دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Rohan Banerjee
سری:
ناشر: BPB Publications
سال نشر: 2023
تعداد صفحات: 308
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 32 Mb
در صورت تبدیل فایل کتاب Hands-on TinyML: Harness the power of Machine Learning on the edge devices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب TinyML عملی: از قدرت یادگیری ماشینی در دستگاه های لبه استفاده کنید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Book title Inner title Copyright Dedicated About the Author About the Reviewers Acknowledgements Preface Code Bundle and Coloured Images Piracy Table of Contents Chapter 1: Introduction to TinyML and its Applications Introduction Structure Objectives Brief overview of Machine Learning Supervised Machine Learning Unsupervised Machine Learning Machine Learning and Deep Learning Edge computing and TinyML Applications of TinyML Hardware for deploying TinyML Software for TinyML Process flow of creating TinyML applications Prerequisites—hardware and software Conclusion Key facts Chapter 2: Crash Course on Python and TensorFlow Basics Introduction Structure Objectives Colab Notebook Python variables Python strings Lists Tuple Dictionary Conditional and logical operations Loops in Python Functions in Python Python libraries NumPy library Matplotlib library Pandas library Introduction to TensorFlow Tensors and datatypes Differentiation in TensorFlow Graphs and functions in TensorFlow End-to-end Machine Learning algorithm using TensorFlow Conclusion Key facts Further reading Chapter 3: Gearing with Deep Learning Introduction Structure Objectives Theory of artificial neural networks Binary cross entropy loss function Neural network activation functions Learning the neural network weights—the backpropagation algorithm Introduction to Convolutional Neural Network Architecture of a CNN Putting them all together Neural network hyperparameters Number of layers Learning rate Dropout Regularization Choice of optimization algorithm Mini-batch size Conclusion Key facts Further reading Chapter 4: Experiencing TensorFlow Introduction Structure Objectives Keras and TensorFlow Classification of handwritten digits using a feedforward neural network Data processing Model implementation Implementation of a Convolutional Neural Network Evaluation metrics in classification models Conclusion Key facts Chapter 5: Model Optimization Using TensorFlow Introduction Structure Objectives Experiencing TensorFlow Lite TensorFlow Model Optimization Toolkit Quantization Weight pruning Weight clustering Collaborative optimization Conclusion Key facts Chapter 6: Deploying My First TinyML Application Introduction Structure Objectives The MobileNet architecture Depthwise separable convolution Image classification using MobileNet Brief introduction to transfer learning Implementing MobileNet using transfer learning Creating an optimized model for a smaller target device Evaluation of the model on the test set Introduction to Raspberry Pi Getting started with the Pi Installing the operating system Setting up the Pi Remotely accessing the Pi Deploying the model on Raspberry Pi to make inference Conclusion Key facts Chapter 7: Deep Dive into Application Deploymen t Introduction Structure Objectives System requirement The face recognition pipeline Setting up the Raspberry Pi for face recognition The Raspberry Pi camera module Installing the necessary libraries Implementation of the project Data collection for training Model training Real-time face recognition Conclusion Key facts Chapter 8: TensorFlow Lite for Microcontrollers Introduction Structure Objectives Arduino Nano 33 BLE Sense Setting up the Arduino Nano First TinyML project on the microcontroller—modulating the potentiometer Required components Connecting the circuit Read potentiometer to control the brightness of the LED Creating a TensorFlow model to modulate the potentiometer reading Inference on Arduino Nano using TensorFlow Lite for Microcontrollers Conclusion Key facts Chapter 9: Keyword Spotting on Microcontrollers Introduction Structure Objectives Working principles of a voice assistant Implementation of a keyword spotting algorithm in Python Audio spectrogram Designing a Convolutional Neural Network model for keyword spotting Introduction to Edge Impulse Implementing keyword spotting in Edge Impulse Model deployment Conclusion Key facts Chapter 10: Conclusion and Further Reading Introduction Structure Objectives Brief learning summary TinyML best practices AutoML and TinyML Edge ML on smartphones Future of TinyML Further reading Appendix Index Back title