دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mohammad H. Abedin-nasab (editor)
سری:
ISBN (شابک) : 0128142456, 9780128142455
ناشر: Elsevier Science Ltd
سال نشر: 2019
تعداد صفحات: 724
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 36 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Robotic and Image-Guided Surgery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای جراحی رباتیک و هدایت شده با تصویر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای جراحی رباتیک و هدایتشده با تصویر سیستمها و روشهای پیشرفتهای را برای جراحیهای رباتیک و به کمک رایانه ارائه میدهد. در این شاهکار، مشارکت 169 محقق از 19 کشور برای ارائه 38 فصل گردآوری شده است. این کتاب 744 صفحه، شامل 659 شکل و 61 ویدئو است.
همچنین دانش اولیه پزشکی را برای مهندسان و اصول اولیه مهندسی را برای جراحان ارائه می دهد. نقطه قوت کلیدی این متن، ادغام اصول مهندسی، رادیولوژی و جراحی در یک کتاب است.
Handbook of Robotic and Image-Guided Surgery provides state-of-the-art systems and methods for robotic and computer-assisted surgeries. In this masterpiece, contributions of 169 researchers from 19 countries have been gathered to provide 38 chapters. This handbook is 744 pages, includes 659 figures and 61 videos.
It also provides basic medical knowledge for engineers and basic engineering principles for surgeons. A key strength of this text is the fusion of engineering, radiology, and surgical principles into one book.
Cover Handbook of Robotic and Image-Guided Surgery Copyright Dedication About the Book Visual-Info Foreword References Foreword About the Editor Acknowledgments Organs Directory List of Contributors 1 Senhance Surgical System: Robotic-Assisted Digital Laparoscopy for Abdominal, Pelvic, and Thoracoscopic Procedures 1.1 Challenges of general surgery and the need for value-driven solutions 1.2 Robotic-assisted digital laparoscopy 1.2.1 System components 1.2.1.1 Patient positioning 1.2.1.2 Docking 1.2.1.3 Eye sensing 1.2.1.4 Fulcrum 1.2.1.5 Force feedback (haptics) 1.2.2 Indications 1.3 User training and procedure planning 1.3.1 Training 1.3.2 Procedure planning 1.4 Clinical findings 1.4.1 Gynecologic procedures 1.4.1.1 Monolateral ovarian cyst removal 1.4.1.2 Heterogeneous series of gynecologic procedures 1.4.1.3 Senhance and standard laparoscopy for benign and malignant disease 1.4.1.4 Hysterectomy in obese patients 1.4.2 Colorectal disease 1.4.3 Inguinal hernia repair 1.5 Cost considerations 1.6 Conclusion Acknowledgment References 2 A Technical Overview of the CyberKnife System 2.1 Introduction 2.2 System overview 2.3 Major subsystems 2.3.1 Robotic manipulation 2.3.1.1 Treatment manipulator 2.3.1.2 Coordinate systems and treatment workspace calibration 2.3.1.3 Treatment paths and node properties 2.3.1.4 Collision avoidance and proximity detection 2.3.1.5 Xchange table and tool mounting calibration 2.3.1.6 RoboCouch 2.3.2 Treatment head 2.3.3 Imaging systems for treatment delivery 2.3.4 Target localization and tracking methods for treatment delivery 2.3.4.1 Registration of live X-ray images and digitally reconstructed radiographs 6D skull tracking Xsight spine tracking system Fiducial marker tracking Xsight lung tracking system 2.3.4.2 Real-time respiratory motion tracking 2.3.5 Image registration and segmentation algorithms for treatment planning 2.3.5.1 Multimodality image import and registration 2.3.5.2 Automated image segmentation 2.3.5.3 Retreatment 2.3.6 Radiation dose calculation and optimization algorithms for treatment planning 2.3.6.1 Dose calculation algorithms 2.3.6.2 Dose optimization algorithms 2.3.7 Data management and connectivity systems 2.4 Summary Acknowledgments References 3 The da Vinci Surgical System 3.1 Introduction 3.2 The intuitive surgical timeline 3.3 Basic principles and design of the da Vinci Surgical System 3.4 Visualization 3.4.1 Fluorescence imaging 3.4.2 Tomographic imaging 3.5 Tissue interaction 3.5.1 Stapler 3.5.2 Vessel sealer 3.5.3 Integrated table motion 3.6 Surgical access 3.6.1 da Vinci SP system 3.7 Technology training 3.8 Clinical adoption 3.8.1 Procedure trends 3.8.2 Publications 3.9 Conclusion and future opportunities References 4 The FreeHand System 4.1 Introduction 4.2 Challenges with manual surgery that FreeHand addresses 4.3 Development and iterations of FreeHand 4.4 Preoperative preparation 4.5 Operative setup 4.5.1 Come downstairs! 