دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: J. Klemes, R. Smith, J-K Kim سری: ISBN (شابک) : 1420077953, 9781420077957 ناشر: CRC Press سال نشر: 2008 تعداد صفحات: 1126 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Handbook of Water and Energy Management in Food Processing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب مدیریت آب و انرژی در فرآوری مواد غذایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد به بررسی تکنیکهایی برای بهبود بهرهوری مصرف آب و انرژی و همچنین تصفیه فاضلاب در صنایع غذایی میپردازد. مروری بر محرک های کلیدی برای مدیریت بهتر ارائه می دهد، سپس به ارزیابی مصرف آب و انرژی می پردازد. این کتاب روش های خوب خانه داری، اندازه گیری و کنترل فرآیند و همچنین نظارت و سیستم های پشتیبانی هوشمند را بررسی می کند. پس از بحث در مورد روشهای به حداقل رساندن مصرف انرژی، فصلها استفاده مجدد از آب و تصفیه فاضلاب را بررسی میکنند. متن با بررسی بخشهای صنعتی خاص، از جمله گوشت تازه و مرغ، غلات، شکر، نوشابههای غیرالکلی، آبجوسازی و شرابسازی به پایان میرسد.
This volume reviews techniques for improvements in the efficiency of water and energy use as well as wastewater treatment in the food industry. It provides an overview of key drivers for better management, then moves on to cover the assessment of water and energy consumption. The book reviews good housekeeping procedures, measurement, and process control as well as monitoring and intelligent support systems. After discussing methods to minimize energy consumption, the chapters explore water reuse and wastewater treatment. The text concludes with an examination of particular industry sectors, including fresh meat and poultry, cereals, sugar, soft drinks, brewing, and winemaking.
Front Matter......Page 1
Part VI. Water and Energy Minimisation in Particular Industry Sectors......Page 0
Table of Contents......Page 3
Preface......Page 15
Part I. Key Drivers to Improve Water and Energy Management in Food Processing......Page 29
1.1.2 Overview and Historical Perspective......Page 30
1.2.1 Development of the Modern Legislative Framework......Page 35
1.2.2 Implications of the Regulatory Trend......Page 36
1.2.3.1 Introduction......Page 37
1.2.3.2 Water Supply (Water Fittings) Regulations 1999......Page 38
1.2.3.3 The Control of Legionellosis......Page 39
1.2.3.4 Trade Effluent Discharges to Sewers......Page 40
1.2.3.5 Trade Effluent Charges......Page 42
1.2.3.6 Water Resources Act 1991......Page 44
1.3 Economic Drivers as an Alternative to Prosecution......Page 46
1.4.1 Corporate Level Policy......Page 47
1.4.2 Site-Level Policy......Page 48
1.5 Aspects of Boiler Management......Page 50
1.6 Generic Procedure for Assessing the Economics of Effluent Treatment and Water Reuse Projects......Page 51
1.7 Summary......Page 54
References......Page 55
2.1 Introduction......Page 56
2.2.1 Water Usage......Page 57
2.2.2 Effluent Discharges......Page 58
2.3.1 Water Costs......Page 59
2.3.3 Energy Costs......Page 60
2.4.1 Global Warming......Page 62
2.4.3 Environmental Pollution......Page 63
2.4.4 Water Shortages......Page 64
2.4.5 Water Efficiencies......Page 65
2.5.1 Minimisation at Source......Page 66
2.5.3 Water and Effluent Minimisation......Page 67
2.5.4 Water Recycling and Reuse......Page 69
2.5.5 Outlook......Page 70
References......Page 71
3.1 Introduction......Page 72
3.2.1 Classification of Waste Streams......Page 73
3.2.2.1 Meat and Poultry......Page 74
3.2.3 Solid Waste......Page 75
3.2.3.6 Sugar......Page 76
3.3.2 Non-Thermal Treatment......Page 77
3.3.3 Thermal Treatment......Page 78
3.3.4 Off-Gas Treatment......Page 79
3.4.2 Waste Treatment Cost Reduction......Page 82
3.4.2.1 Minimisation of Resources (Energy and Water)......Page 83
3.4.2.3 Energy Recovery Example......Page 84
3.4.3.3 CFD......Page 85
3.4.4.1 Successful Approach......Page 86
3.5.1 Integrated Equipment for Gas Waste Treatment......Page 87
3.5.1.1 From Idea to Industrial Application......Page 88
3.5.1.3 Experimental Facility and Measurement......Page 89
3.5.1.4 Industrial Applications......Page 90
3.5.3.2 Stage 1......Page 92
3.5.3.5 Project Outputs......Page 94
3.5.4.3 Pasteurisation of Sewage Sludge......Page 95
3.5.4.4 Other Possibilities for Utilisation of Sludge from WWTP......Page 98
3.5.4.5 Points to Consider in WWTP Specification......Page 99
3.6.1 Future Risk Prevention......Page 100
3.6.2 Performing LCA......Page 102
3.6.3 Efficient Application of the Existing LCA Methodology......Page 103
3.7.1 Regional Waste Centres......Page 104
3.7.2 Selection of Processes for Optimum Waste Processing......Page 105
Conclusions......Page 106
References......Page 107
Part II. Assessing Water and Energy Consumption and Designing Strategies for Their Reduction......Page 110
4.1 Introduction to Energy and Water Auditing......Page 111
4.1.1 Walk-through Audit......Page 113
4.1.3 Process Integration Analysis......Page 114
4.2 Process Mapping and Energy and Water Use Inventories......Page 115
4.2.1 Energy and Water Use Inventories......Page 116
4.2.2 Setting Up the Energy and Material Balance......Page 117
4.3.1 Reduce Water and Energy Demands at Source......Page 119
4.3.2.1 Heat Recovery......Page 122
4.3.3 Optimize Utility Systems Performance......Page 128
4.4.1 Evaluating the Benefits......Page 132
4.4.3 Economic Indicators......Page 134
Conclusion......Page 136
References......Page 137
5.1 Introduction......Page 139
5.2.1 Limiting Water Profile......Page 140
5.2.2 Targeting for Minimum Water Requirements......Page 142
5.2.3 Design of a Water Network......Page 143
5.2.3.2 Step 2: Set Up the Design Grid......Page 144
5.2.3.3 Step 3: Connect the Water Using Operations with the Water Mains......Page 145
5.2.3.4 Step 4: Merge the Water Using Operations......Page 146
5.3 Water Reuse and Recycling......Page 147
5.4 Process Changes for Water Minimisation......Page 150
5.5.1 Putting the Method into Practice......Page 152
5.5.2.1 Case Study 1......Page 155
5.5.2.2 Case Study 2......Page 156
5.6 Summary......Page 158
References......Page 160
6.1 Introduction: Energy Use in Food Processing......Page 162
6.2 Minimising Energy Use in Food Processing......Page 170
6.3 Energy Saving and Minimisation: Process Integration/Pinch Technology, Combined Heat and Power, Combined Energy and Water Minimisation......Page 171
6.4 Overview of Selected Case Studies......Page 182
6.5 Case Studies and Examples of Energy Saving Using Pinch Technology and Heat Integration......Page 183
6.6 Further Studies......Page 213
References......Page 222
7.1 Introduction......Page 226
7.2 Framework for Model Building and Optimisation......Page 227
7.3.2 Mathematical Formulation of Optimisation Problems......Page 228
7.4 Creating Models......Page 230
7.4.1.1 Analysis of Water Using Operations for Data Extraction......Page 231
7.4.1.2 Detailed Data Extraction......Page 232
7.4.1.3 Network and Topology Data Identification......Page 233
7.4.2 Mathematical Modelling (Constructing the Equations)......Page 234
7.4.3 Handling Complexity: Modular Approach to Modelling......Page 237
7.4.4 Evaluating Model Adequacy and Precision......Page 238
7.4.5.2 Other Approaches - Stochastic Search......Page 239
7.4.6 Applying Process Insight......Page 240
7.4.7.1 Trading-off Precision versus Linearisation......Page 241
7.5 Example: An Overview of an Industrial Case Study......Page 242
7.6.2 Analysing Water Use by Process Operations......Page 243
References......Page 245
8.1 Introduction......Page 247
8.1.1 Creating Conditions of the Efficient Energy Management......Page 248
8.1.2 The Production Site as a System......Page 249
8.1.3 Methods and Tools for Energy Management......Page 250
8.2 The Top-down Approach: From the Bill to the Production......Page 251
8.2.1 Energy Conversion and Distribution System......Page 252
8.2.2.1 Example: Cost Allocation Factors for a Refrigeration Unit......Page 255
