دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ivan A. Golubev
سری: Environmental Science, Engineering and Technology
ISBN (شابک) : 9781619421424
ناشر: Nova Science Pub Inc
سال نشر: 2011
تعداد صفحات: 840
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Handbook of Phytoremediation (Environmental Science, Engineering and Technology) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای گیاه پالایی (علوم، مهندسی و فناوری محیط زیست) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
CONTENTS......Page 6
PREFACE......Page 10
ABSTRACT......Page 26
1. PHENOLIC COMPOUNDS: CHARACTERISTICS, ENVIRONMENTAL IMPACT AND TOXICITY......Page 27
2.1. Physico-Chemical Methods......Page 30
2.2.1. Bioremediation and Biosorption......Page 31
2.2.2. Phytoremediation as a Promising Alternative Technology......Page 32
3.1. Uptake of Phenol and its Derivatives......Page 34
3.2. Translocation and Distribution......Page 37
3.3.2. Transformation (Phase I)......Page 38
3.3.3. Conjugation (Phase II)......Page 39
3.3.4. Compartmentation (Phase III)......Page 44
4. USE OF ENZYMES FOR PHENOLIC COMPOUNDS REMOVAL......Page 46
4.1. Peroxidases......Page 47
4.1.1.Horseradish Peroxidases (HRP)......Page 48
4.1.2. Soybean Peroxidases (SBP)......Page 50
4.1.2. Other Sources of Peroxidases......Page 51
4.2. Laccases......Page 54
5. TRANSGENIC PLANTS FOR REMEDIATION OF PHENOLIC COMPOUNDS......Page 55
6. OPPORTUNITIES IN THE DESIGN AND CREATION OF TRANSGENIC PLANTS FOR PHENOLICS PHYTOREMEDIATION......Page 59
CONCLUSION......Page 61
REFERENCES......Page 62
ABSTRACT......Page 76
1. INTRODUCTION......Page 77
2. PERSISTENT ORGANIC POLLUTANTS......Page 78
b) Petroleum Hydrocarbons......Page 80
c) Chlorinated Solvents......Page 81
d) Explosives......Page 82
e) Pesticides......Page 83
2.1. Pharmaceutical Compounds......Page 84
2.1.1. Human Pharmaceuticals Sources, Fate and Effects in the Environment......Page 85
2.1.2. Human Pharmaceutical Occurrence in the Environment......Page 88
2.1.3. Pharmaceutical Removal in Wastewater Treatment Plants......Page 89
3. PHYTOREMEDIATION TECHNOLOGIES......Page 90
4. CONSTRUCTED WETLANDS SYSTEMS......Page 93
4.1. Organic Xenobiotics Removal in CWS......Page 94
4.1.1. Main Removal Processes in CWS......Page 95
b) Biotic Processes......Page 96
4.2. The Role of Plants in Organic Xenobiotics Removal......Page 98
4.2.1. What Happens to Organic Xenobiotics Once Taken Up by the Plant?......Page 102
4.2.2. Plant Detoxification Processes......Page 103
4.2.3. Phytotoxicity of Organic Xenobiotics......Page 105
CONCLUSION......Page 108
REFERENCES......Page 110
ABSTRACT......Page 118
1. URANIUM IN THE ENVIRONMENT - CHARACTERISTICS, SOURCES, CONSEQUENCES......Page 119
1.1. Characteristics and Occurrence of Uranium in the Environment......Page 121
1.2. Global Cycle of Uranium in Nature......Page 122
1.2.1. Distribution of Uranium in Function of Chemical and Physical-Chemical Processes......Page 123
2. URANIUM REMOVAL AND SOIL REMEDIATION......Page 124
2.1. Methods and Techniques for Uranium Removal......Page 125
3. PHYTOREMEDIATION......Page 127
3.1. Uranium Transfer Factors and Effect of Uranium Content on Plants......Page 128
3.1.1. Plant - Uranium Hyperaccumulators......Page 130
