دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Mihir Kumar Purkait, Piyal Mondal, Murchana Changmai, Vikranth Volli, Chi-Min Shu سری: ISBN (شابک) : 9780367516512, 9781003054764 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 352 [353] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Hazards and Safety in Process Industries به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خطرات و ایمنی در صنایع فرآیندی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Safety in process industries is of utmost necessity to ensure protection from hazards. The aim of this book is to elucidate the hazards and preventive measures for a few of such specific industrial processes. Starting with overview of the prevalent industrial accidents, types of hazards and safety provisions, the book contains nineteen chapters with each one of them consisting of a unique case study comprising of basic causes, results and discussion, and protective measures to be adopted to overcome such situation. Topics covered include caprolactam storage tank accident, fire explosion accident caused by static electricity, and human factors risk and management in process safety and so forth. Aimed at researchers, professionals, graduate students in Chemical Engineering, Safety Management, Risk Assessment, Chemical Process Safety, this book: Provides exhaustive coverage of industrial case studies on their hazards and safety issues in the process industry set-up. Includes quantitative discussion on new and existing technologies and methodologies. Explores high quality descriptive and quantified data for better visualization of each chapter. Gives detailed description on various industrial accidents, their related consequences and available safety/preventive measures. Discusses preventive measures taken by world class industries in their production plants.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Authors Chapter 1: Introduction to Industrial Safety and Hazard 1.1 Background 1.2 Work Domain and Safety Instructions 1.3 Records and reports of prevalent industrial accidents 1.3.1 Energy Industry 1.3.2 Food Industry 1.3.3 Manufacturing Industry 1.4 Hazards in Process Units 1.4.1 General Process Hazards 1.4.1.1 Exothermic Reactions with Mild Risk 1.4.1.2 Exothermic Reactions with Sufficient Risk 1.4.1.3 Exothermic Reactions with High Risk 1.4.1.4 Endothermic Reactions with Low Risk 1.4.2 Special Process Hazards 1.4.3 Confined Space Hazards 1.4.4 Electrical Hazards 1.4.5 Fire and Explosion Hazard 1.5 Accident Investigations and Analysis 1.5.1 Accident Investigation 1.5.2 Phases of Accident Investigation and Background Knowledge 1.5.3 Analysis of Direct and Root Causes of Accident 1.5.3.1 Models required 1.5.3.2 Pitfalls in analysis 1.5.3.2.1 Pitfalls in Systems Modelling 1.5.3.2.2 Fallacies in Analytic Reasoning 1.5.3.3 Specificity of Root Causes Analysis 1.5.3.4 Various Other Analysis Techniques 1.5.3.4.1 Gross Hazard Analysis 1.5.3.4.2 Job Safety Analysis 1.5.3.4.3 Failure Mode and Effect Analysis 1.5.3.4.4 Fault Tree Analysis 1.6 Hazard Control for Safety Provisions 1.7 Summary References Chapter 2: A Study of a Caprolactam Storage Tank Accident through Root Cause Analysis with a Computational Approach 2.1 Introduction to Caprolactum Storage in Industries 2.2 Case Study of a Caprolactum Accident 2.2.1 Personnel Interview Record 2.2.2 On-the-Scene Investigation Record 2.3 Computational Approach 2.3.1 Three-Dimensional Finite Element Simulation on Stress Analysis 2.4 Investigation and Analysis for the Cause of Accident 2.5 