8.2.2.2 Example: Cost Allocation Factors for a Reciprocating Engine......Page 256
8.2.3 Relating Distributed Energy Consumption to Production......Page 257
8.2.3.2 Modelling the Influence of Outside Air Conditions......Page 259
8.2.3.3 Example of Application......Page 261
8.3.1 Defining the Process Requirements......Page 262
8.3.1.1 Utility Requirement......Page 264
8.3.1.4 Cost Allocation of the Energy Requirement in the Unit......Page 266
8.3.2 Prioritizing the Units Considered in the Bottom-up Approach......Page 268
8.3.3 Process Integration......Page 269
8.3.4 Energy Conversion Integration......Page 272
8.4 Assessing the Energy Savings Options......Page 275
Conclusions......Page 277
Future Trends......Page 278
Acknowledgements......Page 279
References......Page 280
9.1.1 Batch Process Considerations......Page 282
9.2 Method for Water Use Minimization......Page 284
9.3 General Modeling Framework......Page 286
9.4.1 Batch Production Modeling Environment......Page 287
9.4.2 Water Stream Characterization......Page 289
9.4.3 Model Simplification......Page 292
9.4.4 Water Reuse System Model......Page 294
9.4.5.1 Level Profile......Page 296
9.4.5.2 Contaminant Concentration Profile......Page 297
9.5 Energy Integration Opportunities......Page 298
9.6 Solving the Model......Page 299
9.7.3 Water Reuse Network Cost......Page 300
9.7.4 Overall Water Network Costs......Page 301
9.8 Software Prototype......Page 302
9.9.1 Application to the Fruit Juice Industry......Page 303
9.9.1.2 Process Data......Page 304
9.9.1.3 Method Application......Page 306
9.9.2.1 General Process Description......Page 312
9.9.2.2 Process Data......Page 314
9.9.2.3 Method Application......Page 315
9.10 Final Considerations and Future Trends......Page 319
Nomenclature......Page 324
References......Page 328
10.1.1 Energy and Water System Interactions......Page 330
10.2 Literature Review on Simultaneous Energy and Water Minimisation......Page 333
10.3 Conceptual Understanding and Physical Insights......Page 337
10.4 Design Methodology......Page 342
10.4.1 Illustrating Example......Page 345
10.4.1.1 Targeting for Minimum Water and Energy Consumption......Page 346
10.4.1.3 Two-Dimensional Grid Diagram......Page 347
10.4.1.4 Design of Separate Systems......Page 348
10.5 Summary......Page 350
References......Page 354
Part III. Good Housekeeping Procedures, Measurement and Process Control to Minimise Water and Energy Consumption......Page 358
11.1.1 Towards Eco-Efficiency - A New Paradigm for Industry......Page 359
11.1.2 What are Good Housekeeping Measures?......Page 360
11.1.3 Water Use by Food Processors......Page 361
11.1.4 The True Value of Water......Page 362
11.2 Better Management Practices......Page 363
11.3 Monitoring Water Use......Page 365
11.4.1 Design to Promote Effective Cleaning......Page 367
11.4.2 Manual Cleaning......Page 368
11.4.2.1 Process Control......Page 370
11.4.3 Automated Cleaning......Page 372
11.4.3.1 Spray Systems......Page 375
11.5.1 Cooling Towers......Page 376
11.6 Auxiliaries......Page 380
11.7.1 Conveying......Page 382
11.7.4 Blanching and Cooking......Page 383
11.7.6 Evaporators......Page 384
11.8 Trends in Food Processing......Page 385
References......Page 388
12.2 Reducing Cleaning Requirements to Save Energy......Page 391
12.3 Reducing Waste to Save Energy......Page 393
12.4.1 Boilers......Page 395
12.4.1.2 Cleaning of Boilers and Monitoring of Stack Temperatures to Improve Energy Efficiency......Page 396
12.4.1.3 Monitor Flue Gas Composition and Repair Air Leaks to Optimise Combustion Efficiency and Reduce Emissions......Page 397
12.4.1.4 Match Steam with Supply Demand to Improve Boiler Efficiency......Page 398
12.4.1.6 Optimise Blowdown to Reduce Energy Loss......Page 399
12.4.2.1 Reduce the Area and Amount of Refrigeration Required......Page 400
12.4.2.3 Minimising the Temperature Difference and Regular Cleaning of Evaporators and Condensers......Page 401