3.3.1. Improving Phytoremediation with Organic Agents......Page 131
3.3.2. Uranium Immobilization Agents......Page 133
4.1. Corn Plants as Uranium Accumulator (Vegetative Tests under Fully Controlled Conditions on Two Types of Soil)......Page 135
4.1.1. Contents of Uranium Accumulated in Corn......Page 136
4.1.2. Impact of Uranium on Contribution of Dry Mass of Corn......Page 138
4.1.3. Impact of Uranium on Seed Germinability......Page 139
4.1.4. Impact of Uranium on Height of Corn Plants......Page 140
4.2. The Effect of the Uranium Content in the Tailings and “Uranium Water” on Some Cultivated Plants......Page 141
4.3. The Reaction of the Plant Species and their Genotypes on Uranium Uptake......Page 145
4.3.2. Uranium Concentration in Root......Page 146
4.3.3. Relationship Between the Content of Uranium in Plants and Substrate......Page 147
4.4. Concentration of Uranium in Root-Crops, Bulbous and Tuberous Plants......Page 148
4.5. Testing the Accumulation of Uranium by Cultivated Plants on Uranium Tailing- “In Situ”......Page 149
CONCLUSION......Page 154
REFERENCES......Page 156
ABSTRACT......Page 162
1. INTRODUCTION......Page 163
2.1. Pyrite Cinders Pot Trials: Testing the Crops......Page 166
2.1.1. Characterization of Polluted Soil......Page 167
2.1.3. Soil Fertility and Plant Growth......Page 169
2.1.4. Heavy Metals and Arsenic in Plant Fractions......Page 170
2.1.5. Bioconcentration and Translocation Factor......Page 173
3. FIELD TRIAL IN TORVISCOSA (ITALY)......Page 175
3.1. Soil Preparation and Experimental Design......Page 176
3.2. Plants Development: Biomass Production and Trace Elements Removal......Page 177
3.2.2. Cadmium......Page 179
3.2.6. Zinc......Page 181
3.4. Other Research Activities on the Site of Torviscosa......Page 182
4.1. Metallophytes at the Former Lead/Zinc Mining Site of Cave Del Predil, Julian Alps......Page 185
4.1.1. Soil Conditions and Plant Ecology......Page 188
4.1.2. Really Hyperaccumulators?......Page 194
4.2. Growth of Thlaspi caerulescens on Compost Amended Mine Tailings......Page 195
4.2.1. Experimental Design......Page 196
4.2.2. Plant Response......Page 198
5. LESSONS LEARNED......Page 200
CONCLUSION......Page 201
REFERENCES......Page 202
ABSTRACT......Page 210
2. PHYTOREMEDIATION......Page 211
2.1. Phytoremediation Techniques......Page 213
3. METAL STRESS......Page 214
3.1. Plant Adaptation to Metal Stress......Page 215
3.2. Mechanisms of Metal Accumulation by Plants......Page 217
1. Mobilization, Root Uptake and Sequestration......Page 218
2. Translocation......Page 219
3. Tissue Distribution and Storage......Page 220
3.3. Metal Phytotoxicity......Page 221
3.3.1. Heavy Metal-Induced Oxidative Stress......Page 223
Enzymatic ROS Scavenging Mechanisms......Page 225
4.1. Germination......Page 227
4.2. Reduction in Growth......Page 228
4.3. Photosynthetic Pigments......Page 229
4.4. Antioxidant Enzymes......Page 230
4.5. Antioxidants......Page 232
REFERENCES......Page 234
ABSTRACT......Page 248
1.1. Metals Contamination in Soil and Its Risks......Page 249
1.2. Soil Pollution Sources......Page 251
1.3. Soil Pollution Control......Page 252
3.2. Phytoextraction......Page 253
3.3. Phytostabilization......Page 267
4. MECHANISM OF PHYTOREMEDIATION......Page 268
4.1. Chelants......Page 269
