ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook on Synthesis Strategies for Advanced Materials: Volume-III: Materials Specific Synthesis Strategies

دانلود کتاب کتاب راهبردهای سنتز برای مواد پیشرفته: جلد-III: استراتژی‌های سنتز خاص مواد

Handbook on Synthesis Strategies for Advanced Materials: Volume-III: Materials Specific Synthesis Strategies

مشخصات کتاب

Handbook on Synthesis Strategies for Advanced Materials: Volume-III: Materials Specific Synthesis Strategies

ویرایش: [1 ed.] 
نویسندگان: ,   
سری: Indian Institute of Metals Serie 
ISBN (شابک) : 9811618917, 9789811618918 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 929 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 183 Mb 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Handbook on Synthesis Strategies for Advanced Materials: Volume-III: Materials Specific Synthesis Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهبردهای سنتز برای مواد پیشرفته: جلد-III: استراتژی‌های سنتز خاص مواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهبردهای سنتز برای مواد پیشرفته: جلد-III: استراتژی‌های سنتز خاص مواد



این کتاب پوشش پیشرفته‌ای از سنتز مواد کاربردی پیشرفته را ارائه می‌کند. مسیرهای مصنوعی نامتعارف نقش مهمی در سنتز مواد پیشرفته ایفا می‌کنند، زیرا بسیاری از مواد جدید غیرپایدار هستند و نمی‌توانند با روش‌های مرسوم سنتز شوند. این کتاب روش‌های مختلف سنتز مانند روش حالت جامد معمولی، روش احتراق، طیف وسیعی از روش‌های شیمیایی نرم، سنتز قالب، روش پیش‌ساز مولکولی، سنتز مایکروویو، روش سونوشیمیایی و سنتز فشار بالا را ارائه می‌کند. این یک نمای کلی جامع از روش‌های سنتز ارائه می‌کند و مواد مختلفی از جمله سرامیک، فیلم، شیشه، مواد مبتنی بر کربن و فلز را پوشش می‌دهد. بسیاری از تکنیک‌ها برای پردازش و عامل‌سازی سطح نیز مورد بحث قرار گرفته‌اند. چندین جنبه مهندسی سنتز مواد نیز گنجانده شده است. مطالب این کتاب برای محققان و متخصصانی که در زمینه مواد و شیمی کار می کنند مفید است.



توضیحاتی درمورد کتاب به خارجی

This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.




فهرست مطالب

Series Editor’s Preface
Preface
Contents
About the Editors
1 High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations
	1.1 Introduction
	1.2 PC Constituents and Their Modification
		1.2.1 Fillers
		1.2.2 Polymer Matrix
		1.2.3 Interface in Composites
	1.3 Fabrication, Assembly, and Processing of Composites
	1.4 Composites and Their Applications
	1.5 Smart Composites
	1.6 Outlook and Future Trends
	References
2 Synthesis of Advanced Nanomaterials for Electrochemical Sensor and Biosensor Platforms
	2.1 Introduction
	2.2 Nanomaterials and Nanostructures Relevant to Electrochemical Sensing
	2.3 Noble Metal Nanomaterials
		2.3.1 Gold Nanoparticles
		2.3.2 Platinum Nanoparticles
		2.3.3 Silver Nanoparticles
		2.3.4 Palladium Nanoparticles
	2.4 Metal Oxide Nanomaterials
	2.5 Carbon-Based Nanomaterial Modified Electrodes
		2.5.1 Carbon Nanotubes
		2.5.2 Single-Walled Carbon Nanotubes
		2.5.3 Multi-walled Carbon Nanotubes
		2.5.4 Carbon Nanohorns
		2.5.5 Fullerene
		2.5.6 Graphene
	2.6 Conducting Polymer Nanomaterials
		2.6.1 Polypyrrole
		2.6.2 Polythiophene
		2.6.3 Polyaniline (PANI)
	2.7 Conclusions and Outlook
	References
3 Synthesis of Noble Gas Compounds: Defying the Common Perception
	3.1 Introduction
	3.2 Discovery of Noble Gases