12.4.3.1 Fix Air Leaks and Optimise Air Pressure......Page 402
12.4.4.1 Regularly Service and Maintain Motors......Page 403
12.4.6.2 Efficient Operation of the System to Conserve Energy......Page 404
12.5 Future Trends......Page 405
References......Page 408
13.1 Introduction......Page 411
13.2 Measurements and Sensors in the Food Industry......Page 413
13.2.1.1 Temperature......Page 414
13.2.1.5 pH......Page 415
13.2.1.10 Nitrogen, Ammonia......Page 416
13.2.2.1 Biochemical Oxygen Demand......Page 417
13.3.1 Definition and Structure of the Control Problem......Page 418
13.2.2.1 Basics in Feedback Control......Page 420
13.2.2.2 Model Building and System Identification......Page 421
13.2.2.3 PID Control Algorithm......Page 423
13.2.2.4 PID Controller Tuning......Page 424
13.2.2.7 Multivariable Control......Page 425
13.2.2.9 Controllability Analysis......Page 426
13.3.3.1 Milk Pasteurization......Page 427
13.3.3.2 Falling Film Evaporation......Page 428
13.4 System Integration......Page 430
13.4.1 Component Interactions in Integrated Control Systems for Water and Energy Management in the Food Industry......Page 431
13.4.2 Industrial Automatic Control Systems for Water and Energy Use in the Food Industry......Page 432
13.4.2.1 SCADA - Current Status......Page 433
13.4.2.3 Differences between SCADA and DCS Architecture......Page 434
13.4.2.6 Flexible Communication Architecture......Page 435
13.4.2.8 Smart Remote Terminal Units......Page 436
13.4.4 Process Control Solutions and Guidelines......Page 437
Conclusions and Future Trends - Sources of Further Information and Advice......Page 438
References......Page 440
14.1 Introduction......Page 443
14.2 Intelligent Systems for Process Operation Support......Page 444
14.3 Diagnostics......Page 445
14.4 Monitoring for Better Control......Page 447
14.5 Agent-Based Monitoring......Page 448
14.7 Links with Life-Cycle Management......Page 449
14.8 Monitoring and Analysis......Page 450
14.9 Monitoring and Forecasting for Energy Efficiency Improvement......Page 454
14.10 Tendencies......Page 455
14.11 Application of Monitoring and Intelligent Support for Decision Making......Page 457
14.12.1 Maximising Efficiency......Page 458
14.12.2 Brewery Case Study......Page 459
14.13.1 Introducing a Business Management Flavour......Page 461
14.13.1.1 Financial Risk Monitoring......Page 462
14.13.3 Case Study......Page 463
14.13.4 Design Schedule Guidelines......Page 466
14.14 Concluding Remarks......Page 467
References......Page 468
Part IV. Methods to Minimise Energy Consumption in Food Processing, Retail and Waste Treatment......Page 471
15.1 Introduction......Page 472
15.3 Refrigeration System Efficiency......Page 473
15.4.1 Compressors......Page 476
15.4.2 Evaporators and Condensers......Page 478
15.4.5 Defrosting......Page 479
15.4.8 Contamination of Refrigeration Systems......Page 481
15.5 Efficiency of Heat Extraction from Food and Temperature Maintenance during Storage......Page 482
15.5.1 Chilling and Freezing......Page 483
15.5.2 Storage......Page 487
15.6.1 Insulation, Transmission......Page 488
15.6.2 Doors......Page 489
15.6.4 People and Machinery......Page 490
15.7 Life-Cycle Costs and Analysis......Page 491
15.8 Energy Target and Monitoring......Page 492
15.9 Energy Minimisation through Integrated Heating and Cooling Systems......Page 494
15.9.1.3 Biogas from Process Waste and CHP......Page 495
15.9.2 CO_2 Systems......Page 496
15.9.3 Air Cycle......Page 498
15.10 Future Trends......Page 501
References......Page 502
16.1 Introduction......Page 504
16.2 General Energy Accounting Methods......Page 506
16.3 Drying......Page 509
16.3.1 Thermal Efficiency Parameters......Page 510
16.3.2 New Drying Installation......Page 513
16.3.2.1 Reduction of the Evaporation Load and the Preparation of the Wet Feed......Page 514
