دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Anubhav Singh. Sayak Paul
سری:
ISBN (شابک) : 1789956080, 9781789956085
ناشر: Packt Publishing
سال نشر: 2020
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Hands-On Python Deep Learning for the Web: Integrating neural network architectures to build smart web apps with Flask, Django, and TensorFlow به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آموزش عمیق پایتون برای وب: یکپارچه سازی معماری شبکه های عصبی برای ساخت برنامه های وب هوشمند با Flask، Django و TensorFlow نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از قدرت یادگیری عمیق با پایتون برای ساخت و استقرار برنامه های کاربردی وب هوشمند استفاده کنید
در صورت استفاده موثر، تکنیکهای یادگیری عمیق میتوانند به شما در توسعه برنامههای وب هوشمند کمک کنند. در این کتاب، جدیدترین ابزارها و شیوههای تکنولوژیکی که برای پیادهسازی یادگیری عمیق در توسعه وب با استفاده از پایتون استفاده میشوند را پوشش میدهید.
با شروع با اصول یادگیری ماشین، روی DL و اصول اولیه شبکه های عصبی، از جمله انواع رایج مانند شبکه های عصبی کانولوشنال (CNN) تمرکز خواهید کرد. شما یاد خواهید گرفت که چگونه آنها را در وبسایتها با پیشانی پشتههای مختلف فناوری وب استاندارد ادغام کنید. سپس این کتاب به شما کمک میکند تا با ایجاد APIهای RESTful برای مدلهای سفارشی، تجربه عملی ایجاد یک برنامه وب با قابلیت یادگیری عمیق با استفاده از کتابخانههای Python مانند جنگو و فلاسک به دست آورید. بعداً نحوه راهاندازی یک محیط ابری برای استقرار وب مبتنی بر یادگیری عمیق در Google Cloud و خدمات وب آمازون (AWS) را بررسی خواهید کرد. در مرحله بعد، نحوه استفاده از API هوشمند Emotion مایکروسافت را یاد می گیرید که می تواند احساسات افراد را از طریق تصویری از چهره آنها تشخیص دهد. شما همچنین با استقرار وبسایتهای دنیای واقعی، علاوه بر یادگیری نحوه ایمنسازی وبسایتها با استفاده از reCAPTCHA و Cloudflare، آشنا خواهید شد. در نهایت، از NLP برای ادغام یک UX صوتی از طریق Dialogflow در صفحات وب خود استفاده خواهید کرد.
در پایان این کتاب، شما یاد خواهید گرفت که چگونه برنامهها و وبسایتهای وب هوشمند را با کمک ابزارها و شیوههای مؤثر استقرار دهید.
این کتاب یادگیری عمیق برای دانشمندان داده، متخصصان یادگیری ماشین و مهندسین یادگیری عمیق است که به دنبال اجرای تکنیک ها و روش های یادگیری عمیق در وب هستند. همچنین اگر توسعهدهنده وب هستید و میخواهید تکنیکهای هوشمندانهای را در مرورگر پیادهسازی کنید تا تعاملیتر شود، این کتاب برای شما مفید خواهد بود. دانش کاری زبان برنامه نویسی پایتون و تکنیک های اصلی یادگیری ماشین مفید خواهد بود.
Use the power of deep learning with Python to build and deploy intelligent web applications
When used effectively, deep learning techniques can help you develop intelligent web apps. In this book, you'll cover the latest tools and technological practices that are being used to implement deep learning in web development using Python.
Starting with the fundamentals of machine learning, you'll focus on DL and the basics of neural networks, including common variants such as convolutional neural networks (CNNs). You'll learn how to integrate them into websites with the frontends of different standard web tech stacks. The book then helps you gain practical experience of developing a deep learning-enabled web app using Python libraries such as Django and Flask by creating RESTful APIs for custom models. Later, you'll explore how to set up a cloud environment for deep learning-based web deployments on Google Cloud and Amazon Web Services (AWS). Next, you'll learn how to use Microsoft's intelligent Emotion API, which can detect a person's emotions through a picture of their face. You'll also get to grips with deploying real-world websites, in addition to learning how to secure websites using reCAPTCHA and Cloudflare. Finally, you'll use NLP to integrate a voice UX through Dialogflow on your web pages.
By the end of this book, you'll have learned how to deploy intelligent web apps and websites with the help of effective tools and practices.
This deep learning book is for data scientists, machine learning practitioners, and deep learning engineers who are looking to perform deep learning techniques and methodologies on the web. You will also find this book useful if you're a web developer who wants to implement smart techniques in the browser to make it more interactive. Working knowledge of the Python programming language and basic machine learning techniques will be beneficial.