	3.3 Reactivity of Noble Gases and Discovery of First Noble Gas Compound
	3.4 Initial Progress in the Synthesis of Other Xenon Compounds
	3.5 Synthesis of Compounds of Noble Gases
	3.6 Missing Xenon Paradox
	3.7 Summary and Outlook
	References
4 Synthesis of Inorganic Fluorides
	4.1 Introduction
	4.2 Fluorine
	4.3 Hydrogen Fluoride
	4.4 Inorganic Fluorides and Oxyfluorides
		4.4.1 Fluorides of Metals
		4.4.2 Binary Fluorides
		4.4.3 Nonmetal Fluorides
		4.4.4 Complex Fluorides
		4.4.5 Oxyfluorides
	4.5 Preparative Strategies
		4.5.1 Fluorinating Reagents and Common F− Ion Sources
		4.5.2 Materials Compatibility
		4.5.3 Toxicological Effects
	4.6 General Preparation Chemistry
		4.6.1 Gas–Gas
		4.6.2 Liquid/Solid–Gas
		4.6.3 Solid/Liquid–Liquid
		4.6.4 Solid–Solid
		4.6.5 Fluorides of Cations with Unusual Oxidation State
	4.7 Representative Examples
	4.8 Summary and Conclusions
	References
5 Synthesis of Materials with Unusual Oxidation State
	5.1 Introduction
	5.2 Oxidation States
	5.3 Unusual Oxidation States
	5.4 Preparation and Stabilization of Materials with Unusual Oxidation States
	5.5 Preparation Strategies for Materials with Unusual Oxidation States
		5.5.1 High Temperature Reactions
		5.5.2 High Pressure and High Temperature Reactions
		5.5.3 Reaction at Lower or Moderate Temperature and Stepwise Reactions
		5.5.4 Electrochemical Reactions
		5.5.5 Electron or γ-radiation-Induced Redox Reactions
	5.6 Conclusions
	References
6 Up-Converting Lanthanide Ions Doped Fluoride Nanophosphors: Advances from Synthesis to Applications
	6.1 Introduction
	6.2 Luminescence from Lanthanides Ions
		6.2.1 Lanthanides
		6.2.2 Origin of Luminescence
		6.2.3 Photo-Physical Mechanism
	6.3 Photoluminescence Measurement Technique
		6.3.1 Instrumentation
		6.3.2 Photoluminescence Measurement
	6.4 Critical Factors that Influence Luminescence Characteristics
		6.4.1 Choice of Activator
		6.4.2 Choice of Sensitizer
		6.4.3 Choice of a Host Material
		6.4.4 Doping Concentration
		6.4.5 Morphology
		6.4.6 Crystal Structure
	6.5 Controlled Preparation of Up-Converting Fluoride-Based Nanophosphors
		6.5.1 Nucleation and Growth
		6.5.2 Synthesis Methods
	6.6 Critical Parameters that Influence Morphology and Phase
		6.6.1 Reaction Temperature and Time
		6.6.2 Ligand, additives, and Solvents
		6.6.3 Precursor Salts
		6.6.4 PH Parameter
		6.6.5 Incorporation of Foreign Species
	6.7 Applications
		6.7.1 Bio-Imaging
		6.7.2 Tumor Targeting
		6.7.3 Energy Harvesting
		6.7.4 Temperature Sensing
		6.7.5 Anti-counterfeiting
	6.8 Conclusions
	References
7 Synthesis and Characterization of Quantum Cutting Phosphor Materials
	7.1 Introduction
	7.2 Quantum Cutting Mechanism
	7.3 Synthesis Methods
		7.3.1 Combustion Method
		7.3.2 Sol–gel Method
		7.3.3 Hydrothermal Method
		7.3.4 Hot-Injection Method
		7.3.5 Solid-State Reaction Method
		7.3.6 Melting-Quenching Method
	7.4 Characterization of Quantum Cutting Phosphors
		7.4.1 Photoluminescence (Excitation and Emission)
		7.4.2 Laser Power Dependent Photoluminescence Intensity
		7.4.3 Lifetime Characteristics
	7.5 Conclusions
	7.6 Future Scope
	References
8 Synthesis, Characterization, Physical Properties and Applications of Metal Borides