16.3.2.2 Pre-Heating of the Wet Feed......Page 515
16.3.2.3 Selection of a New Energy-Effective Dryer......Page 516
16.3.2.4 Sun and Solar Drying......Page 519
16.3.2.6 Other Modern Methods......Page 522
16.3.3.2 Heat Pump Applications......Page 523
16.3.3.4 Reduction of Heat Losses by Partial Recycling of the Exhaust Air......Page 524
16.3.3.7 Insulation against Thermal Loss......Page 525
16.4 Baking......Page 526
16.4.1 Specific Energy Consumption......Page 528
16.4.2 Energy Supplied vs. Energy Used......Page 531
16.4.3 Improvement of Energy Performance in Existing Baking Ovens......Page 533
16.4.3.1 Optimization of Baking Cycles......Page 534
16.4.3.2 Increasing Convection in Baking Ovens......Page 535
16.5 Evaporation......Page 536
16.5.1 Concentration......Page 537
16.5.2 Vaporization......Page 539
16.6 Final Remarks - Sources of Further Information and Advice......Page 540
References......Page 541
17.1.2 Canning Fundamentals and Economics of the Process......Page 546
17.2 Retort Operation......Page 549
17.3 Modeling and Optimization of Energy Consumption......Page 550
17.3.1 Model Development......Page 553
17.3.1.1 Mathematical Model for Food Material......Page 554
17.3.1.2 Mass and Energy Balance during Venting......Page 555
17.3.1.3 Mass and Energy Consumption between Venting and Holding Time (to Reach Process Temperature)......Page 556
17.3.1.4 Mass and Energy Balance during Holding Time......Page 558
17.4.1 Simultaneous Sterilization Characterization......Page 559
17.5 New Package Systems and Their Impact on Energy Consumption......Page 560
17.6 Future Trends......Page 562
Nomenclature......Page 563
References......Page 564
18.1 Introduction......Page 567
18.2.1 What Sector Characteristics Influence the Feasibility of Heat Recovery?......Page 568
18.2.2 Where Does the Sector Need Heat?......Page 570
18.2.3.2 Boiler Plant......Page 571
18.3 Recovering Waste Heat at Source......Page 572
18.4.1 Use within the Process......Page 574
18.4.2 Use within Another Process......Page 575
18.5 The Site Survey - Quantifying Waste Heat......Page 576
18.5.2 Data......Page 577
18.6 Types of Heat Recovery Equipment......Page 578
18.6.1.2 Rotating Regenerator......Page 581
18.6.1.6 Tubular Recuperators......Page 582
18.6.3.1 Shell-and-Tube (S&T) Heat Exchanger......Page 583
18.6.4.2 Vapour Compression Cycle Heat Pumps......Page 584
18.7 Heat/Cold Storage (or Thermal Energy Storage - TES)......Page 585
18.9.1 A Heat Exchanger......Page 586
18.9.2 A Heat Pump......Page 588
18.10 Summary......Page 591
References......Page 592
19.2.1 Theory......Page 593
19.2.2 Type of Fouling Mechanisms......Page 595
19.2.3 Impact of Fouling on Heat Transfer Equipment......Page 596
19.3.1 Tubular Heat Exchangers......Page 598
19.3.2 Plate Heat Exchangers......Page 599
19.4.1 Fouling of Dairy Products......Page 601
19.4.2.1 The Case of Plain and Enhanced Tubes......Page 603
19.4.2.2 The Case of Compact Welded Heat Exchangers......Page 604
Nomenclature......Page 605
References......Page 606
20.1 Introduction......Page 608
20.2.1 Types of Refrigeration Systems in Supermarkets......Page 610
20.3 Recent Research and Development to Reduce the Environmental Impacts of Supermarket Refrigeration Systems......Page 613
20.3.1 Experiences in the USA......Page 614
20.3.3 Experiences in Denmark......Page 617
20.3.4 Experiences with Secondary Refrigeration Systems in the UK......Page 620
20.4 CO_2 Refrigeration Systems for Supermarket Applications......Page 622
20.4.1 Sub-Critical CO_2 Systems......Page 623
20.4.2 Transcritical CO_2 Systems......Page 625
20.5.1 CO_2 Systems......Page 627
20.5.3 Demand-Side Management and System Integration......Page 628
20.5.4 Refrigerated Display Cabinets......Page 629
Conclusions......Page 631
Acknowledgements......Page 632
References......Page 633
21.1 Introduction......Page 635
21.3 Thickening......Page 636
21.4.1 Belt Filter Press......Page 637
