دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: A. K. Tyagi, Raghumani S. Ningthoujam سری: Indian Institute of Metals Serie ISBN (شابک) : 9811618917, 9789811618918 ناشر: Springer سال نشر: 2021 تعداد صفحات: 929 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 183 Mb
در صورت تبدیل فایل کتاب Handbook on Synthesis Strategies for Advanced Materials: Volume-III: Materials Specific Synthesis Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهبردهای سنتز برای مواد پیشرفته: جلد-III: استراتژیهای سنتز خاص مواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پوشش پیشرفتهای از سنتز مواد کاربردی پیشرفته را ارائه میکند. مسیرهای مصنوعی نامتعارف نقش مهمی در سنتز مواد پیشرفته ایفا میکنند، زیرا بسیاری از مواد جدید غیرپایدار هستند و نمیتوانند با روشهای مرسوم سنتز شوند. این کتاب روشهای مختلف سنتز مانند روش حالت جامد معمولی، روش احتراق، طیف وسیعی از روشهای شیمیایی نرم، سنتز قالب، روش پیشساز مولکولی، سنتز مایکروویو، روش سونوشیمیایی و سنتز فشار بالا را ارائه میکند. این یک نمای کلی جامع از روشهای سنتز ارائه میکند و مواد مختلفی از جمله سرامیک، فیلم، شیشه، مواد مبتنی بر کربن و فلز را پوشش میدهد. بسیاری از تکنیکها برای پردازش و عاملسازی سطح نیز مورد بحث قرار گرفتهاند. چندین جنبه مهندسی سنتز مواد نیز گنجانده شده است. مطالب این کتاب برای محققان و متخصصانی که در زمینه مواد و شیمی کار می کنند مفید است.
This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.
Series Editor’s Preface Preface Contents About the Editors 1 High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations 1.1 Introduction 1.2 PC Constituents and Their Modification 1.2.1 Fillers 1.2.2 Polymer Matrix 1.2.3 Interface in Composites 1.3 Fabrication, Assembly, and Processing of Composites 1.4 Composites and Their Applications 1.5 Smart Composites 1.6 Outlook and Future Trends References 2 Synthesis of Advanced Nanomaterials for Electrochemical Sensor and Biosensor Platforms 2.1 Introduction 2.2 Nanomaterials and Nanostructures Relevant to Electrochemical Sensing 2.3 Noble Metal Nanomaterials 2.3.1 Gold Nanoparticles 2.3.2 Platinum Nanoparticles 2.3.3 Silver Nanoparticles 2.3.4 Palladium Nanoparticles 2.4 Metal Oxide Nanomaterials 2.5 Carbon-Based Nanomaterial Modified Electrodes 2.5.1 Carbon Nanotubes 2.5.2 Single-Walled Carbon Nanotubes 2.5.3 Multi-walled Carbon Nanotubes 2.5.4 Carbon Nanohorns 2.5.5 Fullerene 2.5.6 Graphene 2.6 Conducting Polymer Nanomaterials 2.6.1 Polypyrrole 2.6.2 Polythiophene 2.6.3 Polyaniline (PANI) 2.7 Conclusions and Outlook References 3 Synthesis of Noble Gas Compounds: Defying the Common Perception 3.1 Introduction 3.2 Discovery of Noble Gases 3.3 Reactivity of Noble Gases and Discovery of First Noble Gas Compound 3.4 Initial Progress in the Synthesis of Other Xenon Compounds 3.5 Synthesis of Compounds of Noble Gases 3.6 Missing Xenon Paradox 3.7 Summary and Outlook References 4 Synthesis of Inorganic Fluorides 4.1 Introduction 4.2 Fluorine 4.3 Hydrogen Fluoride 4.4 Inorganic Fluorides and Oxyfluorides 4.4.1 Fluorides of Metals 4.4.2 Binary Fluorides 4.4.3 Nonmetal Fluorides 4.4.4 