دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الگوریتم ها و ساختارهای داده ها: پردازش تصویر ویرایش: نویسندگان: Sandipan Dey سری: ISBN (شابک) : 1789343739, 9781789343731 ناشر: Packt Publishing سال نشر: 2018 تعداد صفحات: 483 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 112 مگابایت
در صورت تبدیل فایل کتاب Hands-On Image Processing with Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش تصویری دستی با پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright and Credits Dedication About Packt Contributors Table of Contents Preface Chapter 1: Getting Started with Image Processing What is image processing and some applications What is an image and how it is stored on a computer What is image processing? Some applications of image processing The image processing pipeline Setting up different image processing libraries in Python Installing pip Installing some image processing libraries in Python Installing the Anaconda distribution Installing Jupyter Notebook Image I/O and display with Python Reading, saving, and displaying an image using PIL Providing the correct path to the images on the disk Reading, saving, and displaying an image using Matplotlib Interpolating while displaying with Matplotlib imshow() Reading, saving, and displaying an image using scikit-image Using scikit-image's astronaut dataset Reading and displaying multiple images at once Reading, saving, and displaying an image using scipy misc Using scipy.misc's face dataset Dealing with different image types and file formats and performing basic image manipulations Dealing with different image types and file formats File formats Converting from one file format to another Image types (modes) Converting from one image mode into another Some color spaces (channels) Converting from one color space into another Data structures to store images Converting image data structures Basic image manipulations Image manipulations with numpy array slicing Simple image morphing - α-blending of two images using cross-dissolving Image manipulations with PIL Cropping an image Resizing an image Negating an image Converting an image into grayscale Some gray-level transformations Some geometric transformations Changing pixel values of an image Drawing on an image Drawing text on an image Creating a thumbnail Computing the basic statistics of an image Plotting the histograms of pixel values for the RGB channels of an image Separating the RGB channels of an image Combining multiple channels of an image α-blending two images Superimposing two images Adding two images Computing the difference between two images Subtracting two images and superimposing two image negatives Image manipulations with scikit-image Inverse warping and geometric transformation using the warp() function Applying the swirl transform Adding random Gaussian noise to images Computing the cumulative distribution function of an image Image manipulation with Matplotlib Drawing contour lines for an image Image manipulation with the scipy.misc and scipy.ndimage modules Summary Questions Further reading Chapter 2: Sampling, Fourier Transform, and Convolution Image formation – sampling and quantization Sampling Up-sampling Up-sampling and interpolation Down-sampling Down-sampling and anti-aliasing Quantization Quantizing with PIL Discrete Fourier Transform Why do we need the DFT? The Fast Fourier Transform algorithm to compute the DFT The FFT with the scipy.fftpack module Plotting the frequency spectrum The FFT with the numpy.fft module Computing the magnitude and phase of a DFT Understanding convolution Why convolve an image? Convolution with SciPy signal's convolve2d Applying convolution to a grayscale image Convolution modes, pad values, and boundary conditions Applying convolution to a color (RGB) image Convolution with SciPy ndimage.convolve Correlation versus convolution Template matching with cross-correlation between the image and template Summary Questions Further reading Chapter 3: Convolution and Frequency Domain Filtering Convolution theorem and frequency domain Gaussian blur Application of the convolution theorem Frequency domain Gaussian blur filter with numpy fft Gaussian kernel in the frequency domain Frequency domain Gaussian blur filter with scipy signal.fftconvolve() Comparing the runtimes of SciPy convolve() and fftconvolve() with the Gaussian blur kernel Filtering in the frequency domain (HPF, LPF, BPF, and notch filters) What is a filter? High-Pass Filter (HPF) How SNR changes with frequency cut-off Low-pass filter (LPF) LPF with scipy ndimage and numpy fft LPF with fourier_gaussian LPF with scipy fftpack How SNR changes with frequency cutoff Band-pass filter (BPF) with DoG Band-stop (notch) filter Using a notch filter to remove periodic noise from images Image restoration Deconvolution and inverse filtering with FFT Image deconvolution with the Wiener filter Image denoising with FFT Filter in FFT Reconstructing the final image Summary Questions Further reading Chapter 4: Image Enhancement Point-wise intensity transformations – pixel transformation Log transform Power-law transform Contrast stretching Using PIL as a point operation Using the PIL ImageEnhance module Thresholding With a fixed threshold Half-toning Floyd-Steinberg dithering with error diffusion Histogram processing – histogram equalization and matching Contrast stretching and histogram equalization with scikit-image Histogram matching Histogram matching for an RGB image Linear noise smoothing Smoothing with PIL Smoothing with ImageFilter.BLUR Smoothing by averaging with the box blur kernel Smoothing with the Gaussian blur filter Comparing smoothing with box and Gaussian kernels using SciPy ndimage Nonlinear noise smoothing Smoothing with PIL Using the median filter Using max and min filter Smoothing (denoising) with scikit-image Using the bilateral filter Using non-local means Smoothing with scipy ndimage Summary Questions Further reading Chapter 5: Image Enhancement Using Derivatives Image derivatives – Gradient and Laplacian Derivatives and gradients Displaying the magnitude and the gradient on the same image Laplacian Some notes about the Laplacian Effects of noise on gradient computation Sharpening and unsharp masking Sharpening with Laplacian Unsharp masking With the SciPy ndimage module Edge detection using derivatives and filters (Sobel, Canny, and so on) With gradient magnitude computed using the partial derivatives The non-maximum suppression algorithm Sobel edge detector with scikit-image Different edge detectors with scikit-image – Prewitt, Roberts, Sobel, Scharr, and Laplace The Canny