21.4.2 Screw Press Dewatering......Page 638
21.4.3 Rotary and Centrifugal Presses......Page 639
21.4.5 Hydraulic Press......Page 640
21.4.6 Electro-Osmotic Dewatering......Page 641
21.5.2 Ultrasonic and Vibrations......Page 643
21.6 An Environmental and Economic Choice......Page 644
Conclusion and Future Trends......Page 645
References......Page 646
Part V. Water Reuse and Wastewater Treatment in the Food Industry......Page 650
22.1 Introduction......Page 651
22.2 Future Trends......Page 652
22.3 Water Supply......Page 653
22.3.2 Cooling Water......Page 654
22.4 Feedwater Pre-Treatment Processes......Page 655
22.4.1 Removal of Organic Matter......Page 656
22.4.2 Removal of Colour, Odour and Taste......Page 657
22.4.3 Degasification......Page 658
22.4.4 Water Desalination......Page 659
22.4.5 Water Softening (and Decarbonisation)......Page 662
22.4.6 Microbiological Factors and Disinfection......Page 663
22.4.7 Water Storage and Distribution......Page 664
22.5 Summary......Page 665
References......Page 667
23.1 Introduction......Page 669
23.3 Water in Food Processing Plants......Page 670
23.4 Water Recycling Technologies......Page 671
23.5 Water Purity Standards......Page 673
23.6.2 Rinsing Water......Page 674
23.6.5 Others......Page 675
23.7.2 Wet Cleanup......Page 676
23.7.6 Process Integration......Page 677
23.8 Designing a Water Recycling Scheme......Page 678
23.10.1 Case Study 1: Dairy Processing Wastewaters in India......Page 680
23.10.2 Case Study 2: Fish Meal Processing Wastewaters in Chile......Page 681
23.10.3 Case Study 3: Fruit Juice Processing Wastewaters in Germany......Page 682
Conclusions and Future Trends......Page 683
References......Page 684
24.1 Introduction......Page 685
24.2.1 Microfiltration......Page 686
24.2.3 Nanofiltration (NF)......Page 687
24.2.4.1 Transfer Rate......Page 688
24.2.4.2 Concentration Polarization Layer and Cake Layer......Page 689
24.2.4.3 Mass Transfer Rates through Membrane with Fouling......Page 693
24.2.5 Reverse Osmosis......Page 695
24.2.5.1 Mass Transport......Page 696
24.2.6 Pervaporation......Page 697
24.2.6.1 Mass Transfer Rate......Page 698
24.2.7 Membrane Contactors......Page 700
24.2.8.1 Wastewater Treatment......Page 702
24.2.9.1 Wastewater Treatment......Page 703
24.3 Membrane Bioreactor......Page 704
24.4 Biofilm Membrane Bioreactor......Page 708
24.5.1.1 Biological Treatment of Wastewater......Page 709
24.5.2 Treatment of Winery Wastewater......Page 711
Conclusions and Future Trends......Page 712
Acknowledgement......Page 715
Appendix......Page 716
References......Page 717
25.1 Introduction......Page 722
25.2.1 Reactor Design......Page 723
25.2.2 Chemical Disinfectants......Page 724
25.2.3 Physical Disinfectants......Page 725
25.2.4 Reactor Scale-up......Page 726
25.2.5 Modeling Chemical Disinfection......Page 729
25.2.6 Modeling Physical Disinfection......Page 731
25.3 Chemical and Physical Disinfection......Page 732
25.3.2 Chloramination......Page 733
25.3.4 Ozone......Page 734
25.3.5 Ultraviolet Disinfection......Page 736
25.4 Future Trends......Page 738
References......Page 740
26.1 Introduction......Page 742
26.2.1 Potato Processing Wastewater......Page 743
26.2.2 Brewery Wastewater......Page 746
26.2.3 Milk Processing Wastewater......Page 748
26.2.4 Meat Processing Wastewater......Page 751
26.2.5 Poultry Processing Wastewater......Page 754
26.2.6 Rendering Processing Wastewater......Page 756
26.2.7 Shellfish and Fish Processing Wastewater......Page 757
26.3 Aerobic Treatment......Page 758
26.3.1 Activated Sludge Processes......Page 759
26.3.2.1 Trickling Filters......Page 765
26.3.2.2 Rotating Biological Contactors......Page 766
26.3.3 Controlling Factors for Aerobic Treatment Processes......Page 768
26.3.4 Cost......Page 770
26.4 Future Trends......Page 771
References......Page 774
27.1 Introduction......Page 777
27.2.2 Piggery Waste......Page 778