Clarification for the Cause of Accident 2.5.1 Improper Design and Construction of the Storage Tank 2.5.2 Corrosion of the Weld Seam of the Storage Tank 2.5.3 Blockage of the Storage Tank Venting Pipe 2.5.4 Nitrogen System Malfunction 2.5.5 Improper Management 2.6 Summary References Chapter 3: Fire Explosion Accident Caused by Static Electricity in a Propylene Plant 3.1 Static Electricity and Propylene Plant Integrated Industries 3.2 Structural Features of a High-Tech Plant 3.3 Fire Prevention Features 3.4 Case Review on Disaster 3.5 Investigation of Cause for Accident 3.6 Summary References Chapter 4: Thermal Hazard Accident during Hydrogen Peroxide Mixing with Propanone: Case Study 4.1 Overview of H 2 O 2 Uses in Various Industries 4.2 Hazardous and Toxic Effects of H 2 O 2 4.3 Investigating Thermal Explosion Accidents of H 2 O 2 4.3.1 Samples 4.3.2 Differential Scanning Calorimetry (DSC) 4.3.3 Vent Sizing Package 2 (VSP2) 4.3.4 Thermokinetics Application for Adiabatic System 4.3.5 Critical temperature (T c) of H 2 O 2 calculation 4.4 Thermal Analysis by DSC for H 2 O 2 with Propanone 4.5 Adiabatic Kinetics Study 4.6 Summary References Chapter 5: Hydroelectric Power Plant Fire Accident: Fire Dynamics Simulator (FDS) 5.1 Overview of a Hydroelectric Power Plant in Different Sectors 5.2 Selection of Fire Scene 5.3 Fire Space Simulation 5.4 Results of Fire Space Simulation 5.5 Actual Escape Time Calculation 5.6 Analysis and Observation in Real Fire Scene Case 5.7 Summary References Chapter 6: Thermal Accident of Methyl Ethyl Ketone Peroxide Plant: Calorimetric Analysis 6.1 Overview About Methyl Ethyl Ketone Peroxide (MEKP) in Chemical Plants 6.2 Case Selection 6.3 Thermal Hazard Analysis of MEKP by DSC 6.4 Thermal Analysis of MEKP and H 2 O 2 Through DSC Analysis 6.4.1 Thermal Decomposition Analysis of 31 Mass% MEKPO for DSC 6.4.2 Thermal Decomposition Analysis of 20 Mass% H 2 O 2 by DSC 6.5 Kinetic Analysis of Thermal Degradation 6.6 Safety Parameter Evaluation 6.7 Summary References Chapter 7: Case Study on the Integrated Self-Assessment Module for Fire Rescue Safety in a Chemical Plant 7.1 Introduction 7.2 Research Methods 7.2.1 Environmental Data Analysis 7.2.2 Impact Analysis Program 7.2.2.1 Physical Mode 7.2.2.2 Effect Mode 7.2.3 Integrated Assessment 7.2.3.1 Integrated Risk Frequency Analysis 7.2.3.2 Integrated Impact Analysis 7.3 Case Study 7.3.1 Site Location 7.3.2 Storage of Hazardous Materials 7.3.3 Case Study on the Fire Rescue Unit 7.3.4 Environmental Data Analysis 7.3.5 Integrated Impact Analysis 7.4 Results and Discussions of the Initial Accident and the Second Accident 7.4.1 Initial Accident 7.4.1.1 Domino Effect 7.4.1.2 Safety Distance for Rescue Personnel 7.4.2 Second Accident 7.4.2.1 Domino Effect 7.4.2.2 Safety Distance for Rescue Personnel 7.5 Summary References Chapter 8: Chemical Releases in a Semiconductor Plant: Emergency Response Study 8.1 Introduction 8.2 Semiconductor Process Overview 8.3 Hazards of the Semiconductor Industry 8.4 Chemical Hazards in a Semiconductor Plant 8.5 Emergency Response Procedures 8.6 Problems Faced in an Emergency Response 8.7 Common Problems During the Emergency Response Process 8.8 Summary References Chapter 9: Thermal Hazard and Safety during Combustion of 1-Butylimidazolium Nitrate 9.1 Introduction 9.2 Understanding Ionic Liquids 9.3 Experimental Studies on 1-butylimidazolium Nitrate 9.3.1 Apparatus and Materials 9.3.2 Preliminary Combustion Experiment 9.3.3 Thermogravimetry and Differential Scanning Calorimetry 9.3.4 Adiabatic Runaway Reaction – Experiment and Prediction 9.3.5 Flash Point Analyzer 9.3.6 Qualitative Investigation 9.4 Results and Discussion 9.4.1 Combustion Experiment 9.4.2 Inherent Thermal Hazards for TGA and DSC 9.4.3 FPA Test 9.4.4 Concentration of Ignition 9.4.5 Prediction of Adiabatic Runaway Reaction 9.4.6 Estimating safety limits 9.5 Summary References Chapter 10: Safety and Flammability Analysis for Fuel–Air–Diluent Mixtures Plant: Safety and Flammability Analysis 10.1 Introduction 10.2 Understanding the Flammability of Inert Gas Mixtures 10.3 Experimental Procedures 10.3.1 Apparatus and Materials 10.3.2 Spherical Explosion Vessel 10.3.3 Fourier Transform Infrared Spectroscopy 10.3.4 Theory 10.3.4.1 Mathematical Model Estimation Procedure 10.4 Results and Discussions 10.4.1 Combustion Products of Acetone and Methyl Formate 10.4.2 Experimental and Estimated Flammability Limits 10.4.2.1 Condition for the Simulation 10.4.2.2 Radiation Heat Loss Effect on the Estimated Flammability Boundaries 10.4.2.3 Steam Dilution Effect on Flammability Envelope 10.4.2.4 Nitrogen Dilution Effect on the Flammability Envelope 10.4.2.5 Location of the LOC and Flammability Limit at the LOC 10.5 Summary A.1 Energy Balance Equation A.2 Lower Flammability Boundary A.2.1 Estimation of LFL A.2.2 Estimation of x L A.3 Upper Flammability Boundary A.3.1 UFL Estimate for 1 − x ≤ 1 − x U A.3.2 Estimation of xU A.3.3 UFL Estimate for 1 − x > 1 – x U A.4 Flame Temperature References Chapter 11: Advanced Calorimetric Technology for the Kinetic and Thermal Safety Analysis of Tert-butylperoxy-3,5, 5-trimethylhexanoate 11.1 Introduction 11.2 Thermal Sensitivity and Runaway Characteristics of Tert-butyl peroxy-3,5,5-trimethylhexanoate 11.3 Sample Preparation 11.3.1 Sample 11.3.2 Differential Scanning Calorimetry 11.4 Determination of the Kinetic Model 11.5 Time for Maximum Rate at Adiabatic Conditions 11.6 Self-accelerating Decomposition Temperature 11.7 Results and Discussion 11.8 Summary References Chapter 12: Thermal Hazard Analysis and Its Application on Process Safety Assessments 12.1 Introduction 12.2 Organic Peroxides and Its Associated Thermal Hazards 12.3 Thermal Hazard Analysis 12.3.1 Thermal Analysis Technology 12.3.1.1 Experimental Setup 12.3.2 Isothermal Calorimetry Technology 12.3.2.1 Experimental Setup 12.3.3 Adiabatic Calorimetry Technology 12.3.3.1 Experimental Setup 12.4 Summary References Chapter 13: Safety of Flammable Liquid Mixtures 13.1 Introduction 13.2 Flash Point Evaluation 13.3 Experimental Protocol 13.4 Flash Point Model Prediction for Partially Miscible Mixtures 13.4.1 Model for Aqueous–Organic Solutions 13.4.2 Model for Mixtures of Flammable Solvents 13.5 Results and Discussion 13.5.1 Parameters Used 13.5.2 Partially Miscible Aqueous–Organic Mixtures 13.5.3 Partially Miscible Mixtures of Flammable Solvents 13.6 Summary References Chapter 14: Calorimetric Approach on the Thermal Hazard Assessment of Cumene Hydroperoxide 14.1 Introduction 14.2 Thermal Runaway of Cumene Hydroperoxide 14.3 Experimental Studies 14.3.1 Samples 14.3.2 DSC (Differential Scanning Calorimeter) 14.3.3 TAM (Thermal Activity Monitor) 14.3.4 Applications 14.4 Results and Discussion 14.4.1 Significance and Applications of CHP Derived by DSC and TAM 14.4.2 Comparison of Thermokinetic Parameters for CHP Derived From DSC and TAM 14.5 Summary References Chapter 15: Evaluation of the Information System of Maintenance Efficiency in Petrochemical Plants 15.1 Introduction 15.2 Maintenance Management of Facilities 15.3 Preliminary Design and Index Establishment 15.4 