Complex Fluorides 4.4.5 Oxyfluorides 4.5 Preparative Strategies 4.5.1 Fluorinating Reagents and Common F− Ion Sources 4.5.2 Materials Compatibility 4.5.3 Toxicological Effects 4.6 General Preparation Chemistry 4.6.1 Gas–Gas 4.6.2 Liquid/Solid–Gas 4.6.3 Solid/Liquid–Liquid 4.6.4 Solid–Solid 4.6.5 Fluorides of Cations with Unusual Oxidation State 4.7 Representative Examples 4.8 Summary and Conclusions References 5 Synthesis of Materials with Unusual Oxidation State 5.1 Introduction 5.2 Oxidation States 5.3 Unusual Oxidation States 5.4 Preparation and Stabilization of Materials with Unusual Oxidation States 5.5 Preparation Strategies for Materials with Unusual Oxidation States 5.5.1 High Temperature Reactions 5.5.2 High Pressure and High Temperature Reactions 5.5.3 Reaction at Lower or Moderate Temperature and Stepwise Reactions 5.5.4 Electrochemical Reactions 5.5.5 Electron or γ-radiation-Induced Redox Reactions 5.6 Conclusions References 6 Up-Converting Lanthanide Ions Doped Fluoride Nanophosphors: Advances from Synthesis to Applications 6.1 Introduction 6.2 Luminescence from Lanthanides Ions 6.2.1 Lanthanides 6.2.2 Origin of Luminescence 6.2.3 Photo-Physical Mechanism 6.3 Photoluminescence Measurement Technique 6.3.1 Instrumentation 6.3.2 Photoluminescence Measurement 6.4 Critical Factors that Influence Luminescence Characteristics 6.4.1 Choice of Activator 6.4.2 Choice of Sensitizer 6.4.3 Choice of a Host Material 6.4.4 Doping Concentration 6.4.5 Morphology 6.4.6 Crystal Structure 6.5 Controlled Preparation of Up-Converting Fluoride-Based Nanophosphors 6.5.1 Nucleation and Growth 6.5.2 Synthesis Methods 6.6 Critical Parameters that Influence Morphology and Phase 6.6.1 Reaction Temperature and Time 6.6.2 Ligand, additives, and Solvents 6.6.3 Precursor Salts 6.6.4 PH Parameter 6.6.5 Incorporation of Foreign Species 6.7 Applications 6.7.1 Bio-Imaging 6.7.2 Tumor Targeting 6.7.3 Energy Harvesting 6.7.4 Temperature Sensing 6.7.5 Anti-counterfeiting 6.8 Conclusions References 7 Synthesis and Characterization of Quantum Cutting Phosphor Materials 7.1 Introduction 7.2 Quantum Cutting Mechanism 7.3 Synthesis Methods 7.3.1 Combustion Method 7.3.2 Sol–gel Method 7.3.3 Hydrothermal Method 7.3.4 Hot-Injection Method 7.3.5 Solid-State Reaction Method 7.3.6 Melting-Quenching Method 7.4 Characterization of Quantum Cutting Phosphors 7.4.1 Photoluminescence (Excitation and Emission) 7.4.2 Laser Power Dependent Photoluminescence Intensity 7.4.3 Lifetime Characteristics 7.5 Conclusions 7.6 Future Scope References 8 Synthesis, Characterization, Physical Properties and Applications of Metal Borides 8.1 Introduction 8.2 Synthesis and Characterization 8.2.1 High-Temperature Synthesis (Above 1000 °C) Using Pure Metal Powder and Boron Powder in Inert Atmosphere or Vacuum by Solid-State Reaction 8.2.2 Electrolysis Process in Molten Salts 8.2.3 Reduction of Metal Oxides/Halides with Boron in Presence of Carbon/Aluminum/Magnesium 8.2.4 Reduction of Metal Oxides with Boron Carbide 8.2.5 