound through Headphones       10.1.4 Notes on Binaural Reproduction of Multi-channel Surround Sound10.2 Algorithms for Correcting Non-standard Stereophonic Loudspeaker Configurations10.3 Stereophonic Enhancement Algorithms10.4 Virtual Reproduction of Multi-channel Surround Sound through Loudspeakers       10.4.1 Virtual Reproduction of 5.1 Channel Surround Sound       10.4.2 Improvement of Virtual 5.1 Channel Surround Sound Reproduction through Stereophonic Loudspeakers       10.4.3 Virtual 5.1 Channel Surround Sound Reproduction through More than Two Loudspeakers       10.4.4 Notes on Virtual Surround Sound10.5 SummaryChapter 11: Binaural Room Modeling11.1 Physics-based Methods for Room Acoustics and Binaural Room Impulse Response (BRIR) Modeling       11.1.1 BRIR and Room Acoustics Modeling       11.1.2 Image-source Methods for Room Acoustics Modeling       11.1.3 Ray-tracing Methods for Room Acoustics Modeling       11.1.4 Other Methods for Room Acoustics Modeling       11.1.5 Source Directivity and Air Absorption        11.1.6 Calculation of Binaural Room Impulse Responses11.2 Artificial Delay and Reverberation Algorithms       11.2.1 Artificial Delay and Discrete Reflection Modeling       11.2.2 Late Reflection Modeling and Plain Reverberation Algorithm       11.2.3 Improvements on Reverberation Algorithm       11.2.4 Application of Delay and Reverberation Algorithms to Virtual Auditory Environments 11.3 SummaryChapter 12: Rendering System for Dynamic and Real-time Virtual Auditory Environments (VAEs) 12.1 Basic Structure of Dynamic VAE Systems 12.2 Simulation of Dynamic Auditory Information       12.2.1 Head Tracking and Simulation of Dynamic Auditory Information       12.2.2 Dynamic Information in Free-field Virtual Source Synthesis       12.2.3 Dynamic Information in Room Reflection Modeling       12.2.4 Dynamic Behaviors in Real-time Rendering Systems       12.2.5 Dynamic Crosstalk Cancellation in Loudspeaker Reproduction12.3 Simulation of Moving Virtual Sources12.4 Some Examples of Dynamic VAE Systems12.5 SummaryChapter 13: Psychoacoustic Evaluation and Validation of Virtual Auditory Displays (VADs) 13.1 Experimental Conditions for the Psychoacoustic Evaluation of VADs 13.2 Evaluation by Auditory Comparison and Discrimination Experiment       13.2.1 Auditory Comparison and Discrimination Experiment       13.2.2 Results of Auditory Discrimination Experiments13.3 Virtual Source Localization Experiment       13.3.1 Basic Methods for Virtual Source Localization Experiments        13.3.2 Preliminary Analysis of the Results of Virtual Source Localization Experiments       13.3.3 Results of Virtual Source Localization Experiments13.4 Quantitative Evaluation Methods for Subjective Attributes 13.5 Further Statistical Analysis of Psychoacoustic Experimental Results       13.5.1 Statistical Analysis Methods       13.5.2 Statistical Analysis Results13.6 Binaural Auditory Model and Objective Evaluation of VADs13.7 Summary Chapter 14: Applications of Virtual Auditory Displays (VADs) 14.1 VADs in Scientific Research Experiments14.2 Applications of Binaural Auralization       14.2.1 Application of Binaural Auralization in Room Acoustics       14.2.2 Existing Problems in Room Acoustic Binaural Auralization       14.2.3 Other Applications of Binaural Auralization14.3 Applications in Sound Reproduction and Program Recording14.4 Applications in Virtual Reality, Communication, and Multimedia       14.4.1 Applications in Virtual Reality       14.4.2 Applications in Communication       14.4.3 Applications in Multimedia and Mobile Products14.5 Applications in Clinical Auditory Evaluations14.6 Summary Appendix A: Spherical Harmonic FunctionsAppendix B: Multipole Re-expansions for Calculating the HRTFs of the Snowman ModelReferences Index




نظرات کاربران