Design of the System 15.4.1 Index Design 15.4.2 System Development Management of Security and the Associated User Privilege System Structure System Interface 15.4.3 Data Requirements 15.4.4 Function Requirements 15.5 Summary References Chapter 16: A Study on the Challenges in Emerging Economies to Industry 4.0 Initiatives for Supply Chain Sustainability 16.1 Introduction 16.2 Understanding Industry 4.0 16.2.1 Industry 4.0 16.2.2 Challenges to Industry 4.0 Initiatives for Sustainability in Supply Chains 16.3 Methodology 16.4 Data Collection and Results 16.4.1 Instrument Development and Data Collection 16.4.2 Reliability, Validity and Non-Biasness 16.4.3 Explanatory Factor Analysis (EFA) 16.4.4 Analytical Hierarchy Process (AHP) 16.5 Discussion 16.6 Summary 16.6.1 Theoretical Benefaction 16.6.2 Managerial Benefaction 16.6.3 Shortcomings and Future Proposals References Chapter 17: A Detailed Study on the Spatial Characteristics of Heavy Metal Pollution and Ecological Risk of Mining Area 17.1 Introduction 17.2 Heavy Metal Pollution 17.3 Sample Collection and Analysis 17.3.1 Location 17.3.2 Sample Collection and Analysis 17.3.3 Data Source and Processing 17.4 Research Survey 17.4.1 Data Processing 17.4.2 Potential Ecological Risk Index Method 17.4.3 IDW Interpolation of Heavy Metals in Soil 17.5 Detailed Analysis of Results 17.5.1 Soil Heavy Metal Pollution 17.5.1.1 Characteristic Value Analysis of Heavy Metals in Soil 17.5.1.2 Heavy Metal Pollution in the Case Study Area 17.5.2 Ecological Risk Assessment of Heavy Metals 17.5.2.1 Single Factor Ecological Risk Assessment of Heavy Metals in Soil 17.6 Risk Assessment and Its Adjustment at the Township Scale 17.6.1 Potential Ecological Risk Assessment of Arsenic 17.6.2 Potential Ecological Risk Assessment of Mercury 17.6.3 Comprehensive Ecological Risk Evaluation of Heavy Metals in Soil 17.7 Results and Discussion 17.7.1 Heavy Metals in Soil Based on Township Scale 17.7.2 The Adjustment of the Potential Ecological Risk Assessment Domain 17.7.3 Selection of Spatial Interpolation Methods for Heavy Metals in Soil 17.8 Summary References Chapter 18: Evaluation of Human Factors Risk and Management in Process Safety in Engineering 18.1 Introduction 18.2 Assessment of Human Factors 18.3 Human Factors Risk Assessment Model 18.4 Applied Methodology 18.4.1 Set Pair Analysis (SPA) 18.4.2 Risk Trend Analysis 18.4.3 SPA–Markov Risk Prediction Method 18.5 Assessment and Management Procedure 18.5.1 Assessment Procedure 18.5.2 Management Procedure 18.6 Application 18.6.1 Determine the Factor Weight (W) and the Identity-discrepant-Contrast Assessment Matrix (R) 18.6.2 Calculate the Connection Number and Partial Connection Number 18.6.3 Risk Analysis 18.6.4 Risk Trend Analysis 18.6.5 Risk Prediction 18.6.6 Risk Management 18.7 Discussions 18.8 Summary Appendix 18A References Chapter 19: Analysis of Off-Site Emergency Procedures and Reciprocation for Nuclear Accidents 19.1 Introduction 19.2 Study on Nuclear Accidents 19.3 Different Phases of a Nuclear Accident 19.3.1 Planning Phase 19.3.1.1 Requirements 19.3.1.2 Contents of An Emergency Plan 19.3.2 Response Phase 19.3.2.1 Pre-Release Phase 19.3.2.2 Post-Release Phase 19.3.3 Recovery Phase 19.4 Economic Costs Analysis 19.4.1 Factors Affecting the Economic Costs of a Nuclear Accident 19.4.2 Economic Modelling in the UK 19.5 Factors Impacting Health and Economic Cost 19.5.1 Siting and Demography 19.5.2 Source Terms 19.5.3 Weather and Dispersion 19.5.4 Food 19.6 Summary References Index A B C D E f G H I K L M N O P R S T U V W