	8.1 Introduction
	8.2 Synthesis and Characterization
		8.2.1 High-Temperature Synthesis (Above 1000 °C) Using Pure Metal Powder and Boron Powder in Inert Atmosphere or Vacuum by Solid-State Reaction
		8.2.2 Electrolysis Process in Molten Salts
		8.2.3 Reduction of Metal Oxides/Halides with Boron in Presence of Carbon/Aluminum/Magnesium
		8.2.4 Reduction of Metal Oxides with Boron Carbide
		8.2.5 Self-propagating High-Temperature Synthesis (SHS)
		8.2.6 Mechano-Chemically Assisted Preparation
		8.2.7 Reduction Process of Metal Salts with Borohydrides (LiBH4, NaBH4, KBH4)
		8.2.8 Deposition from a Reactive Vapor Phase (Thin Films or Single Crystals or Polycrystals)
		8.2.9 Single-Source Precursor Route
		8.2.10 Nanostructure Formation in 0D, 1D, 2D and 3D Ways
	8.3 Physical Properties
		8.3.1 Magnetism
		8.3.2 Electronic Structure
		8.3.3 Electrical Resistivity
		8.3.4 Optics
	8.4 Applications
		8.4.1 Catalyst
		8.4.2 Superconducting Materials
		8.4.3 Coating Materials to Improve Mechanical Properties (Hardness, Corrosion Resistance, Wear Resistance)
		8.4.4 Metallic Ceramics Materials
		8.4.5 Magnetic Materials
		8.4.6 Brightness in Electron Microscopy and Monochromator for Synchrotron Radiation
		8.4.7 Other Hybrids/Composites of Borides for Applications
	8.5 Conclusions
	References
9 Synthesis and Applications of Borides, Carbides, Phosphides, and Nitrides
	9.1 Introduction
	9.2 Synthesis Methods of Nitrides
		9.2.1 Interaction of N2 Gas with the Metal Powder or Film at Elevated Temperature
		9.2.2 Interaction of NH3 Gas with the Metal Powder or Film or Oxides or Sulphides or Halides at Elevated Temperature
		9.2.3 Decomposition of Single Source Precursor Containing Metal–Nitrogen Link
		9.2.4 Use of Urea/Azide and Reductant Precursor
		9.2.5 Use of Hard Template Having Nitrogen Source
		9.2.6 Epitaxial Growth of Nanowires or Nanorods on Substrate
		9.2.7 In the Form of Thin Film Formation and Coating
		9.2.8 In the Form of Single Crystals
		9.2.9 Mesoporous Metal Nitrides
		9.2.10 Metathesis Reaction
		9.2.11 Layered Nitrides
		9.2.12 Mechanical Transfer of Metal Nitrides Grown on a Substrate to Another Substrate
		9.2.13 Formation of Heterostructure Types
		9.2.14 Formation of Advanced Ceramic Materials of Borides, Carbides, and Nitrides at Low Temperature
		9.2.15 Formation of Different Phases of Nitrides, Carbides, Oxy-Carbides/Nitrides, and Borides Under High Pressure and Temperature
		9.2.16 Formation of Different Phases of Nitrides Under Sudden Cooling and Tempering
		9.2.17 Formation of Nanotubes
		9.2.18 Formation of Different Sizes and Shapes
		9.2.19 Electrochemical Route
		9.2.20 Deposition of Prepared Nitrides on Substrate
		9.2.21 Supercritical Fluid Ammonia or Solvothermal or Ammono-Thermal Route
		9.2.22 Self-propagating High Temperature Synthesis
	9.3 Synthesis Methods of Carbides
		9.3.1 Carbo-Thermal Route
		9.3.2 Carbo-Thermic Reduction Route
		9.3.3 Carburisation Route
		9.3.4 Microwave Route
		9.3.5 Hydrothermal or Solvothermal Route
		9.3.6 Self-propagating High Temperature Synthesis Route
		9.3.7 Thin Film
		9.3.8 Single Crystals
		9.3.9 Preparation of Nanostructured Carbides (0D, 1D, 2D, and 3D)
		9.3.10 Sol-gel Approach