4.6 Operative use 4.7 Experience with FreeHand 4.7.1 Advantages of FreeHand 4.7.2 Disadvantages of FreeHand 4.8 Discussion 4.9 Conclusion References 5 Solo Surgery With VIKY: Safe, Simple, and Low-Cost Robotic Surgery 5.1 Background and history of surgical robots 5.2 System overview 5.3 The VIKY system 5.3.1 Control unit 5.3.2 Arm and clamp 5.3.3 Driver (ring and motor set) 5.3.4 Adapters 5.3.5 Control interfaces: foot pedal and wireless microphones 5.4 Advantages and disadvantages of VIKY-assisted surgery 5.5 Current clinical applications and data 5.6 Conclusion References 6 Clinical Application of Soloassist, a Joystick-Guided Robotic Scope Holder, in General Surgery 6.1 Introduction 6.2 History of Soloassist 6.3 Soloassist II 6.3.1 Structure 6.3.2 Joystick 6.4 Installation—specifics about each operation 6.4.1 Laparoscopic appendectomy (Fig. 6.11A and B) (Video, see online for video) 6.4.2 Laparoscopic inguinal hernia repair (right side) (Fig. 6.12A–C) (Video, see online for video) 6.4.3 Laparoscopic cholecystectomy (multiport) (Fig. 6.13A–C) (Video, see online for video) 6.4.4 Laparoscopic cholecystectomy (single incision) (Fig. 6.14A and B) (Video, see online for video) 6.4.5 Laparoscopic distal gastrectomy (Fig. 6.15A and B) (Video, see online for video) 6.4.6 Laparoscopic colectomy (right-side colon) (Fig. 6.16A and B) (Video, see online for video) 6.4.7 Laparoscopic colectomy (left-side colon) (Fig. 6.17A and B) 6.4.8 Laparoscopic rectal resection and five-port left-side colectomy (Fig. 6.18A and B) (Video, see online for video) 6.4.9 Laparoscopic distal pancreatectomy and splenectomy (Video, see online for video) 6.4.10 Thoracoscopic esophageal resection (Fig. 6.19A–C) (Video, see online for video) 6.5 Clinical experience and discussion 6.6 Conclusion References 7 The Sina Robotic Telesurgery System 7.1 Background 7.2 System overview 7.2.1 Sinastraight 7.2.2 Sinaflex 7.3 Challenges and future directions References 8 STRAS: A Modular and Flexible Telemanipulated Robotic Device for Intraluminal Surgery 8.1 Context of intraluminal surgery in the digestive tract 8.2 Recent technical advances in intraluminal surgery 8.3 The single port and transluminal robotic assistant for surgeons robotic system 8.3.1 Basic concepts and short history 8.3.1.1 The Anubiscope platform 8.3.2 Mechatronic design of single port and transluminal robotic assistant for surgeons 8.3.2.1 Rationale for robotization 8.3.2.2 Overview 8.3.2.3 Modules 8.3.3 Features of the slave system 8.3.4 Control of the robot by the users 8.3.4.1 Dedicated master interfaces 8.3.4.2 Control of the instruments 8.3.4.3 Control of the main endoscope 8.3.5 Control and software architecture 8.3.6 Robot calibration and working modes 8.3.6.1 Master interfaces calibration 8.3.6.2 Teleoperation activation 8.3.6.3 Working modes 8.4 In vivo use of the system 8.4.1 Workflow of single port and transluminal robotic assistant for surgeons use for intraluminal surgery 8.4.1.1 Change of instruments 8.4.2 Feasibility and interest 8.5 Current developments and future work 8.6 Conclusion Acknowledgments References 9 Implementation of Novel Robotic Systems in Colorectal Surgery 9.1 Introduction 9.1.1 Laparoscopic era 9.1.2 Introduction of robotics 9.1.3 Further innovations 9.2 Features of the Flex Colorectal Drive 9.2.1 Visualization 9.2.2 Instrumentation 9.3 Surgery with Flex Colorectal Drive 9.3.1 Preoperative course 9.3.2 Local excision 9.3.3 Total mesorectal excision 9.3.4 Postoperative course 9.4 Further considerations for the Flex Colorectal Drive 9.4.1 Bending of the scope 9.4.2 Loss of tactile feedback 9.4.3 Range 9.4.4 Hybrid nature 9.5 Future directions in robotics 9.5.1 Single-port designs 9.5.2 Haptic feedback 9.6 Conclusion Acknowledgment References 10 The Use of Robotics in Colorectal Surgery 10.1 Introduction 10.2 Challenges with open and laparoscopic surgery 10.3 Robotic surgery experience 10.4 Patient selection and evaluation 10.5 Preoperative preparation 10.6 Operative setup 10.7 Surgical technique 10.8 Discussion References 11 Robotic Radical Prostatectomy for Prostate Cancer: Natural Evolution of Surgery for Prostate Cancer? 