دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Kirill Kolodiazhnyi
سری:
ISBN (شابک) : 1789955335, 9781789955330
ناشر: Packt Publishing
سال نشر: 2020
تعداد صفحات: 515
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Hands-On Machine Learning with C++: Build, train, and deploy end-to-end machine learning and deep learning pipelines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی دستی با C++: ساخت، آموزش و استقرار خطوط لوله یادگیری ماشینی و یادگیری عمیق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
الگوریتمهای یادگیری ماشینی تحت نظارت و بدون نظارت را با استفاده از کتابخانههای ++C مانند PyTorch C++ API، Caffe2، Shogun، Shark-ML، mlpack و dlib با کمک نمونهها و مجموعه دادههای دنیای واقعی پیادهسازی کنید</ p>
C++ میتواند مدلهای یادگیری ماشین شما را سریعتر اجرا کند و کاراتر. این راهنمای مفید به شما کمک میکند اصول یادگیری ماشینی (ML) را بیاموزید و به شما نشان میدهد که چگونه از کتابخانههای ++C برای استفاده حداکثری از دادههای خود استفاده کنید. این کتاب با رویکرد مثالمحور خود، یادگیری ماشینی با C++ را برای مبتدیان آسان میکند و نحوه پیادهسازی الگوریتمهای ML تحت نظارت و بدون نظارت را از طریق مثالهای دنیای واقعی نشان میدهد.
این کتاب با تنظیم و بهینهسازی یک مدل برای موارد استفاده مختلف، به شما در انتخاب مدل و اندازهگیری عملکرد کمک میکند. شما تکنیک هایی مانند توصیه های محصول، یادگیری گروهی و تشخیص ناهنجاری را با استفاده از کتابخانه های C++ مدرن مانند PyTorch C++ API، Caffe2، Shogun، Shark-ML، mlpack و dlib پوشش خواهید داد. در مرحله بعد، شبکه های عصبی و یادگیری عمیق را با استفاده از مثال هایی مانند طبقه بندی تصویر و تجزیه و تحلیل احساسات، که به شما در حل مسائل مختلف کمک می کند، کاوش خواهید کرد. بعداً، قبل از کشف نحوه صادرات و واردات مدلها با استفاده از قالب ONNX، نحوه مدیریت چالشهای تولید و استقرار در پلتفرمهای موبایل و ابری را یاد خواهید گرفت.
در پایان این کتاب C++، شما از یادگیری ماشین در دنیای واقعی و دانش C++ و همچنین مهارتهای استفاده از C++ برای ساختن سیستمهای قدرتمند ML برخوردار خواهید شد.
اگر میخواهید با الگوریتمها و تکنیکهای یادگیری ماشینی با استفاده از زبان محبوب C++ شروع کنید، این کتاب یادگیری ماشینی C++ را مفید خواهید یافت. این کتاب علاوه بر اینکه اولین دوره مفیدی در یادگیری ماشین با C++ است، برای تحلیلگران داده، دانشمندان داده و توسعه دهندگان یادگیری ماشین که به دنبال پیادهسازی مدلهای مختلف یادگیری ماشین در تولید با استفاده از مجموعه دادهها و مثالهای متنوع هستند، جذاب خواهد بود. دانش کاری زبان برنامه نویسی C++ برای شروع با این کتاب الزامی است.
Implement supervised and unsupervised machine learning algorithms using C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib with the help of real-world examples and datasets
C++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples.
This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You'll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you'll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you'll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format.
By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems.
You will find this C++ machine learning book useful if you want to get started with machine learning algorithms and techniques using the popular C++ language. As well as being a useful first course in machine learning with C++, this book will also appeal to data analysts, data scientists, and machine learning developers who are looking to implement different machine learning models in production using varied datasets and examples. Working knowledge of the C++ programming language is mandatory to get started with this book.