Self-propagating High-Temperature Synthesis (SHS) 8.2.6 Mechano-Chemically Assisted Preparation 8.2.7 Reduction Process of Metal Salts with Borohydrides (LiBH4, NaBH4, KBH4) 8.2.8 Deposition from a Reactive Vapor Phase (Thin Films or Single Crystals or Polycrystals) 8.2.9 Single-Source Precursor Route 8.2.10 Nanostructure Formation in 0D, 1D, 2D and 3D Ways 8.3 Physical Properties 8.3.1 Magnetism 8.3.2 Electronic Structure 8.3.3 Electrical Resistivity 8.3.4 Optics 8.4 Applications 8.4.1 Catalyst 8.4.2 Superconducting Materials 8.4.3 Coating Materials to Improve Mechanical Properties (Hardness, Corrosion Resistance, Wear Resistance) 8.4.4 Metallic Ceramics Materials 8.4.5 Magnetic Materials 8.4.6 Brightness in Electron Microscopy and Monochromator for Synchrotron Radiation 8.4.7 Other Hybrids/Composites of Borides for Applications 8.5 Conclusions References 9 Synthesis and Applications of Borides, Carbides, Phosphides, and Nitrides 9.1 Introduction 9.2 Synthesis Methods of Nitrides 9.2.1 Interaction of N2 Gas with the Metal Powder or Film at Elevated Temperature 9.2.2 Interaction of NH3 Gas with the Metal Powder or Film or Oxides or Sulphides or Halides at Elevated Temperature 9.2.3 Decomposition of Single Source Precursor Containing Metal–Nitrogen Link 9.2.4 Use of Urea/Azide and Reductant Precursor 9.2.5 Use of Hard Template Having Nitrogen Source 9.2.6 Epitaxial Growth of Nanowires or Nanorods on Substrate 9.2.7 In the Form of Thin Film Formation and Coating 9.2.8 In the Form of Single Crystals 9.2.9 Mesoporous Metal Nitrides 9.2.10 Metathesis Reaction 9.2.11 Layered Nitrides 9.2.12 Mechanical Transfer of Metal Nitrides Grown on a Substrate to Another Substrate 9.2.13 Formation of Heterostructure Types 9.2.14 Formation of Advanced Ceramic Materials of Borides, Carbides, and Nitrides at Low Temperature 9.2.15 Formation of Different Phases of Nitrides, Carbides, Oxy-Carbides/Nitrides, and Borides Under High Pressure and Temperature 9.2.16 Formation of Different Phases of Nitrides Under Sudden Cooling and Tempering 9.2.17 Formation of Nanotubes 9.2.18 Formation of Different Sizes and Shapes 9.2.19 Electrochemical Route 9.2.20 Deposition of Prepared Nitrides on Substrate 9.2.21 Supercritical Fluid Ammonia or Solvothermal or Ammono-Thermal Route 9.2.22 Self-propagating High Temperature Synthesis 9.3 Synthesis Methods of Carbides 9.3.1 Carbo-Thermal Route 9.3.2 Carbo-Thermic Reduction Route 9.3.3 Carburisation Route 9.3.4 Microwave Route 9.3.5 Hydrothermal or Solvothermal Route 9.3.6 Self-propagating High Temperature Synthesis Route 9.3.7 Thin Film 9.3.8 Single Crystals 9.3.9 Preparation of Nanostructured Carbides (0D, 1D, 2D, and 3D) 9.3.10 Sol-gel Approach 9.3.11 Preparation of Carbides Under Pressure 9.4 Synthesis Methods of Phosphides 9.4.1 Direction Reaction Between Metal or Non-metal and Phosphorus 9.4.2 Reaction Between Metal Salt or Complex and PH3/H2 Mixture 9.4.3 Reaction Between Metal Salt and Hypophosphite 9.4.4 Reaction Between Metal Salt and Phosphorous Acid (H3PO3) 9.4.5 H2 Plasma Reduction 9.4.6 Reaction of Metal Salts with Organic Compounds of Phosphorous 9.4.7 Metathesis Reactions 9.4.8 Solvothermal Reaction 9.4.9 Different Sizes and Shapes of Nanoparticles (0D, 1D, 2D, 3D) 9.4.10 Thin Film Technique 9.5 Synthesis Methods of Borides 9.6 Applications 9.6.1 Electronics 9.6.2 Catalysts 9.6.3 Optical Materials 9.6.4 Materials on Basis of Mechanical Properties 9.6.5 Biomaterials 9.6.6 Ultra-High Temperature Ceramic Materials 9.6.7 Coloring Materials 9.6.8 Materials for Battery, Fuel Cells, Capacitor, Sensors 9.6.9 Magnetic Materials 9.6.10 Miscellaneous Applications 9.7 Conclusions References 10 Synthesis Methods for Carbon-Based Materials 10.1 Introduction 10.2 Synthesis of Graphite 10.3 Synthesis of Diamond 10.3.1 High Pressure and High Temperature (HPHT) 10.3.2 Chemical Vapor Deposition 10.3.3 Other Methods 10.4 Synthesis of Fullerene 10.4.1 Soot Method 10.4.2 Chemical Vapor Deposition 10.4.3 Arc Discharge 10.5 Synthesis of Carbon Nanotubes 10.5.1 Arc Discharge 10.5.2 Laser Ablation 10.5.3 Chemical Vapor Deposition 10.6 Synthesis of Carbon Nanofibers 10.6.1 Chemical Vapor Deposition 10.6.2 Electrospinning 10.7 Synthesis of Graphene 10.7.1 Top-Down Approach 10.7.2 Bottom-Up Methods References 11 Synthesis, Properties and Applications of Luminescent Carbon Dots 11.1 Introduction 11.2 Synthesis 11.2.1 Top-Down Synthesis 11.2.2 Bottom-Up Synthesis 11.2.3 Large-Scale Synthesis of CDs 11.2.4 Surface Passivation, Functionalization and Doping of CDs 11.2.5 CD Nanocomposites 11.3 Characterization 11.4 Properties 11.5 Applications 11.6 Conclusions and Future Prospects References 12 Synthesis and Applications of Colloidal Nanomaterials of Main Group- and Transition- Metal Phosphides 12.1 Introduction 12.2 Introductory Back Ground of Metal Phosphides 12.2.1 History 12.2.2 Properties of Metal Phosphides 12.3 Synthesis of Colloidal Metal Phosphide Nanomaterials 12.3.1 Multiple Source Methods 12.3.2 Single Source Molecular Precursor Method 12.4 Syntheses of Colloidal Nanomaterials of Main Group Metal Phosphides 12.4.1 Syntheses of Colloidal Nanomaterials of Group 12 Metal Phosphides 12.4.2 Syntheses of Colloidal Nanomaterials of Group 13 Metal Phosphides 12.4.3 Syntheses of Colloidal Nanomaterials of Group 14 Metal Phosphides 12.5 Syntheses of Colloidal Nanomaterials of Transition Metal Phosphides 12.5.1 Syntheses of Colloidal Nanomaterials of Group 6 Metal (Cr, Mo, W) Phosphide 12.5.2 Syntheses of Colloidal Nanomaterials of Group 7 (Mn, Tc, Re) Metal Phosphide 12.5.3 Syntheses of Colloidal Nanomaterials of Group 8 (Fe, Ru, Os) Metal Phosphides 12.5.4 Syntheses of Colloidal Nanomaterials of Group 9 (Co, Rh, Ir) Metal Phosphides 12.5.5 Syntheses of Colloidal Nanomaterials of Group 10 (Ni, Pd, Pt) Metal Phosphides 12.5.6 Syntheses of Colloidal Nanomaterials of Group 11 (Cu, Ag, Au) Phosphides 12.6 Application of Colloidal Metal Phosphide Nanomaterials 12.6.1 Optoelectronic and Photovoltaic Applications 12.6.2 Catalytic Applications 12.6.3 