ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Vascular Motion

دانلود کتاب کتاب راهنمای حرکت عروقی

Handbook of Vascular Motion

مشخصات کتاب

Handbook of Vascular Motion

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0128157135, 9780128157138 
ناشر: Academic Press 
سال نشر: 2019 
تعداد صفحات: 392 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 51 مگابایت 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 15


در صورت تبدیل فایل کتاب Handbook of Vascular Motion به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای حرکت عروقی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهنمای حرکت عروقی



راهنمای حرکت عروقی مروری جامع از استراتژی‌ها و روش‌ها برای تعیین کمیت حرکت عروقی و تغییر شکل‌های مربوط به طراحی دستگاه قلبی عروقی و ارزیابی دوام مکانیکی ارائه می‌دهد. همچنین وضعیت فعلی دانش تخت‌های عروقی را که برای صنعت تجهیزات پزشکی مهم هستند، توضیح می‌دهد. در نهایت، کاربرد حرکت عروقی را برای شبیه‌سازی‌های محاسباتی، آزمایش روی میز و تحلیل خستگی، و همچنین پیامدهای بیشتر بر نتایج بالینی، توسعه محصول و تجارت را بررسی می‌کند.

  • روش هایی را برای تعیین کمیت حرکت عروقی و تغییر شکل ها از جمله انتخاب داده هایی که باید جمع آوری شود، تصویربرداری پزشکی مرتبط، پردازش تصویر، مدل سازی هندسی، و تکنیک های کمی سازی تغییر شکل را شرح می دهد
  • شامل تغییر شکل های بستر عروقی با اهمیت ویژه است. در دستگاه های پزشکی از جمله عروق کرونر و قلب، سرخرگ های سر و گردن، آئورت قفسه سینه و شاخه های قوس، آئورت شکمی و شاخه های احشایی، شریان های اندام تحتانی، ورید اجوف تحتانی و وریدهای اندام تحتانی
  • توضیح می دهد که چگونه برای تبدیل تغییر شکل‌های خام به شرایط مرزی مناسب برای ارزیابی دوام، نمونه‌هایی از استفاده از این اطلاعات برای شبیه‌سازی‌های محاسباتی، آزمایش روی میز و تحلیل خستگی ارائه می‌کند و نمونه‌هایی از چگونگی تأثیر حرکت عروقی بر نتایج بالینی، توسعه محصول و تجارت را نشان می‌دهد
  • < /ul>

توضیحاتی درمورد کتاب به خارجی

Handbook of Vascular Motion provides a comprehensive review of the strategies and methods to quantify vascular motion and deformations relevant for cardiovascular device design and mechanical durability evaluation. It also explains the current state of knowledge of vascular beds that are particularly important for the medical device industry. Finally, it explores the application of vascular motion to computational simulations, benchtop testing and fatigue analysis, as well as further implications on clinical outcomes, product development and business.

  • Describes methods to quantify vascular motion and deformations including choosing what data to collect, relevant medical imaging, image processing, geometric modeling, and deformation quantification techniques
  • Includes deformations for vascular beds of particular importance in medical devices including the coronary arteries and heart, arteries of the head and neck, thoracic aorta and arch branches, abdominal aorta and visceral branches, lower extremity arteries, inferior vena cava, and lower extremity veins
  • Explains how to convert raw deformations into boundary conditions suitable for durability evaluation, provides examples of using this information for computational simulations, benchtop testing, and fatigue analysis, and illustrates examples of how vascular motion affect clinical outcomes, product development, and business