Cover Title Page Copyright and Credits About Packt Contributors Table of Contents Preface Section 1: Overview of Machine Learning Chapter 1: Introduction to Machine Learning with C++ Understanding the fundamentals of ML Venturing into the techniques of ML Supervised learning Unsupervised learning Dealing with ML models Model parameter estimation An overview of linear algebra Learning the concepts of linear algebra Basic linear algebra operations Tensor representation in computing Linear algebra API samples Using Eigen Using xtensor Using Shark-ML Using Dlib An overview of linear regression Solving linear regression tasks with different libraries Solving linear regression tasks with Eigen Solving linear regression tasks with Shogun Solving linear regression tasks with Shark-ML Linear regression with Dlib Summary Further reading Chapter 2: Data Processing Technical requirements Parsing data formats to C++ data structures Reading CSV files with the Fast-CPP-CSV-Parser library Preprocessing CSV files Reading CSV files with the Shark-ML library Reading CSV files with the Shogun library Reading CSV files with the Dlib library Reading JSON files with the RapidJSON library Writing and reading HDF5 files with the HighFive library Initializing matrix and tensor objects from C++ data structures Eigen Shark-ML Dlib Shogun Manipulating images with the OpenCV and Dlib libraries Using OpenCV Using Dlib Transforming images into matrix or tensor objects of various libraries Deinterleaving in OpenCV Deinterleaving in Dlib Normalizing data Normalizing with Eigen Normalizing with Shogun Normalizing with Dlib Normalizing with Shark-ML Summary Further reading Chapter 3: Measuring Performance and Selecting Models Technical requirements Performance metrics for ML models Regression metrics Mean squared error and root mean squared error Mean absolute error R squared Adjusted R squared Classification metrics Accuracy Precision and recall F-score AUC–ROC Log-Loss Understanding the bias and variance characteristics Bias Variance Normal training Regularization L1 regularization – Lasso L2 regularization – Ridge Data augmentation Early stopping Regularization for neural networks Model selection with the grid search technique Cross-validation K-fold cross-validation Grid search Shogun example Shark-ML example Dlib example Summary Further reading Section 2: Machine Learning Algorithms Chapter 4: Clustering Technical requirements Measuring distance in clustering Euclidean distance Squared Euclidean distance Manhattan distance Chebyshev distance Types of clustering algorithms Partition-based clustering algorithms Distance-based clustering algorithms Graph theory-based clustering algorithms Spectral clustering algorithms Hierarchical clustering algorithms Density-based clustering algorithms Model-based clustering algorithms Examples of using the Shogun library for dealing with the clustering task samples GMM with Shogun K-means clustering with Shogun Hierarchical clustering with Shogun Examples of using the Shark-ML library for dealing with the clustering task samples Hierarchical clustering with Shark-ML K-means clustering with Shark-ML Examples of using the Dlib library for dealing with the clustering task samples K-means clustering with Dlib Spectral clustering with Dlib Hierarchical clustering with Dlib Newman modularity-based graph clustering algorithm with Dlib Chinese Whispers – graph clustering algorithm with Dlib Plotting data with C++ Summary Further reading Chapter 5: Anomaly Detection Technical requirements Exploring the applications of anomaly detection Learning approaches for anomaly detection Detecting anomalies with statistical tests Detecting anomalies with the Local Outlier Factor method Detecting anomalies with isolation forest Detecting anomalies with One-Class SVM (OCSVM) Density estimation approach (multivariate Gaussian distribution) for anomaly detection C++ implementation of the isolation forest algorithm for anomaly detection Using the Dlib library for anomaly detection One-Cass SVM with Dlib Multivariate Gaussian model with Dlib OCSVM with Shogun OCSVM with Shark-ML Summary Further reading Chapter 6: Dimensionality Reduction Technical requirements An overview of dimension reduction methods Feature selection methods Dimensionality reduction methods Exploring linear methods for dimension reduction Principal component analysis Singular value decomposition Independent component analysis Linear discriminant analysis Factor analysis Multidimensional scaling Exploring non-linear methods for dimension reduction Kernel PCA IsoMap Sammon mapping Distributed stochastic neighbor embedding Autoencoders Understanding dimension reduction algorithms with various С++ libraries Using the Dlib library PCA Data compression with PCA LDA Sammon mapping Using the Shogun library PCA Kernel PCA MDS IsoMap ICA Factor analysis t-SNE Using the Shark-ML library PCA LDA Summary Further reading Chapter 7: Classification Technical requirements An overview of classification methods Exploring various classification methods Logistic regression KRR SVM kNN method Multi-class classification Examples of using C++ libraries for dealing with the classification task Using the Shogun library With logistic regression With SVMs With the kNN algorithm Using the Dlib library With KRR With SVM Using the Shark-ML library With logistic regression With SVM With the kNN algorithm Summary Further reading Chapter 8: Recommender Systems Technical requirements An overview of recommender system algorithms Non-personalized recommendations Content-based recommendations User-based collaborative filtering Item-based collaborative filtering Factorization algorithms Similarity or preferences correlation Pearson's correlation coefficient Spearman's correlation Cosine distance Data scaling and standardization Cold start problem Relevance of recommendations Assessing system quality Understanding collaborative filtering method details Examples of item-based collaborative filtering with C++ Using the Eigen library Using the mlpack library Summary Further reading Chapter 9: Ensemble Learning Technical requirements An overview of ensemble learning Using a bagging approach for creating ensembles Using a gradient boosting method for creating ensembles Using a stacking approach for creating ensembles Using the random forest method for creating ensembles Decision tree algorithm overview Random forest method overview Examples of using C++ libraries for creating ensembles Ensembles with Shogun Using gradient boosting with Shogun Using random forest with Shogun Ensembles with Shark-ML Using random forest with Shark-ML Using a stacking ensemble with Shark-ML Summary Further reading Section 3: Advanced Examples Chapter 10: Neural Networks for Image Classification Technical requirements An overview of neural networks Neurons The perceptron and neural networks Training with the backpropagation method Backpropagation method modes Stochastic mode Batch mode Mini-batch mode Backpropagation method problems The backpropagation method – an example Loss functions Activation functions The stepwise activation function The linear activation function The sigmoid activation function The hyperbolic tangent Activation function properties Regularization in neural networks Different methods for regularization Neural network initialization Xavier initialization method He initialization method Delving into convolutional networks Convolution operator Pooling operation Receptive field Convolution network architecture What is deep learning? Examples of using C++ libraries to create neural networks Simple network example for the regression task Dlib Shogun Shark-ML Architecture definition Loss function definition Network initialization Optimizer configuration Network training The complete programming sample Understanding image classification using the LeNet architecture Reading the training dataset Reading dataset files Reading the image file Neural network definition Network training Summary Further reading Chapter 11: Sentiment Analysis with Recurrent Neural Networks Technical requirements An overview of the RNN concept Training RNNs using the concept of backpropagation through time Exploring RNN architectures LSTM GRUs Bidirectional RNN Multilayer RNN Understanding natural language processing with RNNs Word2Vec GloVe Sentiment analysis example with an RNN Summary Further reading Section 4: Production and Deployment Challenges Chapter 12: Exporting and Importing Models Technical requirements ML model serialization APIs in C++ libraries Model serialization with Dlib Model serialization with Shogun Model serialization with Shark-ML Model serialization with PyTorch Neural network initialization Using the torch::save and torch::load functions Using PyTorch archive objects Delving into ONNX format Loading images into Caffe2 tensors Reading the class definition file Summary Further reading Chapter 13: Deploying Models on Mobile and Cloud Platforms Technical requirements Image classification on Android mobile The mobile version of the PyTorch framework Using TorchScript for a model snapshot The Android Studio project The UI and Java part of the project The C++ native part of the project Machine learning in the cloud – using Google Compute Engine The server The client Service deployment Summary Further reading Other Books You May Enjoy Index