		9.3.11 Preparation of Carbides Under Pressure
	9.4 Synthesis Methods of Phosphides
		9.4.1 Direction Reaction Between Metal or Non-metal and Phosphorus
		9.4.2 Reaction Between Metal Salt or Complex and PH3/H2 Mixture
		9.4.3 Reaction Between Metal Salt and Hypophosphite
		9.4.4 Reaction Between Metal Salt and Phosphorous Acid (H3PO3)
		9.4.5 H2 Plasma Reduction
		9.4.6 Reaction of Metal Salts with Organic Compounds of Phosphorous
		9.4.7 Metathesis Reactions
		9.4.8 Solvothermal Reaction
		9.4.9 Different Sizes and Shapes of Nanoparticles (0D, 1D, 2D, 3D)
		9.4.10 Thin Film Technique
	9.5 Synthesis Methods of Borides
	9.6 Applications
		9.6.1 Electronics
		9.6.2 Catalysts
		9.6.3 Optical Materials
		9.6.4 Materials on Basis of Mechanical Properties
		9.6.5 Biomaterials
		9.6.6 Ultra-High Temperature Ceramic Materials
		9.6.7 Coloring Materials
		9.6.8 Materials for Battery, Fuel Cells, Capacitor, Sensors
		9.6.9 Magnetic Materials
		9.6.10 Miscellaneous Applications
	9.7 Conclusions
	References
10 Synthesis Methods for Carbon-Based Materials
	10.1 Introduction
	10.2 Synthesis of Graphite
	10.3 Synthesis of Diamond
		10.3.1 High Pressure and High Temperature (HPHT)
		10.3.2 Chemical Vapor Deposition
		10.3.3 Other Methods
	10.4 Synthesis of Fullerene
		10.4.1 Soot Method
		10.4.2 Chemical Vapor Deposition
		10.4.3 Arc Discharge
	10.5 Synthesis of Carbon Nanotubes
		10.5.1 Arc Discharge
		10.5.2 Laser Ablation
		10.5.3 Chemical Vapor Deposition
	10.6 Synthesis of Carbon Nanofibers
		10.6.1 Chemical Vapor Deposition
		10.6.2 Electrospinning
	10.7 Synthesis of Graphene
		10.7.1 Top-Down Approach
		10.7.2 Bottom-Up Methods
	References
11 Synthesis, Properties and Applications of Luminescent Carbon Dots
	11.1 Introduction
	11.2 Synthesis
		11.2.1 Top-Down Synthesis
		11.2.2 Bottom-Up Synthesis
		11.2.3 Large-Scale Synthesis of CDs
		11.2.4 Surface Passivation, Functionalization and Doping of CDs
		11.2.5 CD Nanocomposites
	11.3 Characterization
	11.4 Properties
	11.5 Applications
	11.6 Conclusions and Future Prospects
	References
12 Synthesis and Applications of Colloidal Nanomaterials of Main Group- and Transition- Metal Phosphides
	12.1 Introduction
	12.2 Introductory Back Ground of Metal Phosphides
		12.2.1 History
		12.2.2 Properties of Metal Phosphides
	12.3 Synthesis of Colloidal Metal Phosphide Nanomaterials
		12.3.1 Multiple Source Methods
		12.3.2 Single Source Molecular Precursor Method
	12.4 Syntheses of Colloidal Nanomaterials of Main Group Metal Phosphides
		12.4.1 Syntheses of Colloidal Nanomaterials of Group 12 Metal Phosphides
		12.4.2 Syntheses of Colloidal Nanomaterials of Group 13 Metal Phosphides
		12.4.3 Syntheses of Colloidal Nanomaterials of Group 14 Metal Phosphides
	12.5 Syntheses of Colloidal Nanomaterials of Transition Metal Phosphides
		12.5.1 Syntheses of Colloidal Nanomaterials of Group 6 Metal (Cr, Mo, W) Phosphide
		12.5.2 Syntheses of Colloidal Nanomaterials of Group 7 (Mn, Tc, Re) Metal Phosphide
		12.5.3 Syntheses of Colloidal Nanomaterials of Group 8 (Fe, Ru, Os) Metal Phosphides
		12.5.4 Syntheses of Colloidal Nanomaterials of Group 9 (Co, Rh, Ir) Metal Phosphides
		12.5.5 Syntheses of Colloidal Nanomaterials of Group 10 (Ni, Pd, Pt) Metal Phosphides
		12.5.6 Syntheses of Colloidal Nanomaterials of Group 11 (Cu, Ag, Au) Phosphides
	12.6 Application of Colloidal Metal Phosphide Nanomaterials
		12.6.1 Optoelectronic and Photovoltaic Applications
		12.6.2 Catalytic Applications
		12.6.3 Lithium Ion Battery Applications
		12.6.4 Biology, Medicine, Toxicology and Environmental Applications
	12.7 Conclusion and Future Perspective
	References
13 Synthesis Strategies for Organoselenium Compounds and Their Potential Applications in Human Life
	13.1 Introduction
	13.2 Background and General Properties
	13.3 Strides in Biological Sciences and Medicine
	13.4 Food Sources of Se for Health and Recommended Dietary Allowance
	13.5 Deficiency of Selenium Leading to Disease States
	13.6 Scope for Designing New Bioactive Selenium Compounds
	13.7 Selenium Toxicity—Selenium is Double Edged Sword
	13.8 Strides in Materials Science
	13.9 Importance of Design and Synthesis Strategies of Selenium Compounds
	13.10 Milestones in Development of Synthetic Strategies of Selenium Compounds
	13.11 Synthesis Strategies for Organoselenium Compounds
		13.11.1 Difficulties and Risks Involved in Synthesis of Selenium Compounds
		13.11.2 Physiological Properties and Health Hazards of Selenium Compounds
		13.11.3 Preparations and Precautions Before Starting Synthesis of Selenium Compounds
		13.11.4 Treatment and Disposal of Selenium Waste After Extraction of Desired Reaction Products
	13.12 Synthesis of Various Classes of Oganoselenium Compounds
		13.12.1 Diorgano Diselenides (R2Se2)
		13.12.2 Diorgano Monoselenides (R2Se)
		13.12.3 Diorganoselenoxides (R2Se=O)
		13.12.4 Selenuranes
		13.12.5 Cyclic Seleninate Esters
		13.12.6 Thioselenuranes [RSSe(=O)OH)]
		13.12.7 Selenenic (RSeOH), Seleninic (RSeOOH) and Selenonic (RSeOOOH) Acids
		13.12.8 Selenoesters
		13.12.9 Selenoanhydrides
		13.12.10 Diorganoselenenyl Sulphides (RSe-SR′)
		13.12.11 Selenols (ArSeH) and Selones (Ar=Se)
		13.12.12 Organoselenium Halides (RSeX)
		13.12.13 Selenocynates (RSeCN)
		13.12.14 Cyclic Selenides
		13.12.15 Selenopeptides
		13.12.16 Selenium Containing Peptides
		13.12.17 Semisynthetic Selenoproteins/Enzymes
		13.12.18 Selenium Containing Bio-materials
		13.12.19 Organic Polyselenides
		13.12.20 Inorganic Selenium Compounds—In Biological Applications
		13.12.21 Inorganic Selenium Compounds—In Commercial and Material Applications
	13.13 Characterization of Se and Selenium Compounds
		13.13.1 Nuclear Magnetic Resonance (NMR) Spectroscopy
		13.13.2 Mass Spectrometry
		13.13.3 Single Crystal X-Ray Diffraction (XRD) Analyzes
		13.13.4 Powder X-Ray Diffraction Analyzes (PXRD)
		13.13.5 X-Ray Spectroscopy Techniques
	13.14 Estimation of Selenium
		13.14.1 Destructive Analysis Methods
		13.14.2 Non-destructive Techniques
	13.15 Conclusions
	References
14 Synthesis and Development of Platinum-Based Anticancer Drugs
	14.1 Introduction
	14.2 General Properties of Platinum Contributing to Its Anticancer Action
	14.3 Molecular Mechanism of Anticancer Properties of Platinum(II) Based Drugs
		14.3.1 Platinum DNA Binding
		14.3.2 Binding Modes of Platinum with DNA
		14.3.3 Platinum RNA Binding
		14.3.4 Harmful Interactions of Platinum and S Containing Endogenous Biomolecules