فهرست مطالب

Cover
Handbook of Vascular Motion
Copyright
Dedication
List of Contributors
Foreword
Endorsements
Part I: Tools for Quantifying Vascular Motion
1 Introduction
	Do Blood Vessels Move?
	Absence of Evidence is Not Evidence of Absence
	Importance of Vascular Motion
2 Deciding What Vascular Motions You Need
	Function and Accommodation
	Indication and Patient Population
	Cardiac Pulsatility
	Respiration and Valsalva
	Musculoskeletal Influences
	Body Position and Gravity
	Don’t Reinvent the Wheel
	Animal Studies
	Cadaver Studies
	Clinical Studies
	Outside Partners
	Conclusion
	Reference
3 Medical Imaging Modalities and Protocols
	Medical Imaging Modalities
		X-Ray Transmission
		Acoustic and Light Reflection
		Magnetic Resonance
		Radiation Emission
	Imaging Based on Target
	Imaging Based on Type of Motion
	Imaging Based on Timescale and Periodicity
	Medical Imaging Protocols
		Contrast Injection and Acquisition Timing
		Computed Tomography Imaging Parameters
		Risk/Benefit
		Patient Recruitment and Imaging Challenges
	Conclusion
	References
4 Geometric Modeling of Vasculature
	Imaging Processing Software
	Image Format and Viewing
	Image Segmentation and Editing
	Centerline Extraction
	Optimization of Geometric Modeling
	Identifying Branch Vessel Ostia
	Model Coregistration
	Vessel Surface Modeling
	Conclusion
	References
5 Quantifying Vascular Deformations
	Defining and Utilizing Fiducial Markers
	Cross-Sectional Deformation
	Axial Length Deformation
	Bending Deformation
	Branch Angle Deformation
	Axial Twist Deformation
	Surface Curvature Deformation
	Conclusion
	References
Part II: How the Blood Vessels Move
6 Coronary Arteries and Heart
	Coronary ANATOMY
	Coronary Artery Cross-Sectional Deformations
	Coronary Artery Axial, Bending, Twisting, and Bifurcation Angle Deformations
	Cardiac Anatomy
	Direct Measurement of Myocardial Motion and Deformation
	Myocardial Deformation Estimated From Coronary Artery Motion
	Aortic Valve Motion and Deformation
	Conclusion
	References
7 Arteries of the Head and Neck
	Carotid Artery Anatomy
	Carotid Artery Motion from Cardiac Pulsatility
		Carotid Artery Diameter Changes
		Longitudinal Motion of the Carotid Artery
	Carotid Artery Motion from Musculoskeletal Movement with and without Medical Devices
	Vertebrobasilar Artery Anatomy
	Vertebrobasilar Artery Motion from Natural Musculoskeletal Movement
	Vertebrobasilar Artery Motion from Manipulation
	Vertebrobasilar Artery Motion Due to Medical Devices
	Conclusion
	References
8 Thoracic Aorta and Supra-Aortic Arch Branches
	Anatomy of Thoracic Aorta
		Thoracic Aorta
		Supra-Aortic Arch Branches
	Geometric Analysis Methods
	Pathologies of the Thoracic Aorta
		Thoracic Aortic Aneurysm
		Aortic Dissection
	Thoracic Aortic Deformations
		Native Thoracic Aortic Deformations
		Morphologic Alterations Due to Thoracic Aortic Endograft Placement
		Deformation Alterations Due to Thoracic Aortic Endograft Placement
		Long-Term Aortic Remodeling
	Pathologies of the Aortic Arch and Supra-Aortic Arch Branches
		Thoracic Outlet Syndrome
		Supra-Aortic Branch Vessel Aneurysm
		Aortic Arch Dissection
	Supra-Aortic Arch Branch Vessel Deformations
		Native Supra-Aortic Arch Branch Vessel Deformations
		Musculoskeletal Influences (Thoracic Outlet Syndrome)
		Morphologic Alterations Due to Thoracic Aortic Endograft Placement
	Conclusion
	References
9 Abdominal Aorta and Renovisceral Arteries
	Anatomy of Abdominal Aorta
		Abdominal Aorta
		Renovisceral Arteries
	Geometric Analysis Methods
	Pathologies of the Abdominal Aorta
	Abdominal Aortic Deformations
		Cardiac Pulsatility Before and After Endograft Placement
		Musculoskeletal Influences
		Long-Term Aortic Remodeling after Endograft Placement
	Pathologies of the Renovisceral Arteries
	Renovisceral Artery Deformations
		Native Renovisceral Artery Motion
		Renovisceral Artery Motion after Complex Endovascular Abdominal Aortic Repair
		Acute and Long-Term Morphologic Alterations Due to Complex Endovascular Abdominal Aortic Repair
	Conclusion
	References
10 Lower Extremity Arteries
	Iliac Artery
		Anatomy
		Motion From Pulsatility
		Motion From Musculoskeletal Movement
		Motion From External Influences
	Femoropopliteal Artery
		Anatomy
		Motion from Pulsatility
		Native Artery Deformations from Musculoskeletal Movement