4.3. Genetic Procedure......Page 270
5. PHYTOREMEDIATION PROSPECTS......Page 271
REFERENCES......Page 272
ABSTRACT......Page 288
INTRODUCTION......Page 289
3. MICROORGANISMS AND METAL CONTAMINATION......Page 290
4. BIOREMEDIATION......Page 291
5. PHYTOREMEDIATION: A POTENTIAL TOOL OF BIOREMEDIATION......Page 294
5.1. Phytofiltration......Page 295
5.2. Phytostabilization......Page 297
5.3. Phytoextraction......Page 299
5.4. Phytovolatilizaton......Page 304
CONCLUSION......Page 305
REFERENCES......Page 306
ABSTRACT......Page 322
1. INTRODUCTION......Page 323
2.1. Analysis of Soils from Polluted Areas......Page 324
2.2.1. Vegetation......Page 325
2.3. Survival, Growth and Metal Accumulation under Greenhouse Conditions......Page 326
2.5. Statistical Analysis......Page 327
3.1. Analysis of Soils from Polluted Areas......Page 328
3.2.1. Vegetation......Page 329
3.2.2. Metal Accumulation in Plants from Polluted Areas......Page 333
3.3.1. Studies with Cadmium......Page 339
3.3.2. Studies with Lead......Page 340
3.3.4. Studies with Mercury......Page 344
3.4.1. Dittrichia Viscosa and Betula Celtiberica for Cd......Page 345
3.4.2. Melilotus Alba for Pb......Page 347
3.4.3. Anthyllis Vulneraria for Zinc......Page 348
3.4.4. Carex Pendula for Mercury......Page 349
CONCLUSION......Page 350
REFERENCES......Page 351
ABSTRACT......Page 356
X-Ray Radiation......Page 357
X-Ray Fluorescence......Page 358
Application of X-Ray Fluorescence Analysis to Environmental Monitoring and Phytoremediation......Page 361
XRF Instrumentation......Page 363
Excitation Sources......Page 364
Sampling and Sample Preparation for EDXRF......Page 365
Basic Principles......Page 368
Starting Quantitative XRF Analysis (Principal Problems and Necessary Assumptions)......Page 370
Calibration of the XRF System for Quantitative Analysis......Page 371
Absorption in residual matrix......Page 372
3.5. Detection Limits......Page 376
Sample Preparation and Quantification......Page 377
ADVANTAGES SND DISADVANTAGES OF THE USE OF X-RAY FLUORESCENCE-BASED TECHNIQUES IN PHYTOREMEDIATION STUDIES AND THEIR APPLICATION......Page 378
CONCLUSIONS......Page 379
REFERENCES......Page 380
ABSTRACT......Page 384
INTRODUCTION......Page 385
TRADITIONAL RECLAMATION TECHNIQUES OF SALINE AND/OR SODIC SOILS......Page 386
Basic Reclamation Principles and Strategies......Page 387
Soluble Salt Leaching Methods and Leaching Efficiency......Page 389
Calcium Sources of Sodic Soil Reclamation......Page 390
Sodic Soil Reclamation Efficiency......Page 391
Possibility of Phytoremediation Combining with Management......Page 393
Existing Problems......Page 394
Responses of Crops to Saline/Sodic Soils......Page 395
Reclamation Strategy, Phyto(Bio)-Remediation and Its Management......Page 396
Soil Management to Prevent Salt Accumulation......Page 397
Soil Management to Improve Crop Growth......Page 398
ECONOMIC RETURN OF SOIL RECLAMATION......Page 399
Development of Irrigated Agriculture......Page 400
Development and Status of Secondary Saline/Sodic Soils......Page 401
Renminshengliqu (RMSLQ) Irrigation Area......Page 402
Hetao Irrigation Area......Page 403
Existing Problems......Page 404
REFERENCES......Page 405
ABSTRACT......Page 412
1. INTRODUCTION......Page 413