Lithium Ion Battery Applications 12.6.4 Biology, Medicine, Toxicology and Environmental Applications 12.7 Conclusion and Future Perspective References 13 Synthesis Strategies for Organoselenium Compounds and Their Potential Applications in Human Life 13.1 Introduction 13.2 Background and General Properties 13.3 Strides in Biological Sciences and Medicine 13.4 Food Sources of Se for Health and Recommended Dietary Allowance 13.5 Deficiency of Selenium Leading to Disease States 13.6 Scope for Designing New Bioactive Selenium Compounds 13.7 Selenium Toxicity—Selenium is Double Edged Sword 13.8 Strides in Materials Science 13.9 Importance of Design and Synthesis Strategies of Selenium Compounds 13.10 Milestones in Development of Synthetic Strategies of Selenium Compounds 13.11 Synthesis Strategies for Organoselenium Compounds 13.11.1 Difficulties and Risks Involved in Synthesis of Selenium Compounds 13.11.2 Physiological Properties and Health Hazards of Selenium Compounds 13.11.3 Preparations and Precautions Before Starting Synthesis of Selenium Compounds 13.11.4 Treatment and Disposal of Selenium Waste After Extraction of Desired Reaction Products 13.12 Synthesis of Various Classes of Oganoselenium Compounds 13.12.1 Diorgano Diselenides (R2Se2) 13.12.2 Diorgano Monoselenides (R2Se) 13.12.3 Diorganoselenoxides (R2Se=O) 13.12.4 Selenuranes 13.12.5 Cyclic Seleninate Esters 13.12.6 Thioselenuranes [RSSe(=O)OH)] 13.12.7 Selenenic (RSeOH), Seleninic (RSeOOH) and Selenonic (RSeOOOH) Acids 13.12.8 Selenoesters 13.12.9 Selenoanhydrides 13.12.10 Diorganoselenenyl Sulphides (RSe-SR′) 13.12.11 Selenols (ArSeH) and Selones (Ar=Se) 13.12.12 Organoselenium Halides (RSeX) 13.12.13 Selenocynates (RSeCN) 13.12.14 Cyclic Selenides 13.12.15 Selenopeptides 13.12.16 Selenium Containing Peptides 13.12.17 Semisynthetic Selenoproteins/Enzymes 13.12.18 Selenium Containing Bio-materials 13.12.19 Organic Polyselenides 13.12.20 Inorganic Selenium Compounds—In Biological Applications 13.12.21 Inorganic Selenium Compounds—In Commercial and Material Applications 13.13 Characterization of Se and Selenium Compounds 13.13.1 Nuclear Magnetic Resonance (NMR) Spectroscopy 13.13.2 Mass Spectrometry 13.13.3 Single Crystal X-Ray Diffraction (XRD) Analyzes 13.13.4 Powder X-Ray Diffraction Analyzes (PXRD) 13.13.5 X-Ray Spectroscopy Techniques 13.14 Estimation of Selenium 13.14.1 Destructive Analysis Methods 13.14.2 Non-destructive Techniques 13.15 Conclusions References 14 Synthesis and Development of Platinum-Based Anticancer Drugs 14.1 Introduction 14.2 General Properties of Platinum Contributing to Its Anticancer Action 14.3 Molecular Mechanism of Anticancer Properties of Platinum(II) Based Drugs 14.3.1 Platinum DNA Binding 14.3.2 Binding Modes of Platinum with DNA 14.3.3 Platinum RNA Binding 14.3.4 Harmful Interactions of Platinum and S Containing Endogenous Biomolecules 14.3.5 Beneficial Interactions of Platinum with Sulphur Containing Exogenous Molecules 14.3.6 Pt(IV) Prodrugs Concept for to Win Over Limitations of Existing Pt(II) Drugs and Molecular Mechanism of Their Anticancer Activity 14.4 Synthesis of Platinum-Based Anticancer Compounds 14.4.1 Design and Synthesis Strategies of Platinum(II) Based Complexes 14.5 Synthesis Strategies for Various Classes of Pt(II) Compounds 14.5.1 Synthesis Methods for Cisplatin and Its Characterization 14.5.2 Classical Pt(II) Compounds Having Cis Geometry for Anticancer Applications 14.5.3 Platinum(II) Complexes with Trans Geometry 14.5.4 Synthesis Strategies for Pt(II) Based Trans-Isomers 14.5.5 Platinum(II) Iminoether Compounds 14.5.6 Platinum(II)-Thioether Compounds 14.5.7 Platinum(II)-Amidine Compounds 14.5.8 Monofunctional Platinum(II) Compounds 14.5.9 Trifunctional Di- and Tri-Nuclear Platinum(II) Compounds 14.5.10 Platinum-Oxalato Compounds 14.5.11 Platinum(II)-Β-Diketonate Compounds 14.5.12 Platinum(II)-Schiff Base Compounds 14.5.13 Platinum(II)-Sulphur-Based Compounds 14.5.14 Platinum-Thiosemicarbazone Compounds 14.5.15 Platinum(II)-Selenium-Based Compounds 14.5.16 Platinum(II)-Phosphine-Based Compounds 14.5.17 Multinuclear Platinum(II) Based Anticancer Compounds 14.5.18 Photoactivable Platinum(II)- and Platinum(IV) Based Anticancer Compounds 14.5.19 Luminescent Platinum(II) Based Anticancer Compounds 14.5.20 Radio-Labelled Platinum(II)- and Platinum(IV) Based Compounds 14.6 Design and Synthesis Strategies Platinum(IV) Prodrug Complexes 14.7 Conclusions References 15 Synthesis, Properties and Applications of Intermetallic Phases 15.1 Introduction 15.2 Types of Intermetallic Phases 15.2.1 CsCl Type Phases 15.2.2 CaF2 Type Phases 15.2.3 Zinc Blende Structure Type Phases 15.2.4 Wurzite Type (ZnS) Phases 15.2.5 Nickel Arsenide (NiAs) Phase 15.2.6 Electron Phases 15.2.7 Laves Phases 15.2.8 Interstitial Phases 15.2.9 Sigma Phases 15.2.10 Zintl Phases 15.2.11 Nanoalloys (NAs) 15.2.12 Magnetic Alloys 15.2.13 Coloured Intermetallic Phases 15.2.14 High-Entropy Alloys (HEAs) 15.3 Bonding in Intermetallic Phases 15.4 Role of Phase Diagram in the Synthesis of Intermetallic Phases 15.5 Synthesis of Intermetallic Phases 15.5.1 Furnace Heating Methods 15.5.2 Mechanical Alloying Method 15.5.3 Electrolysis Method 15.5.4 High-Temperature Reduction Process 15.5.5 Synthesis of Nanoalloys 15.5.6 Synthesis of Porous Intermetallic Phases 15.5.7 Synthesis of HEAs 15.6 Heat Treatment Processes 15.6.1 Annealing 15.6.2 Sintering 15.6.3 Recrystallization 15.7 Strategies for Improving Ductility of Ordered Intermetallics 15.8 Applications of Intermetallic Phases 15.8.1 High-Temperature Alloys 15.8.2 Super Alloys 15.8.3 Soft Alloys 15.8.4 Superconducting Alloys 15.8.5 Magnetic Alloys 15.8.6 Electronic/Electric Alloys 15.8.7 Biological Alloys 15.9 Conclusions References 16 Synthesis and Characterization of Metal Hydrides and Their Application 16.1 Introduction 16.2 Metal Hydrides 16.2.1 Different Classes of Intermetallic Hydride 16.3 Mechanism of Metallic Hydride Formation 16.4 Thermodynamics of Metal Hydride Formation: Pressure Composition Isotherm 