		14.3.5 Beneficial Interactions of Platinum with Sulphur Containing Exogenous Molecules
		14.3.6 Pt(IV) Prodrugs Concept for to Win Over Limitations of Existing Pt(II) Drugs and Molecular Mechanism of Their Anticancer Activity
	14.4 Synthesis of Platinum-Based Anticancer Compounds
		14.4.1 Design and Synthesis Strategies of Platinum(II) Based Complexes
	14.5 Synthesis Strategies for Various Classes of Pt(II) Compounds
		14.5.1 Synthesis Methods for Cisplatin and Its Characterization
		14.5.2 Classical Pt(II) Compounds Having Cis Geometry for Anticancer Applications
		14.5.3 Platinum(II) Complexes with Trans Geometry
		14.5.4 Synthesis Strategies for Pt(II) Based Trans-Isomers
		14.5.5 Platinum(II) Iminoether Compounds
		14.5.6 Platinum(II)-Thioether Compounds
		14.5.7 Platinum(II)-Amidine Compounds
		14.5.8 Monofunctional Platinum(II) Compounds
		14.5.9 Trifunctional Di- and Tri-Nuclear Platinum(II) Compounds
		14.5.10 Platinum-Oxalato Compounds
		14.5.11 Platinum(II)-Β-Diketonate Compounds
		14.5.12 Platinum(II)-Schiff Base Compounds
		14.5.13 Platinum(II)-Sulphur-Based Compounds
		14.5.14 Platinum-Thiosemicarbazone Compounds
		14.5.15 Platinum(II)-Selenium-Based Compounds
		14.5.16 Platinum(II)-Phosphine-Based Compounds
		14.5.17 Multinuclear Platinum(II) Based Anticancer Compounds
		14.5.18 Photoactivable Platinum(II)- and Platinum(IV) Based Anticancer Compounds
		14.5.19 Luminescent Platinum(II) Based Anticancer Compounds
		14.5.20 Radio-Labelled Platinum(II)- and Platinum(IV) Based Compounds
	14.6 Design and Synthesis Strategies Platinum(IV) Prodrug Complexes
	14.7 Conclusions
	References
15 Synthesis, Properties and Applications of Intermetallic Phases
	15.1 Introduction
	15.2 Types of Intermetallic Phases
		15.2.1 CsCl Type Phases
		15.2.2 CaF2 Type Phases
		15.2.3 Zinc Blende Structure Type Phases
		15.2.4 Wurzite Type (ZnS) Phases
		15.2.5 Nickel Arsenide (NiAs) Phase
		15.2.6 Electron Phases
		15.2.7 Laves Phases
		15.2.8 Interstitial Phases
		15.2.9 Sigma Phases
		15.2.10 Zintl Phases
		15.2.11 Nanoalloys (NAs)
		15.2.12 Magnetic Alloys
		15.2.13 Coloured Intermetallic Phases
		15.2.14 High-Entropy Alloys (HEAs)
	15.3 Bonding in Intermetallic Phases
	15.4 Role of Phase Diagram in the Synthesis of Intermetallic Phases
	15.5 Synthesis of Intermetallic Phases
		15.5.1 Furnace Heating Methods
		15.5.2 Mechanical Alloying Method
		15.5.3 Electrolysis Method
		15.5.4 High-Temperature Reduction Process
		15.5.5 Synthesis of Nanoalloys
		15.5.6 Synthesis of Porous Intermetallic Phases
		15.5.7 Synthesis of HEAs
	15.6 Heat Treatment Processes
		15.6.1 Annealing
		15.6.2 Sintering
		15.6.3 Recrystallization
	15.7 Strategies for Improving Ductility of Ordered Intermetallics
	15.8 Applications of Intermetallic Phases
		15.8.1 High-Temperature Alloys
		15.8.2 Super Alloys
		15.8.3 Soft Alloys
		15.8.4 Superconducting Alloys
		15.8.5 Magnetic Alloys
		15.8.6 Electronic/Electric Alloys
		15.8.7 Biological Alloys
	15.9 Conclusions
	References
16 Synthesis and Characterization of Metal Hydrides and Their Application
	16.1 Introduction
	16.2 Metal Hydrides
		16.2.1 Different Classes of Intermetallic Hydride
	16.3 Mechanism of Metallic Hydride Formation