2.2. Phytoremediation of Heavy Metals......Page 414
2.3.1. Heavy Metals in Plants. Functions and Negative Effects......Page 415
2.3.3. Importance of the Plant Genetic Improvement......Page 416
3.2. Poplars as a Model to Study the Biology of Trees......Page 417
3.3. Phytoremediation with Poplars......Page 418
4.1. Plant Growth and Metal Distribution......Page 420
4.2. Physiological Effects......Page 423
4.3.1. Metal Mobilization from the Soil......Page 425
4.3.2. Metal Uptake, Traffic and Compartmentalization......Page 426
4.3.4. Antioxidative System......Page 428
4.3.5. Other Mechanisms......Page 429
CONCLUSION......Page 430
REFERENCES......Page 431
1. INTRODUCTION......Page 440
2. MANGROVE WETLANDS AS POLLUTANT SINKS......Page 442
2.3. Organic Pollutants......Page 443
3. PHYSIOLOGICAL RESPONSES AND TOLERANCE OF MANGROVE PLANTS TO POLLUTANTS......Page 444
3.1. Heavy Metals......Page 446
3.2. Organic Pollutants......Page 447
4.1. Wastewater......Page 448
4.2. Contaminated Sediments......Page 449
5.1. Sediments......Page 452
5.2. Plants......Page 453
5.3. Microorganisms......Page 454
6. PROBLEMS AND PROSPECTIVE OF CONSTRUCTED MANGROVE WETLANDS......Page 455
REFERENCES......Page 456
ABSTRACT......Page 468
INTRODUCTION......Page 469
Mono-Inoculations with Different Types of Microorganisms......Page 470
Combined Inoculations with Different Types of Microorganisms......Page 477
CHEMICALLY ASSISTED HM ACCUMULATION BY LEGUME-MICROBE SYMBIOSES......Page 478
INTRASPECIFIC VARIABILITY OF PLANTS IN THEIR INTERACTIONS WITH MICROORGANISMS......Page 479
RELATIONSHIPS BETWEEN HM TOLERANCE OF SYMBIOTIC PARTNERS......Page 481
PHYTOREMEDIATION WITH GENETICALLY MODIFIED LEGUMES AND SYMBIOTROPHIC MICROORGANISMS......Page 482
CONCLUSION......Page 484
REFERENCES......Page 486
ABSTRACT......Page 496
INTRODUCTION......Page 497
SELECTION OF PLANT SYSTEMS FOR REMEDIATION OF TEXTILE DYES......Page 498
A) Mechanisms Involving Adsorption and/or Accumulation of Textile Dyes......Page 500
B) Plant Stress Response and Mechanisms for the Degradation of Dyes......Page 502
A) Analysis of Products With Respect to their Chemical Structures......Page 506
THE USE OF HYDROPONICS AND PLANT TISSUE CULTURE TECHNOLOGIES FOR DYE DEGRADATION......Page 509
SYNERGISTIC APPROACHES FOR DYE DEGRADATION......Page 511
A) Constructed Wetlands......Page 512
B) Purified Enzymes for Phytoremediation......Page 513
FUTURE PROSPECTS......Page 516
REFERENCES......Page 517
ABSTRACT......Page 520
2. PLANTS RESPONSE TOWARDS METAL TOXICITY......Page 521
3. SCREENING OF METALLOPHYTES IN METALLIFEROUS AREAS IN BOTSWANA......Page 522
3.1. Sample Collection......Page 523
3.2.1. Sample Preparation for Determination of Metals in Environmental Samples......Page 525
3.2.3.1. Practical Aspects of Microdialysis Sampling......Page 526
3.2.3.3. Microdialysis Sampling of Cu and Ni in Plant Suspension......Page 528
3.3. Instrumental Approaches to Detection of Metal......Page 530
3.4. Accumulation Patterns of Cu and Ni for Indigofera Melanadenia and Tephrosia Longipes Plant Species......Page 531
3.5. Accumulation Patterns of H. Candolleanum, B. Diversispina and B. Aspera: Multi-Element Study......Page 534
4. ROLE OF PHYTOCHELATINS (PCS) IN METAL TOLERANCE......Page 537