edge detector with scikit-image The LoG and DoG filters The LoG filter with the SciPy ndimage module Edge detection with the LoG filter Edge detection with the Marr and Hildreth's algorithm using the zero-crossing computation Finding and enhancing edges with PIL Image pyramids (Gaussian and Laplacian) – blending images A Gaussian pyramid with scikit-image transform pyramid module A Laplacian pyramid with scikit-image transform's pyramid module Constructing the Gaussian Pyramid Reconstructing an image only from its Laplacian pyramid Blending images with pyramids Summary Questions Further reading Chapter 6: Morphological Image Processing The scikit-image morphology module Binary operations Erosion Dilation Opening and closing Skeletonizing Computing the convex hull Removing small objects White and black top-hats Extracting the boundary Fingerprint cleaning with opening and closing Grayscale operations The scikit-image filter.rank module Morphological contrast enhancement Noise removal with the median filter Computing the local entropy The SciPy ndimage.morphology module Filling holes in binary objects Using opening and closing to remove noise Computing the morphological Beucher gradient Computing the morphological Laplace Summary Questions Further reading Chapter 7: Extracting Image Features and Descriptors Feature detectors versus descriptors Harris Corner Detector With scikit-image With sub-pixel accuracy An application – image matching Robust image matching using the RANSAC algorithm and Harris Corner features Blob detectors with LoG, DoG, and DoH Laplacian of Gaussian (LoG) Difference of Gaussian (DoG) Determinant of Hessian (DoH) Histogram of Oriented Gradients Algorithm to compute HOG descriptors Compute HOG descriptors with scikit-image Scale-invariant feature transform Algorithm to compute SIFT descriptors With opencv and opencv-contrib Application – matching images with BRIEF, SIFT, and ORB Matching images with BRIEF binary descriptors with scikit-image Matching with ORB feature detector and binary descriptor using scikit-image Matching with ORB features using brute-force matching with python-opencv Brute-force matching with SIFT descriptors and ratio test with OpenCV Haar-like features Haar-like feature descriptor with scikit-image Application – face detection with Haar-like features Face/eye detection with OpenCV using pre-trained classifiers with Haar-cascade features Summary Questions Further reading Chapter 8: Image Segmentation What is image segmentation? Hough transform – detecting lines and circles Thresholding and Otsu's segmentation Edges-based/region-based segmentation Edge-based segmentation Region-based segmentation Morphological watershed algorithm Felzenszwalb, SLIC, QuickShift, and Compact Watershed algorithms Felzenszwalb's efficient graph-based image segmentation SLIC RAG merging QuickShift Compact Watershed Region growing with SimpleITK Active contours, morphological snakes, and GrabCut algorithms Active contours Morphological snakes GrabCut with OpenCV Summary Questions Further reading Chapter 9: Classical Machine Learning Methods in Image Processing Supervised versus unsupervised learning Unsupervised machine learning – clustering, PCA, and eigenfaces K-means clustering for image segmentation with color quantization Spectral clustering for image segmentation PCA and eigenfaces Dimension reduction and visualization with PCA 2D projection and visualization Eigenfaces with PCA Eigenfaces Reconstruction Eigen decomposition Supervised machine learning – image classification Downloading the MNIST (handwritten digits) dataset Visualizing the dataset Training kNN, Gaussian Bayes, and SVM models to classify MNIST k-nearest neighbors (KNN) classifier Squared Euclidean distance Computing the nearest neighbors Evaluating the performance of the classifier Bayes classifier (Gaussian generative model) Training the generative model – computing the MLE of the Gaussian parameters Computing the posterior probabilities to make predictions on test data and model evaluation SVM classifier Supervised machine learning – object detection Face detection with Haar-like features and cascade classifiers with AdaBoost – Viola-Jones Face classification using the Haar-like feature descriptor Finding the most important Haar-like features for face classification with the random forest ensemble classifier Detecting objects with SVM using HOG features HOG training Classification with the SVM model Computing BoundingBoxes with HOG-SVM Non-max suppression Summary Questions Further reading Chapter 10: Deep Learning in Image Processing - Image Classification Deep learning in image processing What is deep learning? Classical versus deep learning Why deep learning? CNNs Conv or pooling or FC layers – CNN architecture and how it works Convolutional layer Pooling layer Non-linearity – ReLU layer FC layer Dropout Image classification with TensorFlow or Keras Classification with TF Classification with dense FC layers with Keras Visualizing the network Visualizing the weights in the intermediate layers CNN for classification with Keras Classifying MNIST Visualizing the intermediate layers Some popular deep CNNs VGG-16/19 Classifying cat/dog images with VGG-16 in Keras Training phase Testing (prediction) phase InceptionNet ResNet Summary Questions Further reading Chapter 11: Deep Learning in Image Processing - Object Detection, and more Introducing YOLO v2 Classifying and localizing images and detecting objects Proposing and detecting objects using CNNs Using YOLO v2 Using a pre-trained YOLO model for object detection Deep semantic segmentation with DeepLab V3+ Semantic segmentation DeepLab V3+ DeepLab v3 architecture Steps you must follow to use DeepLab V3+ model for semantic segmentation Transfer learning – what it is, and when to use it Transfer learning with Keras Neural style transfers with cv2 using a pre-trained torch model Understanding the NST algorithm Implementation of NST with transfer learning Ensuring NST with content loss Computing the style cost Computing the overall loss Neural style transfer with Python and OpenCV Summary Questions Further reading Chapter 12: Additional Problems in Image Processing Seam carving Content-aware image resizing with seam carving Object removal with seam carving Seamless cloning and Poisson image editing Image inpainting Variational image processing Total Variation Denoising Creating flat-texture cartoonish images with total variation denoising Image quilting Texture synthesis Texture transfer Face morphing Summary Questions Further reading Other Books You May Enjoy Index