11.1 Robotic surgical anatomy of the prostate 11.2 Patients’ preparation 11.2.1 Preoperative imaging modality for prostate cancer 11.2.2 Preoperative clinical assessment 11.2.3 Anesthesiological considerations 11.2.4 Da Vinci robot and its docking 11.2.4.1 The Da Vinci robot Xi 11.3 Surgical approach to the prostate 11.3.1 Extraperitoneal approach 11.3.2 Transperitoneal approach 11.3.3 Retzius-sparing approach 11.4 Tip and tricks 11.4.1 Bladder neck 11.4.2 Approach to seminal vesicles 11.4.3 Anterograde intrafascial dissection 11.4.4 Preservation of the anterior periprostatic tissue 11.4.5 Preservation of the santorini plexus 11.4.6 Urethrovesical anastomosis 11.5 Complications References 12 Robotic Liver Surgery: Shortcomings of the Status Quo 12.1 Introduction: the development of robotic-assisted minimally invasive liver surgery 12.2 Advantages and disadvantages of robotic liver resection 12.2.1 Advantages of robotic liver surgery 12.2.2 Disadvantages of robotic liver surgery 12.3 Patient selection and preoperative preparation 12.4 Robot-assisted left hepatectomy 12.4.1 Operative setup 12.4.2 Surgical technique 12.5 Robot-assisted right hepatectomy 12.5.1 Operative setup 12.5.2 Surgical technique 12.5.2.1 Dissection of the hilum 12.5.2.2 Hepatocaval dissection 12.5.2.3 Transection of the liver 12.6 Robotic liver resection for posterior segments (7 and 8) 12.6.1 Operative setup 12.6.2 Surgical technique 12.7 Extreme robotic liver surgery: robotic surgery and liver transplantation 12.8 Cybernetic surgery: augmented reality in robotic liver surgery 12.9 The financial impact of the robotic system in liver surgery: is the robot cost prohibitive? 12.10 Conclusion and future directions of robotic liver surgery References Further reading 13 Clinical Applications of Robotics in General Surgery 13.1 Utilization of robotics in general surgery 13.2 Robotics in bariatric surgery 13.2.1 Procedure background 13.2.2 Robotic gastric bypass 13.2.3 Robotic sleeve gastrectomy 13.3 Robotics in hernia surgery 13.3.1 Procedure background 13.3.2 Robotic ventral hernia repair 13.3.3 Robotic transversus abdominis release 13.3.4 Robotic inguinal hernia repair 13.4 Robotics in foregut surgery 13.4.1 Procedure background 13.4.2 Robotic Nissen fundoplication 13.5 Robotics in colorectal surgery 13.5.1 Procedure background 13.5.2 Robotic colon surgery 13.5.3 Robotic rectal surgery 13.6 Robotics in solid organ surgery 13.6.1 Procedure background 13.6.2 Robotic hepatectomy 13.7 Conclusion References 14 Enhanced Vision to Improve Safety in Robotic Surgery 14.1 Introduction 14.2 Safety in robotic minimally invasive surgery 14.3 Identification and definition of the structure of interest 14.3.1 Semiautomatic preoperative identification 14.3.1.1 Registration 14.3.2 Manual intraoperative selection 14.4 Surgical scene description 14.4.1 Semantic segmentation 14.4.2 Surgical scene reconstruction 14.4.3 Tissue tracking 14.5 Safety warning methods 14.5.1 Augmented reality visualization 14.5.2 Active constraints 14.6 Application in abdominal surgery: Enhanced Vision System for Robotic Surgery system 14.7 Conclusion References 15 Haptics in Surgical Robots 15.1 Introduction 15.1.1 Fundamentals of haptics 15.1.2 Surgery and haptics 15.1.3 Tele-operated surgical robot systems 15.2 Surgical systems 15.2.1 The surgical robotics landscape 15.2.2 Commercial surgical robot systems 15.2.2.1 General surgery: Senhance 15.2.2.2 General surgery: REVO-I 15.2.2.3 General surgery: Medtronic MiroSurge 15.2.2.4 Microsurgery: NeuroArm 15.2.2.5 Endovascular: sensei 15.2.3 Surgical practice 15.2.3.1 General surgery 15.2.3.2 Endovascular 15.2.3.3 Neurosurgery 15.2.4 Emerging surgical needs 15.3 Research systems 15.3.1 Sensing systems 15.3.2 Haptic feedback systems 15.3.3 Human