27.3.1 Principles of Anaerobic Treatment......Page 779
27.3.2 Anaerobic Digestion......Page 781
27.3.2.1 Odor Reduction......Page 782
27.4 Types of Anaerobic Treatment for Food Processing Wastewater......Page 783
27.4.1 Anaerobic Lagoons......Page 784
27.4.2 Complete Mix Digesters......Page 785
27.4.3 Plug-Flow Digesters......Page 786
27.4.4 Up-Flow Anaerobic Sludge Blanket......Page 787
27.4.5 Anaerobic Fixed-Film Reactors......Page 788
27.5.2 Solids Retention Time......Page 789
27.5.5 pH and Alkalinity......Page 790
27.6 Modelling of the Anaerobic Process for Food Processing Wastewater......Page 791
27.7.2 Hydrogen Gas and Electricity Production......Page 793
References......Page 795
28.1 Introduction......Page 798
28.2.1.3 Odor......Page 799
28.2.2 Organic Content......Page 800
28.2.2.2 Chemical Oxygen Demand......Page 802
28.3 Primary Treatment......Page 803
28.3.2 Sedimentation......Page 804
28.3.4 Separation of Oil and Grease......Page 805
28.4 Biological Treatment......Page 806
28.4.1.1 Activated Sludge Systems......Page 807
28.4.1.2 Aerated Lagoons......Page 809
28.4.1.3 Stabilization/Polishing Ponds......Page 810
28.4.1.4 Trickling Filters......Page 811
28.4.1.5 Rotating Biological Contactors......Page 812
28.4.2.1 Conventional Anaerobic Digesters......Page 813
28.4.2.2 Anaerobic Contact Processes......Page 814
28.5.1 Coagulation - Flocculation......Page 815
28.5.2 Electro-Coagulation......Page 816
28.5.3.1 Chlorination......Page 817
28.6 Land Application of Seafood Wastewater......Page 818
28.7 Future Trends......Page 820
References......Page 821
Part VI. Water and Energy Minimisation in Particular Industry Sectors......Page 824
29.1 Introduction......Page 825
29.2.2 Water Balance......Page 826
29.2.3 Energy-Using Processes......Page 827
29.3.1 Water Minimisation Options......Page 829
29.3.2 Water Reuse and Recycling Options......Page 831
29.3.3 Future Trends......Page 833
References......Page 835
30.1.1 Description of the Processes Involved......Page 836
30.1.2 Energy Uses within the Industry......Page 837
30.1.3 Water Uses within the Industry......Page 841
30.2 Current Water and Energy Use: How Much Water and Energy is Used and Why......Page 842
30.3.1 Measurements of Water Use and Quality......Page 844
30.3.3 Energy and Water Strategies......Page 845
30.4.1 Transport Issues......Page 847
30.4.4 Processing Energy......Page 848
30.4.5 Machinery Energy......Page 849
30.4.6 Energy for Running Chilling Operation......Page 850
30.5.1 Waste Management Processes......Page 851
30.5.2 Obtaining Energy from Wastes and Renewable Sources......Page 852
30.6.1 Biosecurity Issues......Page 853
30.6.3 Use of Water in Transport Flumes......Page 854
30.7.1 Factory Cleaning Procedures and Recycled Water......Page 855
30.7.2 Waste Management and Water Recycling......Page 856
Conclusions......Page 858
References......Page 860
31.1 Introduction......Page 862
31.2.1 Wheat Flour Milling......Page 865
31.2.3 Maize Milling and Maize Starch Processing......Page 868
31.2.4 Barley Processing (Malting and Brewing)......Page 869
31.2.6 Bread, Biscuits and other Flour-Based Foods......Page 870
31.2.7 Breakfast Cereals......Page 871
31.2.8 Pasta......Page 872
31.3 Mixing, Baking, Drying and Cooling of Farinaceous Products......Page 873
31.4 Corn Wet Milling and Starch Processing......Page 874
31.4.1 Heat Recovery and Electricity Integration......Page 875
31.4.3 Waste Reuse......Page 877
31.5 Future Trends......Page 878
References......Page 879
32.1 Introduction......Page 883
32.2 Sugar Production from Sugar Beet and Sugar Cane......Page 884
32.3 Identification of Opportunities to Improve Energy and Water Use in Sugar Production......Page 885
32.4 Energy and Water Minimisation: Process Integration/ Pinch Technology and other Optimisation Techniques......Page 888
32.5.1 Problem Statement......Page 889
32.5.2 Targeting and Retrofit Design......Page 890
