دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ankur Roy
سری:
ISBN (شابک) : 9781835081167
ناشر: Packt Publishing Pvt Ltd
سال نشر: 2024
تعداد صفحات: 265
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Hands-On Python for DevOps: Leverage Python's native libraries to streamline your workflow and save time with automation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پایتون Hands-On for DevOps: از کتابخانه های بومی پایتون برای ساده کردن گردش کار خود و صرفه جویی در زمان با اتوماسیون استفاده کنید. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Hands-On Python for DevOps Contributors About the author About the reviewers Preface Who this book is for What this book covers To get the most out of this book Download the example code files Conventions used Get in touch Share Your Thoughts Download a free PDF copy of this book Part 1: Introduction to DevOps and role of Python in DevOps 1 Introducing DevOps Principles Exploring automation Automation and how it relates to the world How automation evolves from the perspective of an operations engineer Understanding logging and monitoring Logging Monitoring Alerts Incident and event response How to respond to an incident (in life and DevOps) Site reliability engineering Incident response teams Post-mortems Understanding high availability SLIs, SLOs, and SLAs RTOs and RPOs Error budgets How to automate for high availability? Delving into infrastructure as a code Pseudocode Summary 2 Talking about Python Python 101 Beautiful-ugly/explicit-implicit Simple-complex-complicated Flat-nested/sparse-dense Readability-special cases-practicality-purity-errors Ambiguity/one way/Dutch Now or never Hard-bad/easy-good Namespaces What Python offers DevOps Operating systems Containerization Microservices A couple of simple DevOps tasks in Python Automated shutdown of a server Autopull a list of Docker images Summary 3 The Simplest Ways to Start Using DevOps in Python Immediately Technical requirements Introducing API calls Exercise 1 – calling a Hugging Face Transformer API Exercise 2 – creating and releasing an API for consumption Networking Exercise 1 – using Scapy to sniff packets and visualize packet size over time Exercise 2 – generating a routing table for your device Summary 4 Provisioning Resources Technical requirements Python SDKs (and why everyone uses them) Creating an AWS EC2 instance with Python’s boto3 library Scaling and autoscaling Manual scaling with Python Autoscaling with Python based on a trigger Containers and where Python fits in with containers Simplifying Docker administration with Python Managing Kubernetes with Python Summary Part 2: Sample Implementations of Python in DevOps 5 Manipulating Resources Technical requirements Event-based resource adjustment Edge location-based resource sharing Testing features on a subset of users Analyzing data Analysis of live data Analysis of historical data Refactoring legacy applications Optimize Refactor Restart Summary 6 Security and DevSecOps with Python Technical requirements Securing API keys and passwords Store environment variables Extract and obfuscate PII Validating and verifying container images with Binary Authorization Incident monitoring and response Running runbooks Pattern analysis of monitored logs Summary 7 Automating Tasks Automating server maintenance and patching Sample 1: Running fleet maintenance on multiple instance fleets at once Sample 2: Centralizing OS patching for critical updates Automating container creation Sample 1: Creating containers based on a list of requirements Sample 2: Spinning up Kubernetes clusters Automated launching of playbooks based on parameters Summary 8 Understanding Event-Driven Architecture Technical requirements Introducing Pub/Sub and employing Kafka with Python using the confluent-kafka library Understanding the importance of events and consequences Exploring loosely coupled architecture Killing your monolith with the strangler fig Summary 9 Using Python for CI/CD Pipelines Technical requirements The origins and philosophy of CI/CD Scene 1 – continuous integration Scene 2 – continuous delivery Scene 3 – continuous deployment Python CI/CD essentials – automating a basic task Working with devs and infrastructure to deliver your product Performing rollback Summary Part 3: Let’s Go Further, Let’s Build Bigger 10 Common DevOps Use Cases in Some of the Biggest Companies in the World AWS use case – Samsung electronics Scenario Brainstorming Solution Azure Use Case – Intertech Scenario Brainstorming Solution Google Cloud use case – MLB and AFL Scenario Brainstorming Solution Summary 11 MLOps and DataOps Technical requirements How MLOps and DataOps differ from regular DevOps DataOps use case – JSON concatenation MLOps use case – overclocking a GPU Dealing with velocity, volume, and variety Volume Velocity Variety The Ops behind ChatGPT Summary 12 How Python Integrates with IaC Concepts Technical requirements Automation and customization with Python’s Salt library How Ansible works and the Python code behind it Automate the automation of IaC with Python Summary 13 The Tools to Take Your DevOps to the Next Level Technical requirements Advanced automation tools Advanced monitoring tools Advanced event response strategies Summary Index Why subscribe? Other Books You May Enjoy Packt is searching for authors like you Share Your Thoughts Download a free PDF copy of this book