interaction 15.4 Future perspectives 15.5 Conclusion Acknowledgment References 16 S-Surge: A Portable Surgical Robot Based on a Novel Mechanism With Force-Sensing Capability for Robotic Surgery 16.1 Introduction 16.2 Overview of the surgical robot 16.3 Surgical manipulator 16.3.1 Kinematic analysis 16.3.2 Workspace optimization 16.3.2.1 Jacobian analysis 16.3.2.2 Mechanism of isotropy 16.4 Sensorized surgical instrument 16.5 Implementation 16.5.1 Surgical manipulator 16.5.2 Sensorized surgical instrument 16.5.3 Entire surgical robot: S-surge 16.6 Experiments 16.6.1 Experimental environment 16.6.2 Experimental results 16.7 Conclusion References 17 Center for Advanced Surgical and Interventional Technology Multimodal Haptic Feedback for Robotic Surgery 17.1 Introduction 17.2 Feedback modalities 17.2.1 Sensory substitution 17.2.2 Haptic feedback 17.3 Existing haptic feedback systems for robotic surgery 17.3.1 Sensing technology 17.3.2 Actuation and feedback technology 17.4 The Center for Advanced Surgical and Interventional Technology multimodal feedback system 17.4.1 Overview 17.4.2 Sensory unit 17.4.3 Signal processing unit 17.4.4 Haptic feedback unit 17.4.5 Validation studies 17.4.5.1 Reduction in grip forces 17.4.5.2 Visual–perceptual mismatch 17.4.5.3 Artificial palpation 17.4.5.4 Knot tying 17.5 Conclusion and future directions References 18 Applications of Flexible Robots in Endoscopic Surgery 18.1 Review of current manual endoscopic surgery tools 18.2 Technical challenges in current endoscopic surgery using manual tools 18.3 Review of endoscopic robots: purely mechanical and motorized 18.3.1 Purely mechanical endoscopic robots 18.3.2 Motorized endoscopic robots 18.4 Advantages of flexible robots in the application of endoscopic surgery 18.5 Basic coordinate system and kinematic mapping of a continuum manipulator 18.5.1 Manipulator-specific mapping 18.5.2 Manipulator-independent mapping 18.5.3 Drawback of a typical coordinate system 18.6 Experimental results from several successfully developed endoscopic surgical robots 18.7 Future development directions for flexible robots in endoscopic surgery References 19 Smart Composites and Hybrid Soft-Foldable Technologies for Minimally Invasive Surgical Robots 19.1 Introduction 19.1.1 Urology 19.1.2 Gastroenterology 19.1.3 Proposed robotic platforms 19.2 Smart composites in a robotic catheter for targeted laser therapy 19.2.1 Clinical motivation 19.2.2 Robotic catheter: design, materials, and manufacturing 19.3 Soft-foldable endoscopic arm 19.3.1 Clinical motivation 19.3.2 Endoscopic arm: design, materials, and manufacturing 19.4 Conclusion and future work References 20 Robotic-Assisted Percutaneous Coronary Intervention Abbreviations 20.1 Introduction 20.1.1 Percutaneous coronary intervention 20.1.1.1 Health hazards 20.1.1.2 Precision 20.1.2 Robotic-assisted percutaneous coronary intervention 20.2 System description 20.2.1 CorPath GRX overview 20.2.2 Articulated arm 20.2.3 Robotic drive and cassette 20.2.4 Control console 20.2.5 Cockpit and power vision monitor 20.3 Operation and workflow 20.3.1 Preparation for robotic-assisted percutaneous coronary intervention 20.3.2 Robotic procedure 20.3.3 Safety considerations 20.4 Kinematics analysis 20.4.1 Forward kinematics 20.4.1.1 Denavit–Hartenberg method 20.4.1.2 Forward kinematics formulation of the arm 20.4.2 Inverse kinematics and workspace analysis 20.4.2.1 Independent joint variables 20.4.2.2 Inverse kinematics formulation 20.4.2.3 Workspace 20.5 Motor control system modeling 20.5.1 Permanent magnet synchronous motor model 20.5.2 Direct quadrature control architecture for permanent magnet synchronous motors 20.5.3 Quadrature current control of brushless linear DC motors 20.5.4 Direct current control of stepper motors 20.6 Future of robotic vascular interventional therapy References 21 Image-Guided Motion Compensation for Robotic-Assisted Beating Heart Surgery 21.1 Introduction 21.2 Background 21.3 Image stabilization 21.4 Strip-wise affine map 21.5 Shared control 21.5.1 Simple motion compensation 21.5.2 Active assistance 