	16.4 Thermodynamics of Metal Hydride Formation: Pressure Composition Isotherm
	16.5 Kinetics of Interstitial Hydride Formation
		16.5.1 Calculation of Activation Energy
	16.6 Hydrogenation of Intermetallic Phases
		16.6.1 Reaction Between Hydrogen Gas and Metals at Convenient Pressure and Temperature
		16.6.2 Electrochemical Charging and Discharging of Metal Hydride
		16.6.3 Mechanical Milling for Metal Hydride Formation
	16.7 Stability of Intermetallic Hydride
	16.8 Interstitial Site Occupancy of Hydrogen in Intermetallic Hydride
		16.8.1 Westlake’s Geometrical Model
		16.8.2 Local Heat of Formation Model
	16.9 Isotope Effect
	16.10 Characterization of Metal Hydrides
		16.10.1 Hydrogen Sorption Measurement Techniques
		16.10.2 X-ray Diffraction and Neutron Diffraction
		16.10.3 Nuclear Magnetic Resonance (NMR)
	16.11 Electronic and Magnetic Structure of Metal Hydride
	16.12 Applications of Metal Hydride
		16.12.1 Hydrogen Storage
		16.12.2 Thermochemical Devices
		16.12.3 Hydrogen Purification and Separation
		16.12.4 Hydrogen Gettering
		16.12.5 Hydrogen Sensor
		16.12.6 Switchable Mirror
		16.12.7 Electrochemical Application
		16.12.8 Isotope Separation
	16.13 Conclusion
	References
17 Synthesis Strategies for Si-Based Advanced Materials and Their Applications
	17.1 Introduction
	17.2 Synthesis of Small Silane Molecules
		17.2.1 Trichlorosilane
		17.2.2 Tetrachlorosilane
		17.2.3 Dichlorosilane
		17.2.4 Silane (SiH4)
		17.2.5 Application of Chlorosilane
	17.3 Organosilane
		17.3.1 Formation of Alkyl Chlorosilane
		17.3.2 Preparation of Alkoxysilane
		17.3.3 Acetoxysilanes
		17.3.4 Organofunctional Silane
	17.4 Silicone
		17.4.1 Direct Synthesis Method
		17.4.2 Application
	17.5 Polysilane
		17.5.1 Synthesis: Wurtz-Type Coupling of Dichlorosilanes
		17.5.2 Other Than Wurtz-Type Reaction
		17.5.3 Applications
	17.6 Silicene
		17.6.1 Synthesis of Silicene
		17.6.2 Applications
	17.7 Conclusions
	References
18 Synthesis and Processing of Li-Based Ceramic Tritium Breeder Materials
	18.1 Introduction
		18.1.1 Global Energy Demand and Role of Thermonuclear Fusion
	18.2 Nuclear Fusion as an Energy Source
		18.2.1 Conceptual Design of a Fusion Reactor
	18.3 International Thermonuclear Experimental Reactor (ITER)
		18.3.1 Necessity of Tritium Breeding for Fusion Reactor
	18.4 Concept of Tritium Breeding
		18.4.1 Breeding Blankets
		18.4.2 Prospective Li-Based Ceramic Tritium Breeding Materials
	18.5 Phase Diagrams of Li-Based Ceramic Tritium Breeders
		18.5.1 Lithium Titanate (Li2TiO3)
		18.5.2 Lithium Zirconate (Li2ZrO3)
		18.5.3 Lithium Aluminate (LiAlO2)
		18.5.4 Lithium Orthosilicate (Li4SiO4)
		18.5.5 Processing of Tritium Breeding Materials
	18.6 Powder Synthesis
		18.6.1 Solid-State Synthesis Method
		18.6.2 Wet Chemical Methods
		18.6.3 Solution Combustion Synthesis (SCS)
		18.6.4 Sol-gel Synthesis
		18.6.5 Hydrothermal Method
		18.6.6 Consolidation and Fabrication of Shapes
		18.6.7 Sintering
		18.6.8 Desired Microstructure of Sintered Tritium Breeder
	18.7 Challenges in Achieving Desired Microstructure
	18.8 Approaches to Sinterability Enhancement
	18.9 Comparison of Sinterability of Li-Based Ceramic Powders Synthesized by Different Methods
	18.10 Conclusion
	References




نظرات کاربران