4.1.1. High Performance Liquid Chromatography (HPLC)......Page 538
4.1.2.1. Probing Metal-Glutathione Interaction Using Electrospray Ionisation Mass Spectrometry......Page 539
4.1.2.2. Probing metal-glutathione interaction using 1H-NMR......Page 541
6. METAL SPECIATION IN METALLOPHYTES......Page 542
6.1. SPE towards Metal Speciation in Metallophytes......Page 543
6.2. Size Exclusion Chromatography (SEC) towards Metal Speciation in Metallophytes......Page 544
REFERENCES......Page 545
ABSTRACT......Page 554
INTRODUCTION......Page 555
Cadmium......Page 556
Lead......Page 558
Chromium......Page 559
RESISTANCE OR TOLERANCE TO METALS IN PLANTS......Page 561
PHYTOREMEDIATION......Page 563
CONCLUSIONS......Page 566
REFERENCES......Page 567
ABSTRACT......Page 576
APPLICATION OF PGPR FOR PAHS DEGRADATION......Page 577
Naphthalene Degradation......Page 579
Phenanthrene Degradation......Page 581
APPLICATION OF PGPR PSEUDOMONAS FOR NICKEL REMOVAL......Page 583
APPLICATION OF PGPR PSEUDOMONAS FOR ARSENIC ACCUMULATION......Page 587
APPLICATION OF PGPR PSEUDOMONAS FOR AT COMPLEX CONTAMINATION......Page 588
Arsenic Resistant PGPR Pseudomonas Degrading Naphthalene......Page 589
The Plasmid Stability in Multifunctional PGPR Strains......Page 591
REFERENCES......Page 592
ABSTRACT......Page 598
INTRODUCTION......Page 599
CHEMISTRY AND MINERALOGY OF ARSENIC......Page 600
Seawaters and Freshwaters......Page 601
Soil and Sediments......Page 602
Water......Page 603
ARSENIC TOXICITY......Page 604
Continuous or Natural Phytoremediation......Page 605
Chemically Enhanced Phytoremediation......Page 606
PHYTOREMEDIATION USING AQUATIC PLANTS......Page 607
ARSENIC UPTAKE MECHANISMS IN AQUATIC PLATS......Page 608
REFERENCES......Page 609
INTRODUCTION......Page 616
INITIATION, CULTURE, AND PROPERTIES OF HAIRY ROOTS......Page 617
Phenols, Chlorinated Phenols, and Polychlorinated Biphenyls......Page 620
Ketones......Page 621
Explosives......Page 622
Pharmaceuticals......Page 623
Non-Hyperaccumulators of Heavy Metals......Page 624
Cadmium......Page 626
Nickel......Page 628
Phytomining......Page 630
TRANSGENIC HAIRY ROOT STUDIES IN PHYTOREMEDIATION......Page 631
REFERENCES......Page 632
ABSTRACT......Page 638
BACKGROUND......Page 639
Approach of Phytoremediation to Metal Treatment......Page 640
POTENTIAL PROBLEMS IN PHYTOREMEDIATION......Page 641
FIELD SURVEYS OF PHYTOREMEDIATION APPLICABILITY......Page 642
Sampling and Analytical Method......Page 643
Test Results......Page 644
Phytoremediation Test in the Northern Part (Kola) of the European Region......Page 645
Preparation and Test Design — Different Test Sites......Page 646
Sampling, Analytical Methods and Data Processing......Page 647
Results......Page 648
Consideration......Page 649
CONCLUSION......Page 651
REFERENCES......Page 652
ABSTRACT......Page 656
BIODIVERSITY AND PHYTOREMEDIATION......Page 657
MAIZE AND SUNFLOWER GENTIC BIO-DIVERSITY......Page 658
MAIZE AND SUNFLOWER PHYTOEXTRACTION......Page 663
Copper and Zinc Accumulation......Page 666
Copper and Zinc Phytoextraction Capability in the Whole Plant......Page 667
CONCLUSIONS......Page 669
REFERENCES......Page 670
ABSTRACT......Page 676
INTRODUCTION......Page 677
Into and within Plants......Page 679
From Plants to the Abiotic Environment......Page 681