		Stented Artery Deformations from Musculoskeletal Movement
		Cross-Sectional Compression
	Tibial Arteries
		Anatomy
		Tibial Artery Motion
	Conclusion
	References
11 Veins of the Upper Body
	Upper Body Venous Anatomy
	Changes in Venous Anatomy With Posture
	Respiration and Its Effects on Venous Caliber
	Pathological Conditions and Venous Devices
	Central Line Movements With Respiration and Postural Change
	Deep Versus Superficial Fixation and the Effects of Body Habitus
	Complications of Device Placement
	Upper Limb Deep Venous Thrombosis
	Challenges of Vascular Access for Renal Replacement Therapies
		Arteriovenous Fistulae
		Arteriovenous Grafts
		Central Venous Catheters
	Conclusion
	References
12 Inferior Vena Cava and Lower Extremity Veins
	Veins versus Arteries
	Inferior Vena Cava and Renal Veins
		Anatomy and Pathology
		Inferior Vena Cava Motion with Respiration
		Inferior Vena Cava Motion with Valsalva and Other Influences
		Nutcracker Syndrome
	Iliofemoral Veins
		Anatomy and Pathology
		Iliac Vein Deformation with Respiration and Valsalva
		Iliac Vein Compression from External Structures
		Iliofemoral Vein Deformation with Hip Joint Movement
	Femoropopliteal Veins
		Anatomy and Pathology
		Common Femoral Vein Deformations with Posture, Respiration, and Calf Contraction
		Femoropopliteal Vein Deformations from Musculoskeletal Influences
	Conclusion
	References
Part III: Utilizing Vascular Motion Data and Implications
13 Developing Boundary Conditions for Device Design and Durability Evaluation
	Choosing Deformation Metrics
	Sample Statistics
	Defining the Duty Cycle
		Diametric Deformation Example
		Axial Length Deformation Example
		Bending Deformation Example
			Walking
			Stair-Climbing
		Other Deformations and Considerations
	Number and Frequency of Cycles
	Goldilocks Zone
	Conclusion
	References
14 Device Design and Computational Simulation
	Since the Dawn of Stent Engineering
	Rapid Change
	The Product Development Process
	The Discovery Cycle
	Inspiration
	Goals and Constraints
	Engineering
	Fabrication
	Design Control and Engineering Specifications
	Simulation
	Finite Element Analysis
	Feasibility Screening
	Prototype and Test
	Conclusion
	References
15 Evaluation of Mechanical Fatigue and Durability
	Principles of Fatigue and Durability Assessment
	Cardiovascular Implant Analysis and Testing Methods
	Case Study 1: Balloon-Expandable Stent
	Case Study 2: Nitinol Self-Expanding Stent
		Cardiac Pulse Pressures
		Musculoskeletal and Respiratory Motions
	Case Study 3: Structural Heart Implant Device
	Conclusion
	References
16 Clinical Implications of Vascular Motion
	Clinical Consequences of Coronary Stent Fracture
	Clinical Consequences of Lower Extremity Artery Stent Fracture
	Clinical Consequences of Early Aortic Endograft Failures
	New Endografts: Are We Reliving Past Problems?
	Postimplantation Surveillance for Device Failure
		Example of Endovascular Aneurysm Repair
		Example of Percutaneous Coronary Intervention
		Conclusions on Surveillance Testing for Device Failure
	Conclusion
	References
17 Product Development and Business Implications
	The Endurant Evo Experience
		So Close
		Transition Stent Fractures
		Root Cause Investigation
		Lessons Learned
	The TAG Experience
		Need and Expertise Come Together
		TAG 1.0 Design
		Spine Wire Fractures
		Incorrect Early Assumptions
		Improved Testing and Design
	Coordination of R&D and Sales Rollout
		Sales Call
		The Responsibility and Burden of R&D
		When R&D and Sales Meet
	Surprises With Early Endovascular Aortic Repair
		Biomechanical Loading Data Is Critical
		The Path Was Murky in the Early Days
		Lack of Understanding Led to Failures
		Knowledge and Devices Are Improving
		The Future Is Bright
	The Zilver PTX Experience
		The Wild West
		A Measured Approach to Boundary Conditions
		Thorough Mechanical Evaluation
	Improving Stent Performance
		Expand Success
		Stick with What Works
		Improvement without Change
	Conclusion
	References
18 Conclusion and Future Directions
	Vasculature Mobility Is Important
	Fractures Do Not Equal Failures
	Vascular Deformations Beyond Mechanical Durability Testing
	Improving Mechanical Durability in a Pinch
	Conclusion
	References
Acknowledgments
About the Author
Index
Back Cover




نظرات کاربران