ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Robotic and Image-Guided Surgery

دانلود کتاب کتاب راهنمای جراحی رباتیک و هدایت شده با تصویر

Handbook of Robotic and Image-Guided Surgery

مشخصات کتاب

Handbook of Robotic and Image-Guided Surgery

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0128142456, 9780128142455 
ناشر: Elsevier Science Ltd 
سال نشر: 2019 
تعداد صفحات: 724 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 مگابایت 

قیمت کتاب (تومان) : 36,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Handbook of Robotic and Image-Guided Surgery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای جراحی رباتیک و هدایت شده با تصویر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهنمای جراحی رباتیک و هدایت شده با تصویر



راهنمای جراحی رباتیک و هدایت‌شده با تصویر سیستم‌ها و روش‌های پیشرفته‌ای را برای جراحی‌های رباتیک و به کمک رایانه ارائه می‌دهد. در این شاهکار، مشارکت 169 محقق از 19 کشور برای ارائه 38 فصل گردآوری شده است. این کتاب 744 صفحه، شامل 659 شکل و 61 ویدئو است.

همچنین دانش اولیه پزشکی را برای مهندسان و اصول اولیه مهندسی را برای جراحان ارائه می دهد. نقطه قوت کلیدی این متن، ادغام اصول مهندسی، رادیولوژی و جراحی در یک کتاب است.

  • یک کتاب راهنمای کامل و عمیق در مورد رباتیک جراحی و جراحی هدایت شده با تصویر که شامل هر دو مبانی است. و پیشرفت‌ها در این زمینه
  • مرجع جامعی در مورد جراحی‌های لاپاراسکوپی، ارتوپدی و سر و گردن به کمک ربات
  • فصل‌ها توسط متخصصان جهانی از هر دو زمینه مهندسی و جراحی ارائه شده است. /li>

توضیحاتی درمورد کتاب به خارجی

Handbook of Robotic and Image-Guided Surgery provides state-of-the-art systems and methods for robotic and computer-assisted surgeries. In this masterpiece, contributions of 169 researchers from 19 countries have been gathered to provide 38 chapters. This handbook is 744 pages, includes 659 figures and 61 videos.

It also provides basic medical knowledge for engineers and basic engineering principles for surgeons. A key strength of this text is the fusion of engineering, radiology, and surgical principles into one book.

  • A thorough and in-depth handbook on surgical robotics and image-guided surgery which includes both fundamentals and advances in the field
  • A comprehensive reference on robot-assisted laparoscopic, orthopedic, and head-and-neck surgeries
  • Chapters are contributed by worldwide experts from both engineering and surgical backgrounds


فهرست مطالب

Cover
Handbook of Robotic and Image-Guided Surgery
Copyright
Dedication
About the Book
Visual-Info
Foreword
	References
Foreword
About the Editor
Acknowledgments
Organs Directory
List of Contributors
1 Senhance Surgical System: Robotic-Assisted Digital Laparoscopy for Abdominal, Pelvic, and Thoracoscopic Procedures
	1.1 Challenges of general surgery and the need for value-driven solutions
	1.2 Robotic-assisted digital laparoscopy
		1.2.1 System components
			1.2.1.1 Patient positioning
			1.2.1.2 Docking
			1.2.1.3 Eye sensing
			1.2.1.4 Fulcrum
			1.2.1.5 Force feedback (haptics)
		1.2.2 Indications
	1.3 User training and procedure planning
		1.3.1 Training
		1.3.2 Procedure planning
	1.4 Clinical findings
		1.4.1 Gynecologic procedures
			1.4.1.1 Monolateral ovarian cyst removal
			1.4.1.2 Heterogeneous series of gynecologic procedures
			1.4.1.3 Senhance and standard laparoscopy for benign and malignant disease
			1.4.1.4 Hysterectomy in obese patients
		1.4.2 Colorectal disease
		1.4.3 Inguinal hernia repair
	1.5 Cost considerations
	1.6 Conclusion
	Acknowledgment
	References
2 A Technical Overview of the CyberKnife System
	2.1 Introduction
	2.2 System overview
	2.3 Major subsystems
		2.3.1 Robotic manipulation
			2.3.1.1 Treatment manipulator
			2.3.1.2 Coordinate systems and treatment workspace calibration
			2.3.1.3 Treatment paths and node properties
			2.3.1.4 Collision avoidance and proximity detection
			2.3.1.5 Xchange table and tool mounting calibration
			2.3.1.6 RoboCouch
		2.3.2 Treatment head
		2.3.3 Imaging systems for treatment delivery
		2.3.4 Target localization and tracking methods for treatment delivery
			2.3.4.1 Registration of live X-ray images and digitally reconstructed radiographs
				6D skull tracking
				Xsight spine tracking system
				Fiducial marker tracking
				Xsight lung tracking system
			2.3.4.2 Real-time respiratory motion tracking
		2.3.5 Image registration and segmentation algorithms for treatment planning
			2.3.5.1 Multimodality image import and registration
			2.3.5.2 Automated image segmentation
			2.3.5.3 Retreatment
		2.3.6 Radiation dose calculation and optimization algorithms for treatment planning
			2.3.6.1 Dose calculation algorithms
			2.3.6.2 Dose optimization algorithms
		2.3.7 Data management and connectivity systems
	2.4 Summary
	Acknowledgments
	References
3 The da Vinci Surgical System
	3.1 Introduction
	3.2 The intuitive surgical timeline
	3.3 Basic principles and design of the da Vinci Surgical System
	3.4 Visualization
		3.4.1 Fluorescence imaging
		3.4.2 Tomographic imaging
	3.5 Tissue interaction
		3.5.1 Stapler
		3.5.2 Vessel sealer
		3.5.3 Integrated table motion
	3.6 Surgical access
		3.6.1 da Vinci SP system
	3.7 Technology training
	3.8 Clinical adoption
		3.8.1 Procedure trends
		3.8.2 Publications
	3.9 Conclusion and future opportunities
	References
4 The FreeHand System
	4.1 Introduction
	4.2 Challenges with manual surgery that FreeHand addresses
	4.3 Development and iterations of FreeHand
	4.4 Preoperative preparation
	4.5 Operative setup
		4.5.1 Come downstairs!
	4.6 Operative use
	4.7 Experience with FreeHand
		4.7.1 Advantages of FreeHand
		4.7.2 Disadvantages of FreeHand
	4.8 Discussion
	4.9 Conclusion
	References
5 Solo Surgery With VIKY: Safe, Simple, and Low-Cost Robotic Surgery
	5.1 Background and history of surgical robots
	5.2 System overview
	5.3 The VIKY system
		5.3.1 Control unit
		5.3.2 Arm and clamp
		5.3.3 Driver (ring and motor set)
		5.3.4 Adapters
		5.3.5 Control interfaces: foot pedal and wireless microphones
	5.4 Advantages and disadvantages of VIKY-assisted surgery
	5.5 Current clinical applications and data
	5.6 Conclusion
	References
6 Clinical Application of Soloassist, a Joystick-Guided Robotic Scope Holder, in General Surgery
	6.1 Introduction
	6.2 History of Soloassist
	6.3 Soloassist II
		6.3.1 Structure
		6.3.2 Joystick
	6.4 Installation—specifics about each operation
		6.4.1 Laparoscopic appendectomy (Fig. 6.11A and B) (Video, see online for video)
		6.4.2 Laparoscopic inguinal hernia repair (right side) (Fig. 6.12A–C) (Video, see online for video)
		6.4.3 Laparoscopic cholecystectomy (multiport) (Fig. 6.13A–C) (Video, see online for video)
		6.4.4 Laparoscopic cholecystectomy (single incision) (Fig. 6.14A and B) (Video, see online for video)
		6.4.5 Laparoscopic distal gastrectomy (Fig. 6.15A and B) (Video, see online for video)
		6.4.6 Laparoscopic colectomy (right-side colon) (Fig. 6.16A and B) (Video, see online for video)
		6.4.7 Laparoscopic colectomy (left-side colon) (Fig. 6.17A and B)
		6.4.8 Laparoscopic rectal resection and five-port left-side colectomy (Fig. 6.18A and B) (Video, see online for video)
		6.4.9 Laparoscopic distal pancreatectomy and splenectomy (Video, see online for video)
		6.4.10 Thoracoscopic esophageal resection (Fig. 6.19A–C) (Video, see online for video)
	6.5 Clinical experience and discussion
	6.6 Conclusion
	References
7 The Sina Robotic Telesurgery System
	7.1 Background
	7.2 System overview
		7.2.1 Sinastraight
		7.2.2 Sinaflex
	7.3 Challenges and future directions
	References
8 STRAS: A Modular and Flexible Telemanipulated Robotic Device for Intraluminal Surgery
	8.1 Context of intraluminal surgery in the digestive tract
	8.2 Recent technical advances in intraluminal surgery
	8.3 The single port and transluminal robotic assistant for surgeons robotic system
		8.3.1 Basic concepts and short history
			8.3.1.1 The Anubiscope platform
		8.3.2 Mechatronic design of single port and transluminal robotic assistant for surgeons
			8.3.2.1 Rationale for robotization
			8.3.2.2 Overview
			8.3.2.3 Modules
		8.3.3 Features of the slave system
		8.3.4 Control of the robot by the users
			8.3.4.1 Dedicated master interfaces
			8.3.4.2 Control of the instruments
			8.3.4.3 Control of the main endoscope
		8.3.5 Control and software architecture
		8.3.6 Robot calibration and working modes
			8.3.6.1 Master interfaces calibration
			8.3.6.2 Teleoperation activation
			8.3.6.3 Working modes
	8.4 In vivo use of the system
		8.4.1 Workflow of single port and transluminal robotic assistant for surgeons use for intraluminal surgery
			8.4.1.1 Change of instruments
		8.4.2 Feasibility and interest
	8.5 Current developments and future work
	8.6 Conclusion
	Acknowledgments
	References
9 Implementation of Novel Robotic Systems in Colorectal Surgery
	9.1 Introduction
		9.1.1 Laparoscopic era
		9.1.2 Introduction of robotics
		9.1.3 Further innovations
	9.2 Features of the Flex Colorectal Drive
		9.2.1 Visualization
		9.2.2 Instrumentation
	9.3 Surgery with Flex Colorectal Drive
		9.3.1 Preoperative course
		9.3.2 Local excision
		9.3.3 Total mesorectal excision
		9.3.4 Postoperative course
	9.4 Further considerations for the Flex Colorectal Drive
		9.4.1 Bending of the scope
		9.4.2 Loss of tactile feedback
		9.4.3 Range
		9.4.4 Hybrid nature
	9.5 Future directions in robotics
		9.5.1 Single-port designs
		9.5.2 Haptic feedback
	9.6 Conclusion
	Acknowledgment
	References
10 The Use of Robotics in Colorectal Surgery
	10.1 Introduction
	10.2 Challenges with open and laparoscopic surgery
	10.3 Robotic surgery experience
	10.4 Patient selection and evaluation
	10.5 Preoperative preparation
	10.6 Operative setup
	10.7 Surgical technique
	10.8 Discussion
	References
11 Robotic Radical Prostatectomy for Prostate Cancer: Natural Evolution of Surgery for Prostate Cancer?
	11.1 Robotic surgical anatomy of the prostate
	11.2 Patients’ preparation
		11.2.1 Preoperative imaging modality for prostate cancer
		11.2.2 Preoperative clinical assessment
		11.2.3 Anesthesiological considerations
		11.2.4 Da Vinci robot and its docking
			11.2.4.1 The Da Vinci robot Xi
	11.3 Surgical approach to the prostate
		11.3.1 Extraperitoneal approach
		11.3.2 Transperitoneal approach
		11.3.3 Retzius-sparing approach
	11.4 Tip and tricks
		11.4.1 Bladder neck
		11.4.2 Approach to seminal vesicles
		11.4.3 Anterograde intrafascial dissection
		11.4.4 Preservation of the anterior periprostatic tissue
		11.4.5 Preservation of the santorini plexus
		11.4.6 Urethrovesical anastomosis
	11.5 Complications
	References
12 Robotic Liver Surgery: Shortcomings of the Status Quo
	12.1 Introduction: the development of robotic-assisted minimally invasive liver surgery
	12.2 Advantages and disadvantages of robotic liver resection
		12.2.1 Advantages of robotic liver surgery
		12.2.2 Disadvantages of robotic liver surgery
	12.3 Patient selection and preoperative preparation
	12.4 Robot-assisted left hepatectomy
		12.4.1 Operative setup
		12.4.2 Surgical technique
	12.5 Robot-assisted right hepatectomy
		12.5.1 Operative setup
		12.5.2 Surgical technique
			12.5.2.1 Dissection of the hilum
			12.5.2.2 Hepatocaval dissection
			12.5.2.3 Transection of the liver
	12.6 Robotic liver resection for posterior segments (7 and 8)
		12.6.1 Operative setup
		12.6.2 Surgical technique
	12.7 Extreme robotic liver surgery: robotic surgery and liver transplantation
	12.8 Cybernetic surgery: augmented reality in robotic liver surgery
	12.9 The financial impact of the robotic system in liver surgery: is the robot cost prohibitive?
	12.10 Conclusion and future directions of robotic liver surgery
	References
	Further reading
13 Clinical Applications of Robotics in General Surgery
	13.1 Utilization of robotics in general surgery
	13.2 Robotics in bariatric surgery
		13.2.1 Procedure background
		13.2.2 Robotic gastric bypass
		13.2.3 Robotic sleeve gastrectomy
	13.3 Robotics in hernia surgery
		13.3.1 Procedure background
		13.3.2 Robotic ventral hernia repair
		13.3.3 Robotic transversus abdominis release
		13.3.4 Robotic inguinal hernia repair
	13.4 Robotics in foregut surgery
		13.4.1 Procedure background
		13.4.2 Robotic Nissen fundoplication
	13.5 Robotics in colorectal surgery
		13.5.1 Procedure background
		13.5.2 Robotic colon surgery
		13.5.3 Robotic rectal surgery
	13.6 Robotics in solid organ surgery
		13.6.1 Procedure background
		13.6.2 Robotic hepatectomy
	13.7 Conclusion
	References
14 Enhanced Vision to Improve Safety in Robotic Surgery
	14.1 Introduction
	14.2 Safety in robotic minimally invasive surgery
	14.3 Identification and definition of the structure of interest
		14.3.1 Semiautomatic preoperative identification
			14.3.1.1 Registration
		14.3.2 Manual intraoperative selection
	14.4 Surgical scene description
		14.4.1 Semantic segmentation
		14.4.2 Surgical scene reconstruction
		14.4.3 Tissue tracking
	14.5 Safety warning methods
		14.5.1 Augmented reality visualization
		14.5.2 Active constraints
	14.6 Application in abdominal surgery: Enhanced Vision System for Robotic Surgery system
	14.7 Conclusion
	References
15 Haptics in Surgical Robots
	15.1 Introduction
		15.1.1 Fundamentals of haptics
		15.1.2 Surgery and haptics
		15.1.3 Tele-operated surgical robot systems
	15.2 Surgical systems
		15.2.1 The surgical robotics landscape
		15.2.2 Commercial surgical robot systems
			15.2.2.1 General surgery: Senhance
			15.2.2.2 General surgery: REVO-I
			15.2.2.3 General surgery: Medtronic MiroSurge
			15.2.2.4 Microsurgery: NeuroArm
			15.2.2.5 Endovascular: sensei
		15.2.3 Surgical practice
			15.2.3.1 General surgery
			15.2.3.2 Endovascular
			15.2.3.3 Neurosurgery
		15.2.4 Emerging surgical needs
	15.3 Research systems
		15.3.1 Sensing systems
		15.3.2 Haptic feedback systems
		15.3.3 Human interaction
	15.4 Future perspectives
	15.5 Conclusion
	Acknowledgment
	References
16 S-Surge: A Portable Surgical Robot Based on a Novel Mechanism With Force-Sensing Capability for Robotic Surgery
	16.1 Introduction
	16.2 Overview of the surgical robot
	16.3 Surgical manipulator
		16.3.1 Kinematic analysis
		16.3.2 Workspace optimization
			16.3.2.1 Jacobian analysis
			16.3.2.2 Mechanism of isotropy
	16.4 Sensorized surgical instrument
	16.5 Implementation
		16.5.1 Surgical manipulator
		16.5.2 Sensorized surgical instrument
		16.5.3 Entire surgical robot: S-surge
	16.6 Experiments
		16.6.1 Experimental environment
		16.6.2 Experimental results
	16.7 Conclusion
	References
17 Center for Advanced Surgical and Interventional Technology Multimodal Haptic Feedback for Robotic Surgery
	17.1 Introduction
	17.2 Feedback modalities
		17.2.1 Sensory substitution
		17.2.2 Haptic feedback
	17.3 Existing haptic feedback systems for robotic surgery
		17.3.1 Sensing technology
		17.3.2 Actuation and feedback technology
	17.4 The Center for Advanced Surgical and Interventional Technology multimodal feedback system
		17.4.1 Overview
		17.4.2 Sensory unit
		17.4.3 Signal processing unit
		17.4.4 Haptic feedback unit
		17.4.5 Validation studies
			17.4.5.1 Reduction in grip forces
			17.4.5.2 Visual–perceptual mismatch
			17.4.5.3 Artificial palpation
			17.4.5.4 Knot tying
	17.5 Conclusion and future directions
	References
18 Applications of Flexible Robots in Endoscopic Surgery
	18.1 Review of current manual endoscopic surgery tools
	18.2 Technical challenges in current endoscopic surgery using manual tools
	18.3 Review of endoscopic robots: purely mechanical and motorized
		18.3.1 Purely mechanical endoscopic robots
		18.3.2 Motorized endoscopic robots
	18.4 Advantages of flexible robots in the application of endoscopic surgery
	18.5 Basic coordinate system and kinematic mapping of a continuum manipulator
		18.5.1 Manipulator-specific mapping
		18.5.2 Manipulator-independent mapping
		18.5.3 Drawback of a typical coordinate system
	18.6 Experimental results from several successfully developed endoscopic surgical robots
	18.7 Future development directions for flexible robots in endoscopic surgery
	References
19 Smart Composites and Hybrid Soft-Foldable Technologies for Minimally Invasive Surgical Robots
	19.1 Introduction
		19.1.1 Urology
		19.1.2 Gastroenterology
		19.1.3 Proposed robotic platforms
	19.2 Smart composites in a robotic catheter for targeted laser therapy
		19.2.1 Clinical motivation
		19.2.2 Robotic catheter: design, materials, and manufacturing
	19.3 Soft-foldable endoscopic arm
		19.3.1 Clinical motivation
		19.3.2 Endoscopic arm: design, materials, and manufacturing
	19.4 Conclusion and future work
	References
20 Robotic-Assisted Percutaneous Coronary Intervention
	Abbreviations
	20.1 Introduction
		20.1.1 Percutaneous coronary intervention
			20.1.1.1 Health hazards
			20.1.1.2 Precision
		20.1.2 Robotic-assisted percutaneous coronary intervention
	20.2 System description
		20.2.1 CorPath GRX overview
		20.2.2 Articulated arm
		20.2.3 Robotic drive and cassette
		20.2.4 Control console
		20.2.5 Cockpit and power vision monitor
	20.3 Operation and workflow
		20.3.1 Preparation for robotic-assisted percutaneous coronary intervention
		20.3.2 Robotic procedure
		20.3.3 Safety considerations
	20.4 Kinematics analysis
		20.4.1 Forward kinematics
			20.4.1.1 Denavit–Hartenberg method
			20.4.1.2 Forward kinematics formulation of the arm
		20.4.2 Inverse kinematics and workspace analysis
			20.4.2.1 Independent joint variables
			20.4.2.2 Inverse kinematics formulation
			20.4.2.3 Workspace
	20.5 Motor control system modeling
		20.5.1 Permanent magnet synchronous motor model
		20.5.2 Direct quadrature control architecture for permanent magnet synchronous motors
		20.5.3 Quadrature current control of brushless linear DC motors
		20.5.4 Direct current control of stepper motors
	20.6 Future of robotic vascular interventional therapy
	References
21 Image-Guided Motion Compensation for Robotic-Assisted Beating Heart Surgery
	21.1 Introduction
	21.2 Background
	21.3 Image stabilization
	21.4 Strip-wise affine map
	21.5 Shared control
		21.5.1 Simple motion compensation
		21.5.2 Active assistance
		21.5.3 Haptic assistance
	21.6 Experimental setup
		21.6.1 Robotic system description
		21.6.2 Graphics system description
	21.7 Simulation experiments
	21.8 Conclusion
	References
22 Sunram 5: A Magnetic Resonance-Safe Robotic System for Breast Biopsy, Driven by Pneumatic Stepper Motors
	22.1 Introduction
		22.1.1 Clinical challenge
		22.1.2 Magnetic resonance imaging compatibility of surgical robots
		22.1.3 Actuation methods for magnetic resonance-safe/conditional robots
		22.1.4 State of the art
			22.1.4.1 Pneumatic magnetic resonance imaging robots by Stoianovici, Bomers, and Sajima
			22.1.4.2 Stormram 1–4 and Sunram 5
		22.1.5 Organization of the chapter
	22.2 Pneumatic cylinders
		22.2.1 Rectangular cross-sectional shape
		22.2.2 Sealing
		22.2.3 Design of the single-acting cylinder
		22.2.4 Manufacturization
		22.2.5 Double-acting cylinder
	22.3 Stepper motors
		22.3.1 Design of the two-cylinder stepper motor
		22.3.2 Curved stepper motor
		22.3.3 Dual-speed stepper motor
	22.4 Design of Sunram 5
		22.4.1 Kinematic configuration
		22.4.2 Mechanical design of Sunram 5
	22.5 Control of pneumatic devices
	22.6 Evaluation of stepper motors and Stormram 4
		22.6.1 Stepper motor force
		22.6.2 Stepping frequency
		22.6.3 Accuracy
		22.6.4 Stormram 4 evaluation
	22.7 Conclusion
	References
23 New Advances in Robotic Surgery in Hip and Knee Replacement
	23.1 Introduction
	23.2 Challenges with manual surgery
		23.2.1 Unicompartmental knee arthroplasty
		23.2.2 Patellofemoral arthroplasty
		23.2.3 Total knee arthroplasty
		23.2.4 Total hip arthroplasty
	23.3 Robotic knee surgery experience
		23.3.1 Unicompartmental knee arthroplasty
		23.3.2 Total knee arthroplasty
	23.4 Robotic hip surgery experience
	23.5 Preoperative preparation
	23.6 Operative setup
	23.7 Surgical technique
	23.8 Future directions
	References
	Further reading
24 Intellijoint HIP: A 3D Minioptical, Patient-Mounted, Sterile Field Localization System for Orthopedic Procedures
	24.1 Background
	24.2 Intellijoint minioptical technology
		24.2.1 System overview
		24.2.2 Camera
		24.2.3 Software framework
		24.2.4 Tracker
	24.3 Minioptical system calibration
	24.4 Clinical applications
		24.4.1 Intellijoint HIP
		24.4.2 Other applications
	24.5 Accuracy performance
	24.6 Conclusion
	24.7 Challenges and further development
	References
25 More Than 20 Years Navigation of Knee Surgery With the Orthopilot Device
	25.1 Introduction
	25.2 The Orthopilot device
	25.3 Operative procedures: total knee arthroplasty
		25.3.1 Navigation of the femoro-tibial mechanical angle
		25.3.2 Navigation of the bone cuts
		25.3.3 Implanting the trial prosthesis
		25.3.4 Rotation of the femoral implant
		25.3.5 Ligament balance
		25.3.6 Implanting the final prosthesis
	25.4 Osteotomies for genu varum deformity
		25.4.1 High tibial opening wedge osteotomy
		25.4.2 Double-level osteotomy
	25.5 Osteotomy for genu valgum deformity
	25.6 Uni knee arthroplasty
	25.7 Uni knee arthroplasty to total knee arthroplasty revision
	25.8 Results
		25.8.1 Total knee arthroplasty
		25.8.2 Uni knee arthroplasty and revision to total knee arthroplasty
		25.8.3 Osteotomies
			25.8.3.1 High tibial osteotomy
			25.8.3.2 Double-level osteotomy
			25.8.3.3 Osteotomies for genu valgum
	25.9 Discussion
	25.10 Conclusion
	References
26 NAVIO Surgical System—Handheld Robotics
	26.1 Introduction
	26.2 The NAVIO surgical workflow
		26.2.1 Patient and system setup
			26.2.1.1 Bone tracking hardware
		26.2.2 Registration—image-free technology
		26.2.3 Prosthesis planning
		26.2.4 Robotic-assisted bone cutting
		26.2.5 Trial reduction
		26.2.6 Cement and close
	26.3 Conclusion
	References
	Further reading
27 Development of an Active Soft-Tissue Balancing System for Robotic-Assisted Total Knee Arthroplasty
	27.1 Introduction
	27.2 The OMNIBotics system
		27.2.1 System overview
		27.2.2 BoneMorphing/shape modeling
		27.2.3 OMNIBot miniature robotic cutting guide
		27.2.4 BalanceBot system development
		27.2.5 Initial prototype design requirements
		27.2.6 Proof of concept
		27.2.7 Engineering for product commercialization
		27.2.8 Verification, validation, and regulatory clearances
		27.2.9 Surgical workflow
		27.2.10 Cadaver labs and clinical results
	27.3 Discussion and conclusion
	Acknowledgments
	References
28 Unicompartmental Knee Replacement Utilizing Robotics
	28.1 Introduction
	28.2 Challenges with manual surgery
		28.2.1 Limb alignment/component positioning
	28.3 Robotic surgery experience
	28.4 Preoperative preparation/operative setup/surgical technique
		28.4.1 Indications for use—RESTORIS partial knee application
			28.4.1.1 Preoperative
			28.4.1.2 Intraoperative
		28.4.2 Patient positioning
			28.4.2.1 Single-leg procedures
			28.4.2.2 Securing the leg and IMP De Mayo knee positioner
			28.4.2.3 Bone pin insertion (tibia only)
			28.4.2.4 Bone pin insertion (femur only)
			28.4.2.5 Array assembly (femur and tibia)
			28.4.2.6 Base array placement and orientation—surgeon/Mako product specialist
			28.4.2.7 Operating room configuration
			28.4.2.8 Patient time out page
		28.4.3 Bone registration
			28.4.3.1 Patient landmarks—Mako product specialist
			28.4.3.2 Capturing remaining landmarks—surgeon
			28.4.3.3 Bone registration: femur and tibia—Mako product specialist/surgeon
			28.4.3.4 Registration verification—Mako product specialist/surgeon
			28.4.3.5 Implant planning
		28.4.4 Bone preparation
			28.4.4.1 Checkpoints
			28.4.4.2 Bone preparation page layout
				Main window
			28.4.4.3 Visualization and stereotactic boundaries
			28.4.4.4 Mode: approach
			28.4.4.5 CT view
		28.4.5 Kinematic analysis
		28.4.6 Case completion—archive and exit
	28.5 Discussion
	References
	Further reading
29 Robotic and Image-Guided Knee Arthroscopy
	29.1 Introduction
	29.2 Steerable robotic tools for arthroscopy
		29.2.1 Why steerable robotic tools are necessary for arthroscopy
		29.2.2 Mechanical design
		29.2.3 Human–robot interaction
		29.2.4 Modeling
		29.2.5 Sensing
		29.2.6 Evaluation
	29.3 Leg manipulators for knee arthroscopy
		29.3.1 Leg manipulation systems
		29.3.2 Knee gap detection for leg manipulation
	29.4 Miniature stereo cameras for medical robotics and intraknee perception
		29.4.1 Complementary metal-oxide semiconductor sensors for knee arthroscopy
		29.4.2 Emerging sensor technology for medical robotics
		29.4.3 Miniature stereo cameras for knee arthroscopy
			29.4.3.1 Validation of stereo imaging in knee arthroscopy
	29.5 Ultrasound-guided knee arthroscopy
		29.5.1 Ultrasound-based navigation
		29.5.2 Ultrasound for the knee
			29.5.2.1 Automatic and semiautomatic segmentation and tracking
			29.5.2.2 Ultrasound-guided interventions
			29.5.2.3 Ultrasound-guided robotic procedures
		29.5.3 Ultrasound guidance and tissue characterization for knee arthroscopy
	29.6 Toward a fully autonomous robotic and image-guided system for intraarticular arthroscopy
		29.6.1 Sensor fusion of camera image and ultrasound guidance
		29.6.2 Leg manipulation for better imaging and image-guided leg manipulation
		29.6.3 Vision-guided operation with steerable robotic tools
	29.7 Discussion
	29.8 Conclusion
	References
30 Robossis: Orthopedic Surgical Robot
	30.1 Introduction
	30.2 Robot structure
	30.3 Comparison with the Gough–Stewart platform
		30.3.1 Workspace
		30.3.2 Singularity analysis
		30.3.3 Singularity effects on actuator forces and torques
		30.3.4 Dynamic performance index
		30.3.5 Dynamic load carrying capacity
	30.4 Experimental testing
		30.4.1 Trajectory tracking
		30.4.2 Surgical workspace
		30.4.3 Force testing
	30.5 Conclusion and future work
	References
31 EOS Imaging: Low-Dose Imaging and Three-Dimensional Value Along the Entire Patient Care Pathway for Spine and Lower Limb...
	31.1 Introduction
	31.2 EOS acquisition system
		31.2.1 System description
		31.2.2 Benefits of slot-scanning weight-bearing technology
	31.3 Patient-specific three-dimensional models
		31.3.1 Modeling technology
		31.3.2 Pelvis
		31.3.3 Lower limbs
		31.3.4 Spine
	31.4 Preoperative surgical planning solutions and intraoperative execution
		31.4.1 spineEOS
		31.4.2 hipEOS
		31.4.3 kneeEOS
	31.5 Conclusion
	References
32 Machine-Vision Image-Guided Surgery for Spinal and Cranial Procedures
	32.1 Overview of image-guided surgery technology
		32.1.1 Importance of navigation in spinal and cranial procedures
		32.1.2 Evolution of image-guided surgery system
		32.1.3 Intraoperative image-guided surgery systems
			32.1.3.1 Intraoperative fluoroscopy-based image-guided surgery systems
			32.1.3.2 Intraoperative three-dimensional image-guided surgery systems
		32.1.4 Preoperative image-guided surgery systems
	32.2 Motivation and benefits of the Machine-vision Image-Guided Surgery system
		32.2.1 Complex workflow and long learning curve
		32.2.2 Extended surgical time due to workflow disruptions
		32.2.3 Line-of-sight issues for optical trackers
		32.2.4 Requiring nonsterile user assistance
		32.2.5 Exposure to intraoperative ionizing radiation
		32.2.6 Large device footprint
	32.3 Technical aspects of the 7D Surgical Machine-vision Image-Guided Surgery system
		32.3.1 Hardware components
		32.3.2 The Machine-vision Image-Guided Surgery system workflow
		32.3.3 Flash Registration
	32.4 Clinical case studies with 7D Surgical Machine-vision Image-Guided Surgery system
		32.4.1 Revision instrumented posterior lumbar fusion L3–L5
		32.4.2 Revision instrumented posterior lumbar fusion L4–S1
		32.4.3 Cervical fusion with radiofrequency ablation and vertebroplasty
		32.4.4 Cervical fusion
		32.4.5 Left temporal open biopsy
	32.5 Future of 7D Surgical Machine-vision Image-Guided Surgery system
		32.5.1 Multilevel registration for spine deformity procedures
	32.6 Conclusion
	References
33 Three-Dimensional Image-Guided Techniques for Minimally Invasive Surgery
	33.1 Introduction
	33.2 Three-dimensional image-guided surgery system
		33.2.1 Three-dimensional image acquisition and display
			33.2.1.1 Three-dimensional image acquisition
			33.2.1.2 Three-dimensional stereoscopic and autostereoscopic displays
		33.2.2 Augmented reality–based three-dimensional image–guided surgery system
			33.2.2.1 Augmented reality–based three-dimensional image-guided techniques
			33.2.2.2 Three-dimensional integral videography image overlay for image guidance
	33.3 Related techniques in three-dimensional image-guided surgery systems
		33.3.1 Intraoperative patient–three-dimensional image registration
		33.3.2 Real-time accurate three-dimensional image rendering
	33.4 Applications
		33.4.1 Three-dimensional image–guided planning and operation
		33.4.2 Robot-assisted operation
		33.4.3 Integration of diagnosis and treatment in minimally invasive surgery
	33.5 Discussion and conclusion
	References
34 Prospective Techniques for Magnetic Resonance Imaging–Guided Robot-Assisted Stereotactic Neurosurgery
	34.1 Background
	34.2 Clinical motivations for magnetic resonance imaging–guided robotic stereotaxy
	34.3 Significant platforms for magnetic resonance imaging–guided stereotactic neurosurgery
	34.4 Key enabling technologies for magnetic resonance imaging–guided robotic systems
		34.4.1 Nonrigid image registration
		34.4.2 Magnetic resonance–based tracking
		34.4.3 Magnetic resonance imaging–compatible actuation
	34.5 Conclusion
	References
35 RONNA G4—Robotic Neuronavigation: A Novel Robotic Navigation Device for Stereotactic Neurosurgery
	Abbreviations
	35.1 State of the art in robotic neuronavigation
	35.2 RONNA—robotic neuronavigation
		35.2.1 Historical development of the RONNA system
		35.2.2 RONNA G4 system—the fourth generation
	35.3 RONNA surgical workflow
	35.4 Automatic patient localization and registration
		35.4.1 Robotic navigation and point-pair correspondence
		35.4.2 Automated marker localization
			35.4.2.1 Automatic localization in image space
			35.4.2.2 Automatic localization in physical space—RONNAstereo
	35.5 Optimal robot positioning with respect to the patient
		35.5.1 Dexterity evaluation
		35.5.2 RONNA reachability maps
		35.5.3 Single robot position planning algorithm
		35.5.4 Position planning for collaborating robots
		35.5.5 Robot positioning in physical space
		35.5.6 Robot localization strategies
	35.6 Autonomous robotic bone drilling
		35.6.1 Automated drilling operation
		35.6.2 Force controller
		35.6.3 Experimental results
	35.7 Error analysis of a neurosurgical robotic system
		35.7.1 RONNA kinematic and nonkinematic calibration
			35.7.1.1 Kinematic model
			35.7.1.2 Measurement setup
			35.7.1.3 Optimization method
			35.7.1.4 Validation
	35.8 Future development and challenges
	Acknowledgments
	References
36 Robotic Retinal Surgery
	36.1 The clinical need
		36.1.1 Human factors and technical challenges
		36.1.2 Motivation for robotic technology
		36.1.3 Main targeted interventions
			36.1.3.1 Epiretinal membrane peeling
			36.1.3.2 Retinal vein cannulation
			36.1.3.3 Subretinal injection
		36.1.4 Models used for replicating the anatomy
	36.2 Visualization in retinal surgery
		36.2.1 Basic visualization through operative stereo microscopy
			36.2.1.1 Stereo microscope
			36.2.1.2 Additional lenses
			36.2.1.3 Light sources
			36.2.1.4 Additional imaging
		36.2.2 Real-time optical coherence tomography for retinal surgery
		36.2.3 Principle of Fourier domain optical coherence tomography
			36.2.3.1 Axial resolution of spectral-domain optical coherence tomography
			36.2.3.2 Lateral resolution of spectral-domain optical coherence tomography
			36.2.3.3 Imaging depth of spectral-domain optical coherence tomography
			36.2.3.4 Sensitivity of spectral-domain optical coherence tomography
		36.2.4 High-speed optical coherence tomography using graphics processing units processing
	36.3 Advanced instrumentation
		36.3.1 Force sensing
			36.3.1.1 Retinal interaction forces
			36.3.1.2 Scleral interaction forces
			36.3.1.3 Force gradients
		36.3.2 Optical coherence tomography
		36.3.3 Impedance sensing
		36.3.4 Dexterous instruments
	36.4 Augmented reality
		36.4.1 Mosaicing
		36.4.2 Subsurface imaging
		36.4.3 Depth visualization
		36.4.4 Vessel enhancement
		36.4.5 Tool tracking
		36.4.6 Auditory augmentation
	36.5 State-of-the-art robotic systems
		36.5.1 Common mechatronic concepts
			36.5.1.1 Electric-motor actuation: impedance-type versus admittance-type
			36.5.1.2 Piezoelectric actuation
			36.5.1.3 Remote-center-of-motion mechanisms
		36.5.2 Handheld systems
		36.5.3 Cooperative-control systems
		36.5.4 Teleoperated systems
		36.5.5 Untethered “microrobots”
		36.5.6 Clinical use cases
		36.5.7 General considerations with respect to safety and usability
	36.6 Closed-loop feedback and guidance
		36.6.1 Closed-loop control for handheld systems
		36.6.2 Closed-loop control for cooperative-control systems
			36.6.2.1 Robot control algorithms based on tool-tip force information
			36.6.2.2 Robot control algorithms based on sclera force information
		36.6.3 Closed-loop control for teleoperated systems
	36.7 Image-guided robotic surgery
		36.7.1 Image-guidance based on video
		36.7.2 Image guidance based on optical coherence tomography
	36.8 Conclusion and future work
		36.8.1 Practical challenges ahead
		36.8.2 System optimization
		36.8.3 Novel therapy delivery methods
		36.8.4 Toward autonomous interventions
	36.9 Acknowledgments
	References
37 Ventilation Tube Applicator: A Revolutionary Office-Based Solution for the Treatment of Otitis Media With Effusion
	37.1 Introduction
		37.1.1 Objectives
		37.1.2 Challenges
			37.1.2.1 Space and accessibility
			37.1.2.2 Operation time
			37.1.2.3 Precision and repeatability
			37.1.2.4 Diversity
		37.1.3 System architecture and organization of this chapter
	37.2 Mechanical system
		37.2.1 Mechanical structure
		37.2.2 Mechanical design
			37.2.2.1 Tool set
				Cutter design
				Stress and deformation analysis
			37.2.2.2 Mechanism for cutter retraction
	37.3 Sensing system
		37.3.1 Working process
		37.3.2 Force-based supervisory controller
		37.3.3 Installation of the force sensor
	37.4 Motion control system
		37.4.1 System identification
			37.4.1.1 System description of the ultrasonic motor stage
			37.4.1.2 System modeling of ultrasonic motor stage
			37.4.1.3 Parameter estimation
				Nonlinear term
				Linear term
		37.4.2 Control scheme
			37.4.2.1 LQR-assisted PID controller
			37.4.2.2 Nonlinear compensation
			37.4.2.3 Overall control system
	37.5 Experimental results
		37.5.1 Experimental setup
		37.5.2 Results
	37.6 Conclusion
	Acknowledgment
	References
38 ACTORS: Adaptive and Compliant Transoral Robotic Surgery With Flexible Manipulators and Intelligent Guidance
	38.1 Introduction
	38.2 Adaptive and compliant transoral robotic surgery
		38.2.1 Clinical requirements
		38.2.2 Overview of the robotic system
		38.2.3 Flexible parallel manipulators
			38.2.3.1 Gripper
			38.2.3.2 Parallel mechanism
			38.2.3.3 Motion transmission
		38.2.4 Master console
		38.2.5 Intelligent guidance
	38.3 Experimental evaluation
		38.3.1 Performance of the manipulators
		38.3.2 Cadaveric trial with the manipulators
		38.3.3 Endoscope navigation trial on phantom
	38.4 Conclusion
	References
Index
Back Cover




نظرات کاربران