21.5.3 Haptic assistance 21.6 Experimental setup 21.6.1 Robotic system description 21.6.2 Graphics system description 21.7 Simulation experiments 21.8 Conclusion References 22 Sunram 5: A Magnetic Resonance-Safe Robotic System for Breast Biopsy, Driven by Pneumatic Stepper Motors 22.1 Introduction 22.1.1 Clinical challenge 22.1.2 Magnetic resonance imaging compatibility of surgical robots 22.1.3 Actuation methods for magnetic resonance-safe/conditional robots 22.1.4 State of the art 22.1.4.1 Pneumatic magnetic resonance imaging robots by Stoianovici, Bomers, and Sajima 22.1.4.2 Stormram 1–4 and Sunram 5 22.1.5 Organization of the chapter 22.2 Pneumatic cylinders 22.2.1 Rectangular cross-sectional shape 22.2.2 Sealing 22.2.3 Design of the single-acting cylinder 22.2.4 Manufacturization 22.2.5 Double-acting cylinder 22.3 Stepper motors 22.3.1 Design of the two-cylinder stepper motor 22.3.2 Curved stepper motor 22.3.3 Dual-speed stepper motor 22.4 Design of Sunram 5 22.4.1 Kinematic configuration 22.4.2 Mechanical design of Sunram 5 22.5 Control of pneumatic devices 22.6 Evaluation of stepper motors and Stormram 4 22.6.1 Stepper motor force 22.6.2 Stepping frequency 22.6.3 Accuracy 22.6.4 Stormram 4 evaluation 22.7 Conclusion References 23 New Advances in Robotic Surgery in Hip and Knee Replacement 23.1 Introduction 23.2 Challenges with manual surgery 23.2.1 Unicompartmental knee arthroplasty 23.2.2 Patellofemoral arthroplasty 23.2.3 Total knee arthroplasty 23.2.4 Total hip arthroplasty 23.3 Robotic knee surgery experience 23.3.1 Unicompartmental knee arthroplasty 23.3.2 Total knee arthroplasty 23.4 Robotic hip surgery experience 23.5 Preoperative preparation 23.6 Operative setup 23.7 Surgical technique 23.8 Future directions References Further reading 24 Intellijoint HIP: A 3D Minioptical, Patient-Mounted, Sterile Field Localization System for Orthopedic Procedures 24.1 Background 24.2 Intellijoint minioptical technology 24.2.1 System overview 24.2.2 Camera 24.2.3 Software framework 24.2.4 Tracker 24.3 Minioptical system calibration 24.4 Clinical applications 24.4.1 Intellijoint HIP 24.4.2 Other applications 24.5 Accuracy performance 24.6 Conclusion 24.7 Challenges and further development References 25 More Than 20 Years Navigation of Knee Surgery With the Orthopilot Device 25.1 Introduction 25.2 The Orthopilot device 25.3 Operative procedures: total knee arthroplasty 25.3.1 Navigation of the femoro-tibial mechanical angle 25.3.2 Navigation of the bone cuts 25.3.3 Implanting the trial prosthesis 25.3.4 Rotation of the femoral implant 25.3.5 Ligament balance 25.3.6 Implanting the final prosthesis 25.4 Osteotomies for genu varum deformity 25.4.1 High tibial opening wedge osteotomy 25.4.2 Double-level osteotomy 25.5 Osteotomy for genu valgum deformity 25.6 Uni knee arthroplasty 25.7 Uni knee arthroplasty to total knee arthroplasty revision 25.8 Results 25.8.1 Total knee arthroplasty 25.8.2 Uni knee arthroplasty and revision to total knee arthroplasty 25.8.3 Osteotomies 25.8.3.1 High tibial osteotomy 25.8.3.2 Double-level osteotomy 25.8.3.3 Osteotomies for genu valgum 25.9 Discussion 25.10 Conclusion References 26 NAVIO Surgical System—Handheld Robotics 26.1 Introduction 26.2 The NAVIO surgical workflow 26.2.1 Patient and system setup 26.2.1.1 Bone tracking hardware 26.2.2 Registration—image-free technology 26.2.3 Prosthesis planning 26.2.4 Robotic-assisted bone cutting 26.2.5 Trial reduction 26.2.6 Cement and close 26.3 Conclusion References Further reading 27 Development of an Active Soft-Tissue Balancing System for Robotic-Assisted Total Knee Arthroplasty 27.1 Introduction 27.2 The OMNIBotics system 27.2.1 System overview 27.2.2 BoneMorphing/shape modeling 27.2.3 OMNIBot miniature robotic cutting guide 27.2.4 BalanceBot system development 27.2.5 Initial prototype design requirements 27.2.6 Proof of concept 27.2.7 Engineering for product commercialization 27.2.8 Verification, validation, and regulatory clearances 27.2.9 Surgical workflow 27.2.10 Cadaver labs and clinical results 27.3 Discussion and conclusion Acknowledgments References 28 Unicompartmental Knee Replacement Utilizing Robotics 28.1 Introduction 28.2 Challenges with manual surgery 28.2.1 Limb alignment/component positioning 28.3 Robotic surgery experience 28.4 Preoperative preparation/operative setup/surgical technique 28.4.1 Indications for use—RESTORIS partial knee application 28.4.1.1 Preoperative 28.4.1.2 Intraoperative 28.4.2 Patient positioning 28.4.2.1 Single-leg procedures 28.4.2.2 Securing the leg and IMP De Mayo knee positioner 28.4.2.3 Bone pin insertion (tibia only) 28.4.2.4 Bone pin insertion (femur only) 28.4.2.5 Array assembly (femur and tibia) 28.4.2.6 Base array placement and orientation—surgeon/Mako product specialist 28.4.2.7 Operating room configuration 28.4.2.8 Patient time out page 28.4.3 Bone registration 28.4.3.1 Patient landmarks—Mako product specialist 28.4.3.2 Capturing remaining landmarks—surgeon 28.4.3.3 Bone registration: femur and tibia—Mako product specialist/surgeon 28.4.3.4 Registration verification—Mako product specialist/surgeon 28.4.3.5 Implant planning 28.4.4 Bone preparation 28.4.4.1 Checkpoints 28.4.4.2 Bone preparation page layout Main window 28.4.4.3 Visualization and stereotactic boundaries 28.4.4.4 Mode: approach 28.4.4.5 CT view 28.4.5 Kinematic analysis 28.4.6 Case completion—archive and exit 28.5 Discussion References Further reading 29 Robotic and Image-Guided Knee Arthroscopy 29.1 Introduction 29.2 Steerable robotic tools for arthroscopy 29.2.1 Why steerable robotic tools are necessary for arthroscopy 29.2.2 Mechanical design 29.2.3 Human–robot interaction 29.2.4 Modeling 29.2.5 Sensing 29.2.6 Evaluation 29.3 Leg manipulators for knee arthroscopy 29.3.1 Leg manipulation systems 29.3.2 Knee gap detection for leg manipulation 29.4 Miniature stereo cameras for medical robotics and intraknee perception 29.4.1 Complementary metal-oxide semiconductor sensors for knee arthroscopy 29.4.2 Emerging sensor technology for medical robotics 29.4.3 Miniature stereo cameras for knee arthroscopy 29.4.3.1 Validation of stereo imaging in knee arthroscopy 29.5 Ultrasound-guided knee arthroscopy 29.5.1 Ultrasound-based navigation 29.5.2 Ultrasound for the knee 29.5.2.1 Automatic and semiautomatic segmentation and tracking 29.5.2.2 Ultrasound-guided interventions 29.5.2.3 Ultrasound-guided robotic procedures 29.5.3 Ultrasound guidance and tissue characterization for knee arthroscopy 29.6 Toward a fully autonomous robotic and image-guided system for intraarticular arthroscopy 29.6.1 Sensor fusion of camera image and ultrasound guidance 29.6.2 Leg manipulation for better imaging and image-guided leg manipulation 29.6.3 Vision-guided operation with steerable robotic tools 29.7 Discussion 29.8 Conclusion References 30 Robossis: Orthopedic Surgical Robot 30.1 Introduction 30.2 Robot structure 30.3 Comparison with the Gough–Stewart platform 30.3.1 Workspace 30.3.2 Singularity analysis 30.3.3 Singularity effects on actuator forces and torques 30.3.4 Dynamic performance index 30.3.5 Dynamic load carrying capacity 30.4 Experimental testing 30.4.1 Trajectory tracking 30.4.2 Surgical workspace 30.4.3 Force testing 30.5 Conclusion and future work References 31 EOS Imaging: Low-Dose Imaging and Three-Dimensional Value Along the Entire Patient Care Pathway for Spine and Lower Limb... 31.1 Introduction 31.2 EOS acquisition system 31.2.1 System description 31.2.2 Benefits of slot-scanning weight-bearing technology 31.3 Patient-specific three-dimensional models 31.3.1 Modeling technology 31.3.2 Pelvis 31.3.3 Lower limbs 31.3.4 Spine 31.4 Preoperative surgical planning solutions and intraoperative execution 31.4.1 spineEOS 31.4.2 hipEOS 31.4.3 kneeEOS 31.5 Conclusion References 32 Machine-Vision Image-Guided Surgery for Spinal and Cranial Procedures 32.1 Overview of image-guided surgery technology 32.1.1 Importance of navigation in spinal and cranial procedures 32.1.2 Evolution of image-guided surgery system 32.1.3 Intraoperative image-guided surgery systems 32.1.3.1 Intraoperative fluoroscopy-based image-guided surgery systems 32.1.3.2 Intraoperative three-dimensional