16.5 Kinetics of Interstitial Hydride Formation 16.5.1 Calculation of Activation Energy 16.6 Hydrogenation of Intermetallic Phases 16.6.1 Reaction Between Hydrogen Gas and Metals at Convenient Pressure and Temperature 16.6.2 Electrochemical Charging and Discharging of Metal Hydride 16.6.3 Mechanical Milling for Metal Hydride Formation 16.7 Stability of Intermetallic Hydride 16.8 Interstitial Site Occupancy of Hydrogen in Intermetallic Hydride 16.8.1 Westlake’s Geometrical Model 16.8.2 Local Heat of Formation Model 16.9 Isotope Effect 16.10 Characterization of Metal Hydrides 16.10.1 Hydrogen Sorption Measurement Techniques 16.10.2 X-ray Diffraction and Neutron Diffraction 16.10.3 Nuclear Magnetic Resonance (NMR) 16.11 Electronic and Magnetic Structure of Metal Hydride 16.12 Applications of Metal Hydride 16.12.1 Hydrogen Storage 16.12.2 Thermochemical Devices 16.12.3 Hydrogen Purification and Separation 16.12.4 Hydrogen Gettering 16.12.5 Hydrogen Sensor 16.12.6 Switchable Mirror 16.12.7 Electrochemical Application 16.12.8 Isotope Separation 16.13 Conclusion References 17 Synthesis Strategies for Si-Based Advanced Materials and Their Applications 17.1 Introduction 17.2 Synthesis of Small Silane Molecules 17.2.1 Trichlorosilane 17.2.2 Tetrachlorosilane 17.2.3 Dichlorosilane 17.2.4 Silane (SiH4) 17.2.5 Application of Chlorosilane 17.3 Organosilane 17.3.1 Formation of Alkyl Chlorosilane 17.3.2 Preparation of Alkoxysilane 17.3.3 Acetoxysilanes 17.3.4 Organofunctional Silane 17.4 Silicone 17.4.1 Direct Synthesis Method 17.4.2 Application 17.5 Polysilane 17.5.1 Synthesis: Wurtz-Type Coupling of Dichlorosilanes 17.5.2 Other Than Wurtz-Type Reaction 17.5.3 Applications 17.6 Silicene 17.6.1 Synthesis of Silicene 17.6.2 Applications 17.7 Conclusions References 18 Synthesis and Processing of Li-Based Ceramic Tritium Breeder Materials 18.1 Introduction 18.1.1 Global Energy Demand and Role of Thermonuclear Fusion 18.2 Nuclear Fusion as an Energy Source 18.2.1 Conceptual Design of a Fusion Reactor 18.3 International Thermonuclear Experimental Reactor (ITER) 18.3.1 Necessity of Tritium Breeding for Fusion Reactor 18.4 Concept of Tritium Breeding 18.4.1 Breeding Blankets 18.4.2 Prospective Li-Based Ceramic Tritium Breeding Materials 18.5 Phase Diagrams of Li-Based Ceramic Tritium Breeders 18.5.1 Lithium Titanate (Li2TiO3) 18.5.2 Lithium Zirconate (Li2ZrO3) 18.5.3 Lithium Aluminate (LiAlO2) 18.5.4 Lithium Orthosilicate (Li4SiO4) 18.5.5 Processing of Tritium Breeding Materials 18.6 Powder Synthesis 18.6.1 Solid-State Synthesis Method 18.6.2 Wet Chemical Methods 18.6.3 Solution Combustion Synthesis (SCS) 18.6.4 Sol-gel Synthesis 18.6.5 Hydrothermal Method 18.6.6 Consolidation and Fabrication of Shapes 18.6.7 Sintering 18.6.8 Desired Microstructure of Sintered Tritium Breeder 18.7 Challenges in Achieving Desired Microstructure 18.8 Approaches to Sinterability Enhancement 18.9 Comparison of Sinterability of Li-Based Ceramic Powders Synthesized by Different Methods 18.10 Conclusion References