Microbes......Page 682
Herbivores and Higher Trophic Levels......Page 683
Plant-Plant Interactions......Page 685
FUTURE DIRECTIONS......Page 686
REFERENCES......Page 687
ABSTRACT......Page 692
1. INTRODUCTION......Page 693
2. APPLICABILITY CRITERIA FOR A PHYTOREMEDIATION PROCESS......Page 695
3. EXPERIMENTAL SYSTEMS......Page 696
3.2. Organ Cultures......Page 698
3.3.1. Semisolid Supports......Page 701
3.3.2. Hydroponics......Page 703
3.4. Microcosms......Page 706
REFERENCES......Page 712
1.1. Accumulation of Metals......Page 716
1.3. Silver Nanoparticle Identification......Page 718
1.4. Identification of Metallic Silver......Page 720
2.1. Chelating Agents and Silver Uptake......Page 721
2.2. Thermodynamic Drivers and Limits......Page 723
2.4. Particle Size Control......Page 725
3. SILVER NANOPARTICLE FORMATION USING PLANT BASED EXTRACTS......Page 726
4. EXTRACTION OF SILVER NANOPARTICLES FROM PLANTS......Page 727
CONCLUSION......Page 728
REFERENCES......Page 729
ABSTRACT......Page 734
INTRODUCTION......Page 735
METAL SEQUESTRATION WITH PLANTS......Page 736
CHELANT-ASSISTED PHYTOEXTRACTION OF METALS......Page 737
ECO-ENVIRONMENTAL CONSEQUENCES......Page 739
ADDRESSING ECO-ENVIRONMENTAL ISSUES ASSOCIATED WITH CHELANTS......Page 740
REFERENCES......Page 741
1. SALT MARSHES AND METAL RETENTION......Page 748
2. DIFFERENT HALOPHYTES, DIFFERENT INFLUENCES......Page 749
3. THE HALOPHYTE INFLUENCE ON METAL SPECIATION......Page 751
4. SALT MARSH METAL CYCLING......Page 754
5. THE DECOMPOSERS IMPACT ON PHYTOREMEDIATION......Page 756
REFERENCES......Page 759
ABSTRACT......Page 762
1. INTRODUCTION......Page 763
2. HEAVY METALS CONTAMINATION IN TAIWAN......Page 764
3. PHYTOEXTRACTION OF CADMIUM-CONTAMINATED SOILS......Page 765
4. BIOCONCENTRATION OF CADMIUM BY GARDEN FLOWERS GROWN IN THE POT EXPERIMENTS OF CD-CONTAMINATED SOILS......Page 766
5. TOTAL REMOVAL OF GARDEN FLOWERS GROWN IN THE POT EXPERIMENTS OF CD-CONTAMINATED SOILS......Page 768
6. TOTAL REMOVAL OF GARDEN FLOWERS IN-SITU GROWN IN THE FIELD OF CD-CONTAMINATED SITES......Page 770
REFEREBCES......Page 772
ABSTRACT......Page 776
INTRODUCTION......Page 777
THE ROLE OF AMF IN PHYTOSTABILIZATION......Page 778
THE ROLE OF AMF IN PHYTOEXTRACTION......Page 781
REFERENCES......Page 785
INTRODUCTION......Page 788
IMPACT OF ENVIRONMENTAL CONTAMINANTS ON PLANTS: EMERGENCE OF PLANT STRESS......Page 789
PROMOTION OF PLANT GROWTH IN POLLUTED ENVIRONMENTS, MEDIATED BY BACTERIAL IAA AND ACC DEAMINASE......Page 790
EFFECT OF ACC DEAMINASE AND NICKEL ON PLANT GENE EXPRESSION......Page 792
CONCLUSION AND FUTURE PROSPECTS......Page 793
REFERENCES......Page 794
INTRODUCTION......Page 800
I. DIFFERENCES OF PHYTEXTRACTION EFFICIENCY UNDER MODEL AND UNDER FIELD CONDITIONS......Page 801
II. DISCHARGE OF POTENTIALLY TOXIC METALS......Page 802
IV. TECHNICAL CONSIDERATIONS ON EDTA APPLICATION UNDER FIELD CONDITIONS......Page 803
CONCLUSION......Page 804
REFERENCES......Page 805
ABSTRACT......Page 808
INTRODUCTION......Page 809
RHIZOREMEDIATION WITH POPLARS......Page 810
THE CASE STUDY OF POPLAR RHIZOREMEDIATION IN THE VALLE DEL SACCO AREA NEAR TO ROME......Page 811
THE EXPERIMENTAL APPLICATION......Page 813
REFERENCES......Page 817
INDEX......Page 820