Cover Title Page Copyright and Credits About Packt Contributors Dedication Preface Table of Contents Section 1: Artificial Intelligence on the Web Chapter 1: Demystifying Artificial Intelligence and Fundamentals of Machine Learning Introduction to artificial intelligence and its types Factors responsible for AI propulsion Data Advancements in algorithms Advancements in hardware The democratization of high-performance computing ML – the most popular form of AI What is DL? The relation between AI, ML, and DL Revisiting the fundamentals of ML Types of ML Supervised learning Unsupervised learning Reinforcement learning Semi-supervised learning Necessary terminologies Train, test, and validation sets Bias and variance Overfitting and underfitting Training error and generalization error A standard ML workflow Data retrieval Data preparation Exploratory Data Analysis (EDA) Data processing and wrangling Feature engineering and extraction/selection Modeling Model training Model evaluation Model tuning Model comparison and selection Deployment and monitoring The web before and after AI Chatbots Web analytics Spam filtering Search Biggest web-AI players and what are they doing with AI Google Google Search Google Translate Google Assistant Other products Facebook Fake profiles Fake news and disturbing content Other uses Amazon Alexa Amazon robotics DeepLens Summary Section 2: Using Deep Learning for Web Development Chapter 2: Getting Started with Deep Learning Using Python Demystifying neural networks Artificial neurons Anatomy of a linear neuron Anatomy of a nonlinear neuron A note on the input and output layers of a neural network Gradient descent and backpropagation Different types of neural network Convolutional neural networks Recurrent neural networks Feeding the letters to the network Initializing the weight matrix and more Putting the weight matrices together Applying activation functions and the final output Exploring Jupyter Notebooks Installing Jupyter Notebook Installation using pip Installation using Anaconda Verifying the installation Jupyter Notebooks Setting up a deep-learning-based cloud environment Setting up an AWS EC2 GPU deep learning environment Step 1: Creating an EC2 GPU-enabled instance Step 2: SSHing into your EC2 instance Step 3: Installing CUDA drivers on the GPU instance Step 4: Installing the Anaconda distribution of Python Step 5: Run Jupyter Deep learning on Crestle Other deep learning environments Exploring NumPy and pandas NumPy NumPy arrays Basic NumPy array operations NumPy arrays versus Python lists Array slicing over multiple rows and columns Assignment over slicing Pandas Summary Chapter 3: Creating Your First Deep Learning Web Application Technical requirements Structuring a deep learning web application A structure diagram of a general deep learning web application Understanding datasets The MNIST dataset of handwritten digits Exploring the dataset Creating functions to read the image files Creating functions to read label files A summary of the dataset Implementing a simple neural network using Python Importing the necessary modules Reusing our functions to load the image and label files Reshaping the arrays for processing with Keras Creating a neural network using Keras Compiling and training a Keras neural network Evaluating and storing the model Creating a Flask API to work with server-side Python Setting up the environment Uploading the model structure and weights Creating our first Flask server Importing the necessary modules Loading data into the script runtime and setting the model Setting the app and index function Converting the image function Prediction APIs Using the API via cURL and creating a web client using Flask Using the API via cURL Creating a simple web client for the API Improving the deep learning backend Summary Chapter 4: Getting Started with TensorFlow.js Technical requirements The fundamentals of TF.js What is TensorFlow? What is TF.js? Why TF.js? The basic concepts of TF.js Tensors Variables Operators Models and layers A case study using TF.js A problem statement for our TF.js mini-project The Iris flower dataset Your first deep learning web application with TF.js Preparing the dataset Project architecture Starting up the project Creating a TF.js model Training the TF.js model Predicting using the TF.js model Creating a simple client Running the TF.js web app Advantages and limitations of TF.js Summary Section 3: Getting Started with Different Deep Learning APIs for Web Development Chapter 5: Deep Learning through APIs What is an API? The importance of using APIs How is an API different from a library? Some widely known deep learning APIs Some lesser-known deep learning APIs Choosing a deep learning API provider Summary Chapter 6: Deep Learning on Google Cloud Platform Using Python Technical requirements Setting up your GCP account Creating your first project on GCP Using the Dialogflow API in Python Creating a Dialogflow account Creating a new agent Creating a new intent Testing your agent Installing the Dialogflow Python SDK Creating a GCP service account Calling the Dialogflow agent using Python API Using the Cloud Vision API in Python The importance of using pre-trained models Setting up the Vision Client libraries The Cloud Vision API calling using Python Using the Cloud Translation API in Python Setting up the Cloud Translate API for Python Using the Google Cloud Translation Python library Summary Chapter 7: DL on AWS Using Python: Object Detection and Home Automation Technical requirements Getting started in AWS A short tour of the AWS offerings Getting started with boto3 Configuring environment variables and installing boto3 Loading up the environment variables in Python Creating an S3 bucket Accessing S3 from Python code with boto3 Using the Rekognition API in Python Using the Alexa API in Python Prerequisites and a block diagram of the project Creating a configuration for the