دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Mohammad Pessarakli
سری: Books in Soils, Plants, and the Environment
ISBN (شابک) : 0824758390, 9780824758394
ناشر: CRC Press
سال نشر: 2005
تعداد صفحات: 883
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Photosynthesis, Second Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب فتوسنتز، ویرایش دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به طور طبیعی، فتوسنتز در سال های اخیر توجه زیادی را به خود جلب کرده است. جدای از دیدنی ترین فرآیند فیزیولوژیکی در رشد گیاهان، در واقع کلید برخورد ما با تجمع بالقوه فاجعه آمیز دی اکسید کربن در جو زمین است. متأسفانه، در حالی که اطلاعات فراوان است، این همه توجه به یک پایگاه داده پراکنده در مورد فتوسنتز منجر شده است، بدون نقطه شروع معاصر... حداقل تا کنون. محمد پسراکلی با ویرایش دوم کتاب راهنمای فتوسنتز، بار دیگر نیاز به یک منبع معتبر و متعادل را با گردآوری تیمی از متخصصان از سراسر جهان برطرف می کند. آنها با هم یک مرجع جامع ایجاد کرده اند که در یک جلد شامل اطلاعات پس زمینه مهم و همچنین جدیدترین یافته های تحقیقاتی در مورد فتوسنتز است. به طور کامل با چندین فصل جدید بازبینی شده است. کتاب راهنما، یک بازسازی کاملاً به روز شده از نسخه اول مورد تحسین منتقدان، جزئیات همه عوامل و فرآیندهای فتوسنتزی را در شرایