ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Radioactivity Analysis: Volume 2: Radioanalytical Applications

دانلود کتاب کتابچه راهنمای تجزیه و تحلیل رادیواکتیویته: جلد 2: کاربردهای رادیوتحلیلی

Handbook of Radioactivity Analysis: Volume 2: Radioanalytical Applications

مشخصات کتاب

Handbook of Radioactivity Analysis: Volume 2: Radioanalytical Applications

ویرایش: 4 
نویسندگان:   
سری:  
ISBN (شابک) : 0128143959, 9780128143957 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 1043 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 مگابایت 

قیمت کتاب (تومان) : 37,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Handbook of Radioactivity Analysis: Volume 2: Radioanalytical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتابچه راهنمای تجزیه و تحلیل رادیواکتیویته: جلد 2: کاربردهای رادیوتحلیلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتابچه راهنمای تجزیه و تحلیل رادیواکتیویته: جلد 2: کاربردهای رادیوتحلیلی



راهنمای تجزیه و تحلیل رادیواکتیویته: فیزیک تشعشع و آشکارسازها، جلد اول، و کاربردهای رادیوآنالیتیک، جلد دوم، ویرایش چهارم، یک مرجع معتبر در مورد اصول، تکنیک‌ها و روش‌های عملی برای اندازه‌گیری دقیق رادیواکتیویته - همه چیز، از سطوح بسیار پایین موجود در محیط، تا سطوح بالاتر اندازه‌گیری شده در تحقیقات رادیوایزوتوپ، آزمایشگاه‌های بالینی، علوم بیولوژیکی، استانداردسازی رادیواکتیو ، پزشکی هسته ای، نیروگاه هسته ای و تاسیسات چرخه سوخت و در اجرای تجزیه و تحلیل پزشکی قانونی هسته ای و پادمان های هسته ای. این شامل تکنیک‌های آماده‌سازی نمونه برای همه انواع ماتریس‌های موجود در محیط، از جمله خاک، آب، هوا، مواد گیاهی و بافت حیوانی و ضربه‌های سطحی است.

کاربران آخرین پیشرفت‌ها را در کاربردهای آنالیز رادیواکتیویته در زمینه‌های مختلف، از جمله نظارت بر محیط‌زیست، استانداردسازی رادیوشیمیایی، تصویربرداری بتا با وضوح بالا، جداسازی رادیوشیمیایی خودکار، پزشکی قانونی هسته‌ای و موارد دیگر پیدا خواهند کرد.


توضیحاتی درمورد کتاب به خارجی

Handbook of Radioactivity Analysis: Radiation Physics and Detectors, Volume One, and Radioanalytical Applications, Volume Two, Fourth Editionconstitute an authoritative reference on the principles, practical techniques and procedures for the accurate measurement of radioactivity - everything from the very low levels encountered in the environment, to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, and fuel cycle facilities, and in the implementation of nuclear forensic analysis and nuclear safeguards. It includes sample preparation techniques for all types of matrices found in the environment, including soil, water, air, plant matter and animal tissue, and surface swipes.

Users will find the latest advances in the applications of radioactivity analysis across various fields, including environmental monitoring, radiochemical standardization, high-resolution beta imaging, automated radiochemical separation, nuclear forensics, and more.



فهرست مطالب

Cover
Handbook of Radioactivity Analysis: Volume 2: Radioanalytical Applications
Copyright
Contributors
About the Founding Editor
Foreword
Preface to the fourth edition
Acronyms, Abbreviations, and Symbols
1. Environmental radioactivity monitoring
	I. Introduction: objective of environmental monitoring
	II. Types of monitoring programs
		A Routine monitoring
		B Emergency preparedness
		C Emergency monitoring
	III. Fundamentals of environmental monitoring
		A Design of environmental monitoring programs
		B Sampling strategies
		C Sample preparation
		D Measurement and quantification
		E Quality assurance/quality control
	IV. Monitoring for internal exposure
		A Air
			1 Aerosols
			2 Online versus offline systems
			3 Gaseous effluents
				a Iodine measurement
				b Radon measurement
				c Noble gases other than radon
		B Soil, sediments, vegetation, and deposits
			1 Laboratory based
				a Soil and sediments
				b Vegetation
				c Deposits
			2 In situ gamma spectroscopy
		C Water
			1 Wastewater
			2 Rain
			3 Groundwater
			4 Surface water
			5 Drinking water
		D Foodstuff
			1 Milk
			2 Meat and fish
			3 Vegetables, fruits, and cereals
			4 Mixed diet
	V. Monitoring for external exposure
		A Dose rate monitoring
		B Dose monitoring
	VI. Mobile monitoring
		A Aerial measurements
		B Mobile laboratories
	References
	Further reading
	Rudolf Engelbrecht
2. Environmental liquid scintillation analysis1
	I. Introduction
	II. Low-level liquid scintillation counting theory
		A Sources of background
		B Background reduction methods-instrument considerations
			1 Enhanced passive/graded shielding
			2 Active guard detectors
			3 Pulse discrimination electronics
				a Pulse shape analysis
				b Pulse amplitude comparison
				c Time-resolved liquid scintillation counting
			4 TR-LSC quasi-active detector guards
				a Slow scintillating plastic
				b Bismuth germanate
			5 Counting region optimization
				a Region optimization procedures and requirements under constant quench conditions
				b Region optimization under variable quench conditions
			6 Process optimization
		C Background reduction methods-vial, vial holder, and cocktail considerations
			1 Vials
			2 Vial holders
			3 Cocktail choice and optimization
		D Background reduction methods-environment
	III. Alpha/beta discrimination
		A Alpha/beta separation theory
		B Alpha/beta instrumentation
			1 The PERALS spectrometer
			2 Conventional LS spectrometers with pulse-shape discrimination
				a Wallac Oy
				b Packard Instrument Co (Now PerkinElmer, Inc.).
				c Hidex Oy
				d Beckman Coulter Inc.
		C Cocktail and vial considerations
			1 Cocktail choice
				a Aqueous-accepting cocktails
				b Extractive scintillators
			2 Vial choice
		D Alpha/beta calibration
			1 Misclassification Calculations
			2 Quenching and quench correction of percentage misclassification
	IV. Triple-to-double coincidence ratio (TDCR) counting
		A TDCR liquid scintillation counting
		B TDCR Cerenkov counting
	V. Analysis of alpha-emitting transuranic nuclides
		A Environmental occurrence and importance
		B Sample preparation and analysis
			1 Alpha spectrometry
			2 Mass spectrometry
			3 Liquid scintillation counting (LSC)
	VI. Analysis of beta-emitting radionuclides
		A Tritium (3H)
			1 Environmental occurrence
			2 Sample preparation and analysis
				a Sample handling
				b Sample preparation
				c Tritium extraction/purification techniques
				d Background water
				e Standards
				f Quality control
				g Quality assurance
		B Radiocarbon (14C)
			1 Environmental occurrence
			2 Sample preparation and analysis
				a Sample preparation
				b Standards of 14C
				c Quality assurance
				d Calculation of results and radiocarbon conventions
			3 Analysis of 14C in fuels containing biogenic materials
				a Carbon dioxide emissions and reduction measures
				b Testing methods for product biocomponent verification
					1) ASTM D6866 Standard Method
						Method A
						Method B
						Method C
					2) Tests according to the ASTM D6866 Standard Method
					3) Other standard methods
					4) Direct analysis method, ``Method D\'\'
					5) Merits of the analysis methods
				c Carbon dioxide and particulate analyses
		C Iron-55 (55Fe)
			1 Environmental occurrence
			2 Sample preparation and analysis
		D Nickel-63 (63Ni)
			1 Environmental occurrence
			2 Sample preparation and analysis
		E Strontium-89 and strontium-90/yttrium-90 (89Sr and 90Sr/90Y)
			1 Environmental occurrence
			2 Sample preparation
			3 LSC measurements
				a Early LSC methods
				b Recent LSC methods
				c Cerenkov counting methods
		F Technetium-99 (99Tc)
			1 Environmental occurrence
			2 Sample preparation and analysis
		G Plutonium-241 (241Pu)
			1 Environmental occurrence
			2 Sample preparation and analysis
		H Other radionuclides (36Cl, 41Ca, 129I)
			1 Chloride-36 (36Cl)
			2 Iodine-129 (129I)
			3 Calcium-41 (41Ca)
	VII. Analysis of radionuclides from natural decay series
		A Uranium
			1 Environmental occurrence and importance
			2 Sample preparation and analysis
		B Gross alpha and beta measurements
		C Radon
			1 Environmental occurrence and importance
			2 Sample preparation and analysis
				a 222Rn measurements in air
				b 222Rn measurements in water
				c Emanation and gamma spectrometric methods
				d Liquid scintillation methods
				e Extraction of radon from a large water sample
		D Radium
			1 Environmental occurrence and importance
			2 Sample preparation and measurement of 226Ra, 228Ra, 224Ra, and 223Ra
				a Alpha and gamma spectrometric methods
				b Emanation methods
				c Liquid scintillation counting methods
				d Determination of 228Ra in natural waters
				e Preconcentration of radium isotopes from large water volumes
				f Other methods
		E Lead-210 (210Pb) [Bismuth-210 (210Bi) and Polonium-210 (210Po)]
			1 Environmental occurrence and importance
			2 Sample preparation and analysis
				a Direct counting of 210Pb by gamma spectrometry
				b Measurement of 210Pb and 210Po by alpha spectrometry
				c Measurement of 210Pb, 210Bi, and 210Po by liquid scintillation counting
		F Thorium
			1 Environmental occurrence and importance
			2 Sample preparation and analysis
				a 232Th, 230Th, and 228Th
				b 234Th
	VIII. Spectrum deconvolution methods in environmental analysis
		A Spectrum deconvolution, unfolding, stripping, peak fitting
		B Approaches in LS beta spectrometry
		C Alpha spectrum unfolding
			1 Energy resolution
			2 High energy tailing
			3 Software
		D Better energy resolution enables more complete separation
			1 Cocktail and sample quench
			2 Vial selection
			3 Lower sample temperature
			4 New detector designs
	References
	Xiaolin Hou
	Xiongxin Dai
3. Analysis of environmental radionuclides
	I. Introduction
	II. Environmental radionuclides
		A Primordial radionuclides
		B Radiogenic radionuclides
		C Cosmogenic radionuclides
		D Anthropogenic radionuclides
			1 Nuclear weapons testing
			2 Nuclear reactors
			3 Nuclear fuel reprocessing plants
			4 Nuclear accidents
				a Three Mile Island (United States)
				b Chernobyl (Ukraine) nuclear power plant accident
				c Fukushima (Japan) nuclear power plant accident
				d Other nuclear accidents
			5 Specific anthropogenic radionuclides
				a Tritium
				b Carbon-14
				c Strontium-90
				d Technetium-99
				e Iodine-129
				f Cesium-137
				g Uranium-236
				h Plutonium isotopes
	III. Radionuclide compartments
		A Atmosphere
		B Hydrosphere
		C Biosphere
		D Pedosphere
	IV. Analytical techniques
		A Radiometric techniques
			1 Alpha spectrometry
			2 Beta counting
			3 Gamma spectrometry
		B Low-energy inorganic mass spectrometry
			1 Inductively coupled plasma mass spectrometry
			2 Thermal ionization mass spectrometry
			3 Resonance ionization mass spectrometry
			4 Glow discharge mass spectrometry
			5 Secondary ion mass spectrometry
			6 3H-3He ingrowth mass spectrometry
			7 Positive-ion mass spectrometry
		C Accelerator mass spectrometry
			1 Ion separation in accelerator mass spectrometry
			2 Ion source
			3 Injection system
			4 Tandem accelerator
			5 High-energy analyzer and ion detection
	V. Radionuclide analyses
		A Radioactive gases
			1 Radiocarbon
				a Gas proportional counting of 14C
				b Liquid scintillation counting of 14C
				c Accelerator mass spectrometry of 14C
			2 Tritium
				a Gas proportional counting of 3H
				b Liquid scintillation counting of 3H
				c 3H-3He ingrowth mass spectrometry
				d Accelerator mass spectrometry of 3H
			3 Argon, krypton, and xenon
				a Gas proportional counting of radioactive noble gases
				b Gamma spectrometry of radioactive noble gases
				c Accelerator mass spectrometry of radioactive noble gases
				d Atom trap-trace analysis
			4 Radon
		B Radionuclides on aerosols
			1 Properties of aerosols
			2 Sampling of aerosols
			3 Examples of radionuclides on aerosols
				a Tritium
				b 7Be
				c 10Be
				d 14C
				e 22Na
				f 26Al
				g 131I
				h 129I
				i 137Cs
				j 40K
				k Radon and its daughters
		C Radionuclides in freshwater systems
			1 Sampling of water
				a Precipitation
				b Groundwater
				c Surface and depth water profiles
				d Sediment pore water
				e Ice cores
			2 Examples of radionuclides in water systems
				a Tritium
				b Radiocarbon
				c Chlorine-36
				d Technetium-99
				e Iodine-129
				f Radiocesium
				g Radon
		D Radionuclides in soil
			1 Preparation of soil samples for radionuclide analysis
			2 Examples of radionuclides in soil
				a Radon
				b 137Cs
		E Radionuclides in biota
			1 Radiocarbon and tritium
				a Carbon-14
				b Tritium
			2 Radiocesium and radiostrontium
				a Radiocesium
				b Radiostrontium
			3 Radioiodine
				a Iodine-131
				b Iodine-129
		F Analysis of actinides
			1 Sampling and pretreatment
			2 Separation of actinides
				a Coprecipitation
				b Ion exchange
				c Cation exchange
			3 Extraction chromatography
				a TEVA resins
				b UTEVA resins
				c TRU resins
			4 Multistage extraction chromatography column methods
				a DIPEX resins
				b DIPHONIX resins
				c DGA resins
			5 Combined procedures for the determination of neptunium and other actinides
			6 Source preparation
			7 Examples of actinides in the environment
				a Uranium-236 in terrestrial waters
				b Transuranics on atmospheric aerosols
				b Transuranics in soil
				c Pu isotope ratios
	VI. International networks for monitoring of environmental radionuclides
		A International monitoring system of CTBTO
		B European network ``Ring of Five\'\'
	VII. Conclusions
	Acknowledgments
	References
	Miroslav Ješkovský
	Jakub Kaizer
	Ivan Kontul\'
	Galina Lujaniené
	Monika Müllerová
	Pavel P. Povinec
4. Radioactive aerosol analysis∗
	I. Introduction
		A What is a radioactive aerosol?
		B Radioactive aerosol formation
	II. Radioactive aerosol sampling and measurement
		A Aerodynamic particle sizing
			1 Aitken nuclei mode particles
			2 Accumulation mode particles
			3 Coarse-particle mode particles
		B Instrumentation
			1 High-volume air samplers
			2 Aerosol cascade impactors
				a Description
				b Assembly
					High-volume slotted cascade impactor
				c Aerosol sampling-sampling artifacts
				d Filter collection media
				e Data interpretation
				f Calibration
	III. Radioactive aerosols in ambient air
		A Radon and thoron decay product aerosols
		B Radioactive aerosols associated with the cosmic ray-produced radionuclides
		C Radioactive aerosols in the workplace environment
			1 Mine aerosols
		D Radioactive aerosols associated with the operation of high-energy particle accelerators
		E Fission product radionuclide aerosols
			1 Nuclear bomb tests
			2 The comprehensive Test Ban Treaty
			3 Chernobyl accident
			4 Fukushima accident
	IV. Residence time of radioactive aerosols
		A Residence time of tropospheric aerosol particles associated with the cosmic ray-produced radionuclides
		B Residence time of tropospheric aerosol particles associated with the radon decay product radionuclides
		C Residence time of tropospheric aerosol particles associated with the fission product radionuclides
	References
	Further reading
	Konstantinos Eleftheriadis
	Alexandra Ioannidou
5. Marine radioactivity analysis
	I. Introduction
	II. Sampling techniques
		A Seawater sampling
		B Sediment sampling
		C Biota sampling
		D Sampling of particulate matter
	III. Underwater gamma-ray spectrometry
		A Towed detector systems
		B Stationary detector systems
		C Applications of underwater gamma-ray spectrometry
			1 Mururoa and Fangataufa lagoons
			2 Novaya Zemlya bays
			3 Mapping of coastal sediments in the Irish Sea
			4 Monitoring of 137Cs in Irish Seawaters
			5 Submarine groundwater discharge studies
				a Sicily/Italy SGD site
				b Brazil SGD site
	IV. Analysis of natural radionuclides
		A Thorium, protactinium, and uranium isotopes
			1 Sampling of seawater
			2 Sampling of particulate matter and sediments
			3 Dissolving of particulate matter and sediments
			4 Ion-exchange separation
			5 Electrodeposition of Th, U, and Pa
		B Thorium-234
			1 Sediments
			2 Seawater
		C Polonium-210 and Lead-210
			1 Seawater
			2 Digestion of filters and sediments
			3 Plating of 210Po
				a Technique I
				b Technique II
		D Radium isotopes
			1 Measurement of 223Ra and 224Ra
			2 Measurement of 228Ra and 226Ra
		E Radon-222
		F Beryllium-7
	V. Analysis of anthropogenic radionuclides
		A Preparation of samples for radionuclide analysis
		B Shipboard chemistry for seawater samples
			1 Transuranics
			2 Cesium
			3 Strontium
		C Laboratory chemistry for seawater samples
			1 Transuranics
			2 Cesium
			3 Strontium
		D Laboratory chemistry for sediment and biota samples
	VI. Activity measurement techniques
		A Radiometric methods
			1 Low-level alpha-spectrometry
			2 Low-level beta-spectrometry
			3 Low-level gamma-spectrometry
			4 Underground laboratories
		B Mass spectrometry methods
			1 3He in-growth spectrometry for 3H analysis
			2 Inductively coupled plasma mass spectrometry
			3 Thermal ionization mass spectrometry
			4 Resonance ionization mass spectrometry
			5 Accelerator mass spectrometry
				a Examples of radionuclide analyses with AMS
			6 Laser-based 14C spectroscopy
			7 Positive-ion mass spectrometry
			8 Comparison of detection limits
	VII. Analysis of radioactive particles
		A Radioactive particle studies
			1 Safeguards applications
			2 Radiological impact studies
			3 Geo-chemical behavior studies of radionuclides
		B Protocols for studying radioactive particles
			1 Nondestructive analysis
				a Gamma ray, X-ray, and alpha spectrometry on particles
				b Scanning electron microscopy coupled with X-ray detectors
				c Microbeam X-ray fluorescence techniques applied to particles
				d Synchrotron radiation-based XRF
				e X-ray absorption spectroscopy
			2 Semi-destructive analysis of particles
			3 Destructive analysis on particles
	VIII. Management of data quality
		A Laboratory Information Management system
		B Intercomparison exercises
		C Reference materials
	IX. Marine radioactivity databases
	X. Examples of marine radioactivity studies
		A Worldwide marine radioactivity studies
			1 The 137Cs time series in the Atlantic Ocean
			2 The 137Cs time series in the Pacific Ocean
			3 The 137Cs time series in the Indian Ocean
			4 Radionuclide tracing of water masses in the South Indian Ocean
		B Southern Hemisphere Ocean Tracer Studies
		C Marine radioactivity impact of the Fukushima accident
	XI. Conclusions
	Acknowledgments
	References
	Pavel P. Povinec
	Mats Eriksson
	Jan Scholten
	Maria Betti
6. Cherenkov counting
	I. Introduction
	II. Discovery of Cherenkov radiation
	III. Theory and properties of Cherenkov radiation
		A Interpretation by Il\'ja M. Frank and Igor Y. Tamm
		B Quantum mechanical interpretation
		C Threshold condition
		D Threshold energies
		E Photon spatial asymmetry
		F Photon spectrum and radiation intensity
		G Cherenkov photon emissions and counter geometry
	IV. Quenching and quench correction
		A Internal standardization
		B Sample channels ratio
		C Sample spectrum quench indicating parameters
			1 Counting region
			2 Quench correction
		D External standard quench correction
	V. Cherenkov counting parameters
		A Sample volume
		B Counting vials
		C Wavelength shifters
		D Ionic liquids
		E Refractive index
		F Sample physical state
	VI. Cherenkov counting in the dry state
	VII. Radionuclide analysis with silica aerogels
	VIII. Cherenkov counting in microplate format
		A Sample-to-sample cross-talk
		B Sample volume effects
		C Quench correction
	IX. Multiple radionuclide analysis
		A Sequential Cherenkov and liquid scintillation analysis
			1 Sequential Cherenkov counting and efficiency tracing
			2 89Sr + 90Sr(90Y) analysis by Cherenkov counting with subsequent LSA
		B Cherenkov analysis with wavelength shifters
	X. Radionuclide standardization
		A Cherenkov counting efficiency-detection probability function, CHEREN
		B Anisotropy detection model-CHEREN2
		C TDCR Cherenkov counting
			1 Anisotropy detection model
			2 Stochastic GEANT4 model in Cherenkov counting
				a Production of Cherenkov photons in PMT windows
				b Standardization of Yttrium-90
		D Standardization of 210Pb
		E Routine TDCR activity analysis
	XI. Gamma ray detection and discrimination
	XII. Particle identification
		A Threshold and differential Cherenkov counters
		B Mirror- or lens-focused RICH counters
		C Proximity-focusing RICH counters
		D Time-of-propagation Cherenkov counters
		E Time-of-flight Cherenkov counters
	XIII. Neutrino detection and measurement
		A Large light-water Cherenkov detectors
		B Large D2O neutrino target
		C Neutrino telescopes in lake and ocean floors
		D Neutrino astronomy in Artic ice
		E Radio Cherenkov counting
	XIV. Applications in radionuclide analysis
		A Phosphorus-32
		B Strontium-89 and Strontium-90 (Yttrium-90)
			1 Cherenkov counting of 89Sr with 90Sr(90Y)
			2 Sequential Cherenkov counting and liquid scintillation analysis
				a Sequential analysis without wavelength shifter
				b Sequential analysis with wavelength shifter
		C Strontium-90(yttrium-90) exclusive of strontium-89
			1 Chemical separation and Cherenkov counting of 90Y
			2 Chemical separation and Cherenkov counting of 90Sr with 90Y ingrowth
		D Yttrium-90
		E Other applications
	XV. Advantages and disadvantages in radionuclide analysis
	XVI. Recommendations in radionuclide analysis
	References
	Further reading
	Michael F. L\'Annunziata
	Željko Grahek
	Nataša Todorović
7. Radionuclide standardization
	I. Introduction
	II. Absolute direct methods
		A Beta-gamma coincidences
			1 Principles of the method
				a Radionuclides with simple decay schemes
					Beta detectors sensitive to gamma radiation
					Converted gamma transitions
					Beta counter sensitivity to gamma radiation
					Gamma detector sensitivity to beta radiation
					Beta-gamma angular correlation
					General expressions for single beta-gamma transitions
				b Radionuclides with complex decay schemes
			2 Radionuclide standardization methods based on beta-gamma coincidence
				a Bidimensional extrapolation
				b Tracer method
				c Dead time and resolving time corrections
					Dead time
					Nonparalyzable dead time
				d Efficiency variation
				e Biparametric extrapolation
			3 Applications of the beta-gamma coincidence method in radionuclide standardization. Differentiation by type of beta counter
				a Beta-gamma coincidence with proportional counter
				b Beta-gamma coincidence with a liquid scintillation counter (4π(LS)ex-γ)
				c beta-gamma coincidence with plastic scintillation sheets
			4 Applications of the beta-gamma coincidence method. Standardization of radionuclides and determination of nuclear constants
			5 Application of the tracer method
			6 Applications of a two-dimensional method of extrapolation
			7 Beta-gamma coincidences. Generation of extrapolation curves
			8 Digital systems for beta-gamma coincidence
		B Beta-gamma anticoincidences
			1 Anticoincidence method with nonextending dead time
			2 Live-timed anticoincidence counting with extending dead-time corrections
			3 Applications of the method of anticoincidence Beta-gamma Radionuclide standardization
				a Applications of nonextending anticoincidence dead time
				b Applications of live-timed anticoincidence counting with extending dead time
		C Beta-gamma correlations
			1 Introduction
			2 Theoretical description of the beta-gamma correlations method
			3 Applications of the Beta-gamma correlations method to radionuclide standardization
		D Gamma-gamma coincidences
			1 Introduction to the sum peak method
			2 Theoretical description of the sum peak method
			3 Dead time and pileup corrections
			4 Applications of the sum peak method
	III. Solid angle primary methods
		A 4π proportional counting
		B 2π proportional counting
		C 4πγ counting
		D 4π windowless sandwich detectors
		E 4πβγ + 4π sum counting
		F Defined solid angle
		G Internal gas counting
			1 Theoretical description of internal gas counting
			2 Some experimental aspects of internal gas counting
			3 Applications of internal gas counting to radionuclide standardization
		H Liquid scintillation counting
			1 Importance of the beta spectrum in the standardization of Co-60
		I Calorimetric detectors
			1 Classic calorimetry
			2 Cryogenic calorimeter
	IV. Relative methods
		A Calibration methods based on gamma ray spectrometry
			1 Description of the general method
				a Extended sources
			2 Heath method
				a Description of the method
				b Precautions
			3 Semi-empirical methods
			4 Monte Carlo technique
		B Measurement of high activity. Ionization chambers
			1 Calibration of ionization chamber radionuclides
			2 Applications of ionization chambers
				a SIR reference system
				b Measurement of half-lives
				c Comparison with primary standards
			3 Considerations on the calculation of ionization chamber efficiency
	V. Reference systems
		A The SIR of gammas
			1 Measurement of short half-life gamma emitters
		B The SIR of betas
	VI. Preparation of radioactive samples
		A Introduction
		B Sample preparation for radionuclide metrology
			1 Supports for extended samples
			2 Dilutions in aqueous solutions
			3 Drops deposit in the sample holder
			4 Determination of mass
			5 Methods for verifying and improving the quality of the source
	References
	Agustín Grau Malonda
	Agustín Grau Carles
8. Radioactivity counting statistics
	I. Introduction
	II. Statistical distributions
		A The Poisson distribution
		B The Gaussian distribution
	III. Analysis of a sample of results
		A Best estimate of the true value
		B Best estimate of precision
		C Error propagation
		D Accuracy of the mean value
		E Combination of measurements
		F Interlaboratory comparisons
			1 Philosophy of the Paule and Mandel method
			2 Calculation of the variance of the between set
			3 Power-Moderate mean
			4 Power-Moderated weighted Mean (PMM)
		G The statement of the results
			1 Type B calculation of typical uncertainty
			2 Combined standard uncertainty
			3 Rules for expressing results
	IV. Statistical inference
		A Hypothesis testing
		B Confidence intervals
		C Statistical inference
			1 Variance of a population
			2 Variance of two populations
	V. Regression
		A Linear regression
			1 Confidence intervals and hypothesis testing
	VI. Detection limits
		A Critical levels
		B Gamma Spectra
			1 High-resolution gamma spectra
				a False peaks distribution
				b Minimum significant area
				c Minimum detectable area
				d Minimum counting time
			2 Low-resolution gamma spectra
				a Sample with a single radionuclide
				b Sample with two radionuclides
				c Sample with several radionuclides
	VII. Metrology applications
		A Uncertainty budget
		B Uncertainty calculation
			1 Uncertainty transmission in Eq. (8.137)
			2 Numerical calculation of uncertainty
	References
	Relevant Statistical References Tables
	Agustín Grau Malonda
	Agustín Grau Carles
9. High-resolution beta imaging
	I. Introduction
	II. Autoradiography principles
		A History
		B General features
			1 Isotopes used
			2 Physical principles of beta interaction and applicability in high-resolution radionuclide imaging (autoradiography)
				a Transport of beta particles in matter
				b Quantification and calibration
				c Spatial resolution limitation
			3 Sample preparation
	III. Energy-storage latent imaging
		A Photographic emulsions
			1 Macroautoradiography with film
				a Performance
				b Quantification
				c Applications
			2 Microautoradiography with emulsions
				a Performance
				b Quantification
				c Applications
		B Phosphor screen technology (autoradioluminography)
			1 History
			2 General principles
				a Image formation
				b Phosphor screen revelation and quality
				c Scanning mechanism and light collection optics
			3 Various phosphor screens
			4 Performance
				a Spatial resolution
				b Dynamic range and sensitivity
			5 Quantification methods
			6 Advantages and drawbacks
			7 Applications
	IV. Particle counting imaging systems
		A Gaseous detector
			1 History: from MWPC to PPAC (BetaIMAGER TRacer) and to micropattern gas detectors (BeaQuantTM)
			2 Description of BetaIMAGER TRacer
				a Principles
				b Sample management
				c Shape of the light spots
			3 Description of the BeaQuant system
				a Principles
				b Electronics and localization of beta particles
				c Performance
				d Sample management
		B Solid membrane detector (digital microautoradiography)
			1 History (BetaIMAGER DFine, formerly MicroImager)
			2 Description of the BetaIMAGER DFine
				a Principles
				b Sample management
				c Shape of the light spots
		C Characteristics and performances of particle-counting imagers
			1 Isotopes used
			2 Performance
			3 Quantification
		D Data analysis for particle-counting imaging systems
			1 List mode files
			2 Multiisotope separation according to energy
			3 Multiple isotope separation according to decay
	V. Comparative use of the different techniques
		A Applications in biochemical analysis
		B Advantages and limitations of radioimagers in histological studies
		C Potentialities for multiradionuclide labeling
		D Autoradiography associated with mass spectroscopy
	VI. Other applications
		A Biochemistry of development studies
		B Bacteriology
		C Physiology and gene expression
		D Molecular biology
		E Molecular imaging
		F Nuclear waste decommissioning projects (analysis of potential radioactive contamination)
	VII. Perspectives and future developments
		A Autoradiography to validate in vivo imaging information
			1 Preclinical applications. Development and validation of new molecular imaging probes
				a Oncology
				b Neuropharmacology
				c Psychopharmacology
				d Cardiovascular research
				e Pneumology
				f Nephrology
				g Biomaterial applications
			2 Clinical applications
			3 Bremsstrahlung radiation imaging
			4 Cerenkov luminescence imaging
		B Autoradiography and alpha-particle imaging
	VIII. Conclusions
	References
	Further reading
	Nicole Barthe
	Serge Maîtrejean
	Nicolas Carvou
	Ana Cardona, in Memoriam
10. Flow-cell radionuclide analysis
	I. Introduction
	II. High-performance liquid chromatography flow-cell analyzers
		A High-performance liquid chromatography flow cell analyzers
		B Liquid (homogeneous) flow cells
		C Solid (heterogeneous) flow cells
		D Gamma and positron emission tomography flow cells
			1 High-energy gamma cell
			2 Low-energy gamma cell
			3 Positron emission tomography cell
		E Narrow-bore and microbore flow cells
		F Luminescence flow cell (fLumo)
		G Hybrid silicon pixel flow cell
		H Criteria for flow-cell selection
	III. Principles of flow scintillation counting
		A Count rates
		B Background and net count rate
		C Counting efficiency and disintegration rates
			1 Static efficiency runs
				a Independent of the high-performance liquid chromatography system
				b dependent on the high-performance liquid chromatography system
			2 Gradient efficiency run
		D Minimal detectable activity
		E Sensitivity, flow rate, and resolution
		F Precision
		G Detection optimization
			1 Multichannel analysis
			2 Chemiluminescence detection and correction
			3 Time-resolved liquid scintillation counting
		H Instrument performance assessment
	IV. Flow scintillator selection
	V. Dual-functionality flow-cell detectors
		A Scintillating extractive resins
		B Composite bed of scintillating and extracting particles
		C Equilibrium-based bed
		D Planar mixed-bed flow cell
		E Planar detectors based on semiconductor diodes
		F Whole-column detector
		G Tritiated water vapor in air detector
	VI. Flow-cell radionuclide analysis sequential to separation
		A 99Tc in nuclear waste and process monitoring
		B Actinides and 90Sr in soil
		C Alpha/beta discrimination
		D 89Sr and 90Sr(90Y) analysis
		E Cherenkov flow-cell analysis
	VII. Stopped-flow detection
	VIII. Flow-cell effluent water monitors
		A 3H effluent water monitors
		B Heterogeneous (α-β) and γ discriminating cell
	IX. Single radionuclide analysis in high-performance liquid chromatography
	X. Dual radionuclide analysis
	XI. Online HPLC-FSA and mass spectrometry22Taken in part from L\'Annunziata, M. F. and Nellis, S. W. (2001). Metabolism stu ...
		A HPLC-FSA-MS instrumentation and interfacing
		B Representative data
	XII. Online FSA and nuclear magnetic resonance2
		A Principle of nuclear magnetic resonance spectroscopy
		B HPLC-FSA-NMR system
		C HPLC-FSA-NMR representative data
	XIII. Online HPLC-FSA-MS-NMR
	References
	Further reading
	Michael F. L\'Annunziata
11. Automated radiochemical separation, analysis, and sensing
	I. Introduction
	II. Radiochemical separations
		A Separation requirements
		B Radiochemical separation approaches
		C Modern radiochemical separation materials
	III. Automation of radiochemical analysis using flow injection or sequential injection fluidics
		A Flow injection and sequential injection fluidics
		B Sequential injection separations
		C Alternative fluid delivery systems
		D Column configurations
		E Renewable separation concepts and methods
		F Lab-on-valve
		G Extractant liquids and particles
		H Detection
	IV. Selected radiochemical analysis examples
		A Strontium-90
		B Technetium-99
		C Actinides
		D Renewable separation column applications
	V. Automation using robotics
	VI. Automated monitors for industrial scale nuclear processes
	VII. Radionuclide sensors and systems for water monitoring
		A Preconcentrating minicolumn sensors
		B Sensors for 99Tc(VII) using quantitative capture
		C Equilibration-based radionuclide sensors
		D Sensor probes and systems for water monitoring
	VIII. Digital microfluidics for microscale single bead manipulations
	IX. Radioisotopes in medicine
		A Therapeutic radionuclides
			1 Beta emitters
				a Rhenium-188
				b Yttrium-90
			2 Alpha emitters
				a Bismuth-213
				b Lead/bismuth-212
				c Astatine-211
		B Diagnostic radionuclides
			1 Gamma emitters
				a Technetium-99m
			2 Positron emitters
				a Short-lived positron emitter gallium-68
				b Long-lived positron emitters: zirconium-89 and iodine-124
	X. Discussion
	Acknowledgments
	References
	Jay W. Grate, PhD
	Matthew J. O\'Hara
	Oleg B. Egorov, PhD
12. Analytical techniques in nuclear safeguards
	I. Introduction
	II. Photon-based assay for safeguards
		A Introduction: characteristics of U/Pu and their spectra
			1 Attribute tests
			2 Cerenkov analysis of spent fuel
			3 Active length measurements
			4 Sample screening with X-ray fluorescence
		B Uranium enrichment (infinite thickness)
			1 General approach
			2 Correction factors
				a Wall thickness
				b Sample composition
			3 Low-resolution measurements
			4 High-resolution measurements
			5 Specialized geometries (fuel pellets and rods)
		C Isotopic measurements of uranium and plutonium
			1 Characteristics of the uranium and plutonium spectra
			2 Ratio-based measurements of isotopic composition
			3 Typical results from fielded software (Sampson et al., 2003)
				a X-ray region analysis
				b Higher-energy analysis
		D Mass measurements
			1 Material test reactor fuel
			2 Customized geometry efficiency modeling
			3 Holdup measurements
				a Generalized geometry
				b Operational considerations
	III. Neutron-based assay for safeguards
		A Radiation signatures from plutonium and uranium
		B General neutron counters for safeguards measurements
		C Neutron well counter properties
			1 Efficiency
			2 Die-away time
			3 Gate fractions
		D Singles neutron counting
		E Neutron coincidence counting
			1 Introduction to coincidence counting
			2 Shift register electronics
			3 Passive coincidence counting
			4 Active coincidence counting
		F Neutron multiplicity counting
			1 Introduction to multiplicity counting
			2 Multiplicity shift register electronics
			3 Multiplicity measurements
	IV. Calorimetric assay
		A Introduction
		B Heat flow calorimetry
			1 Operating modes for heat-flow calorimeters
				a Passive mode
				b Power-replacement mode
			2 Calibrating a heat-flow calorimeter
			3 Types of heat-flow calorimeters
		C Calorimetric assay
			1 Assay error determination
			2 Calorimetric assay performance
		D Applications
	References
	William H. Geist
	Peter Santi
	Philip A. Hypes
13. Nuclear forensics
	I. Introduction
		A What is nuclear forensics?
	II. The origins of nuclear forensics
		A The policy implications of nuclear forensics
		B How the case begins
	III. National objectives
	IV. Nuclear attribution
	V. Nuclear forensic interpretation
	VI. Validated signatures
		A Comparative signatures
		B Predictive signatures
	VII. Analytical results
		A Categorization
		B Characterization
		C Full nuclear forensics analysis
	VIII. Validated methods
		A Radioactive material analysis
			1 Elemental and isotopic bulk analysis tools
				a Radiometric techniques
				b Mass spectrometry
				c Chemical assay
				d Radiochemistry
				e X-ray Fluorescence Analysis
				f X-ray Diffraction Analysis
				g Gas Chromatography/mass spectrometry
			2 Imaging tools
				a Visual inspection and photography
				b Autoradiography
				c Optical microscopy
				d Scanning electron microscopy
				e Transmission electron microscopy
			3 Microanalysis tools
				a X-ray microanalysis
				b Secondary ion mass spectrometry
				c Infrared spectroscopy
				d Raman spectroscopy
		B Traditional forensic analysis
			1 Overview
			2 Documentary evidence
			3 Impressions
			4 Chemical analysis
			5 Tissue and hair evidence
			6 Weapons evidence
			7 Tool marks
			8 Fiber examination
			9 Flora and fauna
			10 Other materials evidence
		C Application and sequencing of techniques and methods
	IX. Quality assurance
	X. Sampling
	XI. Conclusions
	Acknowledgments
	References
	Michael J. Kristo
Appendix
A - Table of radioactive isotopes
	I. Introduction
		A Column I-nuclide
		B Column 2-half-life
		C Column 3-decay mode
		D Column 4-radiation characteristics
		E Column 5-decay product
		F Some applications of radiation type, energy, and intensity data
	References
Appendix
B - Particle range-energy correlations
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
Back Cover




نظرات کاربران