دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: First edition. نویسندگان: Daniele Peila, Renato Casale, Emilio Bilotta, Andrea Pigorini, Claudio Giulio di Prisco, Enrico Maria Pizzarotti, Salvatore Miliziano سری: ISBN (شابک) : 9781000538656, 1000538737 ناشر: سال نشر: 2022 تعداد صفحات: 415 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 63 مگابایت
در صورت تبدیل فایل کتاب Handbook on Tunnels and Underground Works. Volume 1, Concept - Basic Principles of Design. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای تونل ها و کارهای زیرزمینی. جلد 1 مفهوم - اصول اولیه طراحی. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Foreword 1 Foreword 2 About the editors Contributors 1 Introduction 1.1 Historical overview 1.2 Design approaches 1.3 Geometry of tunnels, layout and alignment 1.4 Management of the design process Authorship contribution statement References 2 Risk management in tunnelling 2.1 Introduction 2.2 Planning/feasibility study 2.2.1 Definition of tendering strategies 2.2.2 Constraints identification 2.2.3 Risk assessment/evaluation/allocation 2.2.4 Definition of risk acceptability criteria 2.2.5 Choice of mitigation measures 2.3 Engineering 2.3.1 Definition of key performance indicators and related threshold 2.3.2 Design of mitigation measures 2.3.3 Design during excavation survey and monitoring 2.3.4 Residual risk assessment/evaluation 2.3.5 Forecasting of potential countermeasures 2.3.6 Preliminary maintenance plan and long-term monitoring design 2.4 Construction 2.4.1 Implementation of mitigation measures 2.4.2 During-construction survey and monitoring 2.4.3 Residual risk assessment/evaluation 2.4.4 Design/implementation of possible countermeasures and update of long-term monitoring Authorship contribution statement References 3 Input data: geology and hydrogeology 3.1 Introduction 3.2 Engineering geology for tunnelling and underground works 3.3 The geological model: features and hazards 3.3.1 The identification of the different typologies of media 3.3.2 The geomorphological issues 3.3.3 Tectonic and structural issues 3.3.4 Geological issues 3.3.5 Hydrogeological issues 3.3.5.1 The groundwater as a resource 3.4 Geological and hydrogeological investigations 3.5 Natural state of stress and its assessment 3.6 Geothermal gradient 3.7 Seismicity 3.8 Swelling, squeezing and rock burst 3.8.1 Swelling 3.8.2 Squeezing 3.8.3 Rock burst 3.9 Aggressive waters, gas, radon, and asbestos 3.9.1 Aggressive waters 3.9.2 Gas 3.9.3 Radon 3.9.4 Asbestos 3.9.5 Karst 3.10 Summary Authorship contribution statement References 4 Input data: geotechnics 4.1 Introduction 4.2 Fundamental concepts for the hydro-mechanical characterization of geotechnical materials 4.2.1 Elasticity 4.2.2 Plasticity 4.2.3 Brittleness 4.2.4 Viscosity 4.2.5 Anisotropy 4.2.6 Effective stresses 4.2.7 Hydraulic conductivity 4.2.8 Drained and undrained conditions 4.3 Mechanical properties of soil and intact rock elements 4.3.1 Strength 4.3.2 Stiffness 4.4 Rock mass and rock discontinuities 4.4.1 Definitions 4.4.2 Description of discontinuity systems 4.4.3 Shear strength of discontinuities 4.4.4 Rock mass classification systems 4.5 Mechanical properties of the rock masses 4.5.1 General framework 4.5.2 Rock mass strength 4.5.3 Rock mass stiffness 4.6 In situ stress conditions 4.7 Special issues in geotechnical characterization for tunnelling 4.7.1 Soil behaviour in shallow tunnelling 4.7.2 Swelling and squeezing conditions 4.7.3 Rock properties for spalling prediction 4.7.4 Importance of the post-peak behaviour for the rock mass around deep tunnels 4.7.5 Problems in the characterization of fault rocks, tectonized rocks and fault filling materials 4.7.6 Identification and hydraulic characterization of water-bearing structure 4.8 Planning and execution of in situ surveys and investigations 4.8.1 Site investigations 4.8.2 Survey 4.8.3 Exploratory boreholes and sampling 4.8.4 In situ testing and monitoring 4.9 Laboratory tests 4.9.1 Uniaxial compression tests 4.9.2 Triaxial tests 4.9.3 Tensile tests 4.9.4 Shear box tests 4.9.5 One-dimensional consolidation and swelling tests 4.9.6 Cyclic and dynamic mechanical tests 4.9.7 Small-scale prototype tests – extrusion tests 4.9.8 Index tests for cutting tools optimization 4.9.9 Clogging potential in TBM tunnelling 4.10 In situ tests 4.10.1 Soil mechanics tests 4.10.2 Rock mechanics tests 4.10.3 Geophysical testing methods 4.10.4 Tests for the determination of hydraulic parameters 4.11 The geotechnical model 4.11.1 Purpose 4.11.2 Content 4.11.3 Representation 4.11.4 Design stage 4.11.5 Construction stage Authorship contribution statement References 5 Environmental aspects 5.1 Introduction 5.2 Portal tunnel design 5.3 Interference between the tunnel and the underground water 5.4 Excavated muck management 5.4.1 Management of soil excavated by EPB-TBM 5.5 Management of asbestos-bearing rock masses 5.5.1 Mitigation measures for the management of excavation material containing asbestos 5.5.2 Mitigation measures at the storage sites (intermediate or final) 5.6 Life cycle assessment and carbon footprint of a tunnel construction Acknowledgements Authorship contribution statement References 6 Occupational Health and Safety aspects 6.1 Introduction 6.2 Occupational safety and health key points 6.2.1 OS&H RAM principles 6.2.2 Use of the proposed approach 6.3 OS&H hazard identification 6.3.1 Context-related hazards 6.3.2 Work-related hazards 6.4 Some insights 6.4.1 Emergency and rescue design criteria 6.4.1.1 Safety concepts 6.4.1.2 Survival shelters 6.4.1.3 Escaping from underground 6.4.2 Ventilation design criteria 6.4.2.1 Goal and design principle of the ventilation systems Acknowledgments Authorship contribution statement References 7 Preliminary risk assessment 7.1 Introduction 7.2 Uncertainties and risks 7.3 The risk management plan 7.4 Underground works, geology, hydrogeology and geotechnics 7.5 Uncertainties and risks 7.6 Preliminary assessment of geological and geotechnical sources of uncertainties and risks 7.7 Preliminary assessment of other sources of uncertainties and risks 7.8 A special focus on rock burst and squeezing hazards 7.8.1 Rock burst 7.8.1.1 Spalling susceptibility: shear vs spalling (brittle) failure 7.8.1.2 Strain burst Potential (SBP) and Strainburst Severity (SBS) 7.8.1.3 Rock burst damage severity 7.8.1.4 Damage Index (DI) and Depth of Failure (DOF) 7.8.1.5 Dynamic Rock burst Hazard 7.8.2 Squeezing 7.8.3 Illustrative approaches for a preliminary analysis of rock burst- and squeezing-related risks 7.8.3.1 Example I for a deep alpine tunnel 7.8.3.2 Example II for a deep Andean tunnel Authorship contribution statement References 8 Construction methods 8.1 Introduction 8.2 Excavation methods 8.2.1 Conventional method 8.2.1.1 Drill and blast 8.2.1.2 Drill and split 8.2.1.3 Roadheader 8.2.1.4 High-energy impact hammer 8.2.1.5 Excavator with shovels or with ripper tooth 8.2.2 Full-face mechanized tunnelling method 8.3 Support technologies 8.3.1 First-phase lining 8.3.2 Final lining 8.4 Most frequently used auxiliary methods Acknowledgements Authorship contribution statement References 9 Computational methods 9.1 Modelling approaches and calculation methods 9.1.1 Introduction 9.1.2 Analytical solutions 9.1.3 Integrated/derived solutions 9.1.4 Solutions for stability analyses 9.1.4.1 Limit equilibrium method 9.1.4.2 Limit analysis 9.1.5 Numerical methods 9.1.5.1 