image-guided surgery systems 32.1.4 Preoperative image-guided surgery systems 32.2 Motivation and benefits of the Machine-vision Image-Guided Surgery system 32.2.1 Complex workflow and long learning curve 32.2.2 Extended surgical time due to workflow disruptions 32.2.3 Line-of-sight issues for optical trackers 32.2.4 Requiring nonsterile user assistance 32.2.5 Exposure to intraoperative ionizing radiation 32.2.6 Large device footprint 32.3 Technical aspects of the 7D Surgical Machine-vision Image-Guided Surgery system 32.3.1 Hardware components 32.3.2 The Machine-vision Image-Guided Surgery system workflow 32.3.3 Flash Registration 32.4 Clinical case studies with 7D Surgical Machine-vision Image-Guided Surgery system 32.4.1 Revision instrumented posterior lumbar fusion L3–L5 32.4.2 Revision instrumented posterior lumbar fusion L4–S1 32.4.3 Cervical fusion with radiofrequency ablation and vertebroplasty 32.4.4 Cervical fusion 32.4.5 Left temporal open biopsy 32.5 Future of 7D Surgical Machine-vision Image-Guided Surgery system 32.5.1 Multilevel registration for spine deformity procedures 32.6 Conclusion References 33 Three-Dimensional Image-Guided Techniques for Minimally Invasive Surgery 33.1 Introduction 33.2 Three-dimensional image-guided surgery system 33.2.1 Three-dimensional image acquisition and display 33.2.1.1 Three-dimensional image acquisition 33.2.1.2 Three-dimensional stereoscopic and autostereoscopic displays 33.2.2 Augmented reality–based three-dimensional image–guided surgery system 33.2.2.1 Augmented reality–based three-dimensional image-guided techniques 33.2.2.2 Three-dimensional integral videography image overlay for image guidance 33.3 Related techniques in three-dimensional image-guided surgery systems 33.3.1 Intraoperative patient–three-dimensional image registration 33.3.2 Real-time accurate three-dimensional image rendering 33.4 Applications 33.4.1 Three-dimensional image–guided planning and operation 33.4.2 Robot-assisted operation 33.4.3 Integration of diagnosis and treatment in minimally invasive surgery 33.5 Discussion and conclusion References 34 Prospective Techniques for Magnetic Resonance Imaging–Guided Robot-Assisted Stereotactic Neurosurgery 34.1 Background 34.2 Clinical motivations for magnetic resonance imaging–guided robotic stereotaxy 34.3 Significant platforms for magnetic resonance imaging–guided stereotactic neurosurgery 34.4 Key enabling technologies for magnetic resonance imaging–guided robotic systems 34.4.1 Nonrigid image registration 34.4.2 Magnetic resonance–based tracking 34.4.3 Magnetic resonance imaging–compatible actuation 34.5 Conclusion References 35 RONNA G4—Robotic Neuronavigation: A Novel Robotic Navigation Device for Stereotactic Neurosurgery Abbreviations 35.1 State of the art in robotic neuronavigation 35.2 RONNA—robotic neuronavigation 35.2.1 Historical development of the RONNA system 35.2.2 RONNA G4 system—the fourth generation 35.3 RONNA surgical workflow 35.4 Automatic patient localization and registration 35.4.1 Robotic navigation and point-pair correspondence 35.4.2 Automated marker localization 35.4.2.1 Automatic localization in image space 35.4.2.2 Automatic localization in physical space—RONNAstereo 35.5 Optimal robot positioning with respect to the patient 35.5.1 Dexterity evaluation 35.5.2 RONNA reachability maps 35.5.3 Single robot position planning algorithm 35.5.4 Position planning for collaborating robots 35.5.5 Robot positioning in physical space 35.5.6 Robot localization strategies 35.6 Autonomous robotic bone drilling 35.6.1 Automated drilling operation 35.6.2 Force controller 35.6.3 Experimental results 35.7 Error analysis of a neurosurgical robotic system 35.7.1 RONNA kinematic and nonkinematic calibration 35.7.1.1 Kinematic model 35.7.1.2 Measurement setup 35.7.1.3 Optimization method 35.7.1.4 Validation 35.8 Future development and challenges Acknowledgments References 36 Robotic Retinal Surgery 36.1 The clinical need 36.1.1 Human factors and technical challenges 36.1.2 Motivation for robotic technology 36.1.3 Main targeted interventions 