skill Setting up Login with Amazon Creating the skill Configuring the AWS Lambda function Creating the Lambda function Configuring the Alexa skill Setting up Amazon DynamoDB for the skill Deploying the code for the AWS Lambda function Testing the Lambda function Testing the AWS Home Automation skill Summary Chapter 8: Deep Learning on Microsoft Azure Using Python Technical requirements Setting up your account in Azure A walk-through of the deep learning services provided by Azure Object detection using the Face API and Python The initial setup Consuming the Face API from Python code Extracting text information using the Text Analytics API and Python Using the Text Analytics API from Python code An introduction to CNTK Getting started with CNTK Installation on a local machine Installation on Google Colaboratory Creating a CNTK neural network model Training the CNTK model Testing and saving the CNTK model A brief introduction to Django web development Getting started with Django Creating a new Django project Setting up the home page template Making predictions using CNTK from the Django project Setting up the predict route and view Making the necessary module imports Loading and predicting using the CNTK model Testing the web app Summary Section 4: Deep Learning in Production (Intelligent Web Apps) Chapter 9: A General Production Framework for Deep Learning-Enabled Websites Technical requirements Defining the problem statement Building a mental model of the project Avoiding the chances of getting erroneous data in the first place How not to build an AI backend Expecting the AI part of the website to be real time Assuming the incoming data from a website is ideal A sample end-to-end AI-integrated web application Data collection and cleanup Building the AI model Making the necessary imports Reading the dataset and preparing cleaning functions Slicing out the required data Applying text cleaning Splitting the dataset into train and test parts Aggregating text about products and users Creating TF-IDF vectorizers of users and products Creating an index of users and products by the ratings provided Creating the matrix factorization function Saving the model as pickle Building an interface Creating an API to answer search queries Creating an interface to use the API Summary Chapter 10: Securing Web Apps with Deep Learning Technical requirements The story of reCAPTCHA Malicious user detection An LSTM-based model for authenticating users Building a model for an authentication validity check Hosting the custom authentication validation model A Django-based app for using an API The Django project setup Creating an app in the project Linking the app to the project Adding routes to the website Creating the route handling file in the billboard app Adding authentication routes and configurations Creating the login page Creating a logout view Creating a login page template The billboard page template Adding to Billboard page template The billboard model Creating the billboard view Creating bills and adding views Creating the admin user and testing it Using reCAPTCHA in web applications with Python Website security with Cloudflare Summary Chapter 11: DIY - A Web DL Production Environment Technical requirements An overview of DL in production methods A web API service Online learning Batch forecasting Auto ML Popular tools for deploying ML in production creme Airflow AutoML Implementing a demonstration DL web environment Building a predictive model Step 1 – Importing the necessary modules Step 2 – Loading the dataset and observing Step 3 – Separating the target variable Step 4 – Performing scaling on the features Step 5 – Splitting the dataset into test and train datasets Step 6 – Creating a neural network object in sklearn Step 7 – Performing the training Implementing the frontend Implementing the backend Deploying the project to Heroku Security measures, monitoring techniques, and performance optimization Summary Chapter 12: Creating an E2E Web App Using DL APIs and Customer Support Chatbot Technical requirements An introduction to NLP Corpus Parts of speech Tokenization Stemming and lemmatization Bag of words Similarity An introduction to chatbots Creating a Dialogflow bot with the personality of a customer support representative Getting started with Dialogflow Step 1 – Opening the Dialogflow console Step 2 – Creating a new agent Step 3 – Understanding the dashboard Step 4 – Creating the intents Step 4.1 – Creating HelpIntent Step 4.2 – Creating the CheckOrderStatus intent Step 5 – Creating a webhook Step 6 – Creating a Firebase cloud function Step 6.1 – Adding the required packages to package.json Step 6.2 – Adding logic to index.js Step 7 – Adding a personality to the bot Using ngrok to facilitate HTTPS APIs on localhost Creating a testing UI using Django to manage orders Step 1 – Creating a Django project Step 2 – Creating an app that uses the API of the order management system Step 3 – Setting up settings.py Step 3.1 – Adding the apiui app to the list of installed apps Step 3.2 – Removing the database setting Step 4 – Adding routes to apiui Step 5 – Adding routes within the apiui app Step 6 – Creating the views required Step 6.1 – Creating indexView Step 6.2 – Creating viewOrder Step 7 – Creating the templates Speech recognition and speech synthesis on a web page using the Web Speech API Step 1 – Creating the button element Step 2 – Initializing the Web Speech API and performing configuration Step 3 – Making a call to the Dialogflow agent Step 4 – Creating a Dialogflow API proxy on Dialogflow Gateway by Ushakov Step 4.1 – Creating an account on Dialogflow Gateway Step 4.2 – Creating a service account for your Dialogflow agent project Step 4.3 – Uploading the service key file to Dialogflow Gateway Step 5 – Adding a click handler for the button Summary Appendix: Success Stories and Emerging Areas in Deep Learning on the Web Other Books You May Enjoy Index