FEM 9.1.5.2 FDM 9.1.5.3 DEM 9.1.5.4 Safety factor numerical estimation 9.2 Analysis of the excavation phase 9.2.1 Hydro-mechanical coupling 9.2.2 The excavation process as an evolving geometry problem 9.2.2.1 Three-dimensional analyses 9.2.2.2 Axisymmetric approach 9.2.2.3 2D fixed geometry analyses 9.2.3 Modelling of support and reinforcement systems 9.2.4 Simplified approaches for estimating the mechanical response of tunnel face in soils 9.2.4.1 Shallow tunnels 9.2.4.2 Deep tunnels 9.2.5 Simplified approaches for the analysis of the tunnel cross section 9.2.5.1 Shallow tunnels 9.2.5.2 Deep tunnels 9.2.6 Stability of rock wedges 9.3 Interferences 9.3.1 Tunnel water inflow and influence of tunnelling on groundwater regime 9.3.2 Induced subsidence and interaction with pre-existing underground and surface structures 9.3.2.1 SSI uncoupled approaches 9.3.2.2 SSI coupled approaches 9.3.2.3 Inclined strata 9.3.3 Vibrations induced by drill and blast tunnel excavation 9.4 Long-term tunnel performances 9.4.1 HM coupled processes 9.4.2 HTCM coupled processes 9.4.3 Full SSI dynamic analyses for tunnels under seismic actions 9.4.4 Tunnel–landslide interaction 9.4.5 Thermo-mechanical coupling Authorship contribution statement References 10 Assessment of excavation-related hazards and design of mitigation measures 10.1 Introduction 10.1.1 Codes and partial factors 10.2 Excavation phase 10.2.1 Conventional tunnelling 10.2.1.1 Sequential excavation 10.2.1.2 Pre-support by means of forepoling techniques 10.2.1.3 Pre-confinement by means of face reinforcements 10.2.1.4 Dewatering and drainage 10.2.1.5 Design of pre-improvement techniques for tunnelling 10.2.1.6 First-phase and final support design 10.2.2 Mechanized tunnelling 10.2.2.1 The design of the face support for ‘earth pressure’ (EPB) and ‘slurry’ shields (SS) 10.2.2.2 TBM jamming 10.2.2.3 Design of precast segments 10.2.3 Design of waterproofing 10.2.3.1 Design bases 10.2.3.2 Waterproofing approaches 10.2.3.3 Waterproofing technologies 10.2.4 Interferences 10.2.4.1 Displacement field induced by tunnel excavation 10.2.4.2 Simplified assessment of the effect on buildings of tunnelling-induced displacements 10.3 Application of observational method in tunnelling 10.4 Long-term tunnel performances 10.4.1 Interferences between landslides and tunnels 10.4.2 Seismic loads 10.4.2.1 Ground Shaking 10.4.2.2 Ground failure 10.4.3 Design of lining against fire 10.4.3.1 Structural requirements 10.4.3.2 Material behaviour relevant for fire design 10.4.3.3 Spalling Authorship contribution statement References 11 Monitoring during construction 11.1 Introduction 11.2 Relevant physical quantities and measurement techniques 11.2.1 Tunnel monitoring 11.2.1.1 Conventional tunnelling 11.2.1.2 Mechanized tunnelling 11.2.2 Surface monitoring 11.3 Calculations for monitoring purposes – warning thresholds 11.4 Concluding remarks Authorship contribution statement References 12 Maintenance and refurbishment of existing tunnels 12.1 Introduction 12.2 Degradation phenomena and damages 12.3 Inspections and monitoring 12.3.1 Inspections 12.3.2 Monitoring 12.4 Maintenance activities, repair works and protective measures 12.5 Refurbishment works 12.5.1 Methods 12.5.1.1 Water control 12.5.1.2 Structural improvement 12.5.2 Design 12.6 Concluding remarks Authorship contribution statement References 13 Project acceptance strategy 13.1 Introduction 13.2 The social and communication context of the 20th and 21st centuries 13.2.1 The stakeholders 13.2.2 The path of creation of awareness and/or cooperation 13.2.3 The strategies, the ‘significant’ contents and the communication tools 13.3 Conclusions Acknowledgements References Glossary Index