32.5.3 Application Example......Page 892
32.6.1 Problem Statement......Page 895
32.6.3 Application Example......Page 897
32.7 Future Trends......Page 901
References......Page 903
33.2 The Sugar Industry......Page 905
33.2.2 The Procedures of Thermal Process Engineering......Page 906
33.2.3 The Link between Evaporating and Heating......Page 908
33.3.1 Technological Reasons......Page 910
33.3.3 Evaporating......Page 911
33.5 Heat Losses......Page 912
33.6.1 Heating in Steps......Page 913
33.6.2 Heat Integration......Page 914
33.7 Evaporation......Page 915
33.7.1 Multistage Evaporation......Page 916
33.7.4 Utilisation of Waste Energy......Page 917
33.8.2 Convective Drying......Page 918
33.9.1 Technical Limits......Page 919
33.10 Output/Input Ratio......Page 920
33.11 Future Trends......Page 921
References......Page 922
34.1 Introduction......Page 924
34.2 Current Trends in Wastewater Minimization in the Continuous Processing Industry......Page 925
34.3 Current Trends in Wastewater Minimization in the Batch Processing Industry......Page 926
34.4 Background on Water Usage in Soft Drinks Industries......Page 928
34.5 Case Study 1: Case Study on Amalgamated Beverage Industries (ABI), South Africa......Page 929
34.5.1 General Overview of the Facility......Page 930
34.5.2.2 Phase 2: Screening of Critical Water Savings Projects for Possible Implementation......Page 933
34.5.2.3 Phase 3: Implementation of Identified Projects......Page 935
34.5.2.4 Phase 4: Continuous Monitoring and Identification of More Opportunities......Page 936
34.6.1 Background on the Factory......Page 938
Conclusions......Page 941
References......Page 946
35.1 Introduction......Page 949
35.2.1 Brewing Industry......Page 952
35.2.1.1 Water and Wastewater......Page 955
35.2.1.2 Spent Grain......Page 956
35.2.1.4 Kieselguhr Sludge......Page 957
35.2.2.1 Winery Wastewater......Page 958
35.2.2.2 Winery Stillage......Page 962
35.2.3 Distilling Industry......Page 963
35.2.3.1 Spent Wash from the Distillation Column......Page 964
35.2.3.2 Wastewaters with Very Low Solids Contents......Page 969
35.3 Most Widely Used Treatment Methods: Livestock Feed, Discharge, Anaerobic and Aerobic Treatments, Incineration......Page 970
35.3.1 Livestock Feed......Page 972
35.3.2.1 Direct Land Application......Page 973
35.3.2.2 Concentration and Land Application as Fertiliser......Page 974
35.3.2.3 Composting......Page 976
35.3.3 Anaerobic Digestion......Page 977
35.3.3.1 Digestion Conditions......Page 979
35.3.3.2 Biodigestion Technology......Page 980
35.3.3.3 Energy Optimisation......Page 983
35.3.4 Aerobic Treatment......Page 984
35.3.5.2 Degrading the Colouring and Recalcitrant COD by Micro-Organisms......Page 985
35.3.5.3 Decolouration by Ozonation and/or Oxidative Treatment......Page 986
35.3.5.6 Coupling Anaerobic Digestion with Thermal Evaporation......Page 987
35.3.6 Incineration......Page 988
35.4 Alternative Treatments and Re-Engineering Processes with the Best Available Techniques (BAT) Approach: Industrial Reality and Alternative Treatments......Page 989
35.4.1.2 Extraction of Specific Molecules or Compounds......Page 991
35.4.1.3 Loss Reduction with Ultra and Microfiltration......Page 993
35.4.1.4 Process Modification with Ultra and Microfiltration......Page 994
35.4.2.1 Regenerable Filter-Aids......Page 997
35.4.2.2 Bioproduction of Added-Value Molecules......Page 998
35.4.2.3 Extraction of Specific Compounds......Page 1000
Acknowledgements......Page 1002
References......Page 1003
A......Page 1016
B......Page 1021
C......Page 1027
D......Page 1039
E......Page 1045
F......Page 1053
G......Page 1057
H......Page 1059
I......Page 1065
K......Page 1068
L......Page 1069
M......Page 1072
N......Page 1083
O......Page 1084
P......Page 1087
Q......Page 1095
R......Page 1096
S......Page 1102
T......Page 1113
U......Page 1118
V......Page 1120
W......Page 1121
Z......Page 1126