36.1.3.1 Epiretinal membrane peeling 36.1.3.2 Retinal vein cannulation 36.1.3.3 Subretinal injection 36.1.4 Models used for replicating the anatomy 36.2 Visualization in retinal surgery 36.2.1 Basic visualization through operative stereo microscopy 36.2.1.1 Stereo microscope 36.2.1.2 Additional lenses 36.2.1.3 Light sources 36.2.1.4 Additional imaging 36.2.2 Real-time optical coherence tomography for retinal surgery 36.2.3 Principle of Fourier domain optical coherence tomography 36.2.3.1 Axial resolution of spectral-domain optical coherence tomography 36.2.3.2 Lateral resolution of spectral-domain optical coherence tomography 36.2.3.3 Imaging depth of spectral-domain optical coherence tomography 36.2.3.4 Sensitivity of spectral-domain optical coherence tomography 36.2.4 High-speed optical coherence tomography using graphics processing units processing 36.3 Advanced instrumentation 36.3.1 Force sensing 36.3.1.1 Retinal interaction forces 36.3.1.2 Scleral interaction forces 36.3.1.3 Force gradients 36.3.2 Optical coherence tomography 36.3.3 Impedance sensing 36.3.4 Dexterous instruments 36.4 Augmented reality 36.4.1 Mosaicing 36.4.2 Subsurface imaging 36.4.3 Depth visualization 36.4.4 Vessel enhancement 36.4.5 Tool tracking 36.4.6 Auditory augmentation 36.5 State-of-the-art robotic systems 36.5.1 Common mechatronic concepts 36.5.1.1 Electric-motor actuation: impedance-type versus admittance-type 36.5.1.2 Piezoelectric actuation 36.5.1.3 Remote-center-of-motion mechanisms 36.5.2 Handheld systems 36.5.3 Cooperative-control systems 36.5.4 Teleoperated systems 36.5.5 Untethered “microrobots” 36.5.6 Clinical use cases 36.5.7 General considerations with respect to safety and usability 36.6 Closed-loop feedback and guidance 36.6.1 Closed-loop control for handheld systems 36.6.2 Closed-loop control for cooperative-control systems 36.6.2.1 Robot control algorithms based on tool-tip force information 36.6.2.2 Robot control algorithms based on sclera force information 36.6.3 Closed-loop control for teleoperated systems 36.7 Image-guided robotic surgery 36.7.1 Image-guidance based on video 36.7.2 Image guidance based on optical coherence tomography 36.8 Conclusion and future work 36.8.1 Practical challenges ahead 36.8.2 System optimization 36.8.3 Novel therapy delivery methods 36.8.4 Toward autonomous interventions 36.9 Acknowledgments References 37 Ventilation Tube Applicator: A Revolutionary Office-Based Solution for the Treatment of Otitis Media With Effusion 37.1 Introduction 37.1.1 Objectives 37.1.2 Challenges 37.1.2.1 Space and accessibility 37.1.2.2 Operation time 37.1.2.3 Precision and repeatability 37.1.2.4 Diversity 37.1.3 System architecture and organization of this chapter 37.2 Mechanical system 37.2.1 Mechanical structure 37.2.2 Mechanical design 37.2.2.1 Tool set Cutter design Stress and deformation analysis 37.2.2.2 Mechanism for cutter retraction 37.3 Sensing system 37.3.1 Working process 37.3.2 Force-based supervisory controller 37.3.3 Installation of the force sensor 37.4 Motion control system 37.4.1 System identification 37.4.1.1 System description of the ultrasonic motor stage 37.4.1.2 System modeling of ultrasonic motor stage 37.4.1.3 Parameter estimation Nonlinear term Linear term 37.4.2 Control scheme 37.4.2.1 LQR-assisted PID controller 37.4.2.2 Nonlinear compensation 37.4.2.3 Overall control system 37.5 Experimental results 37.5.1 Experimental setup 37.5.2 Results 37.6 Conclusion Acknowledgment References 38 ACTORS: Adaptive and Compliant Transoral Robotic Surgery With Flexible Manipulators and Intelligent Guidance 38.1 Introduction 38.2 Adaptive and compliant transoral robotic surgery 38.2.1 Clinical requirements 38.2.2 Overview of the robotic system 38.2.3 Flexible parallel manipulators 38.2.3.1 Gripper 38.2.3.2 Parallel mechanism 38.2.3.3 Motion transmission 38.2.4 Master console 38.2.5 Intelligent guidance 38.3 Experimental evaluation 38.3.1 Performance of the manipulators 38.3.2 Cadaveric trial with the manipulators 38.3.3 Endoscope navigation trial on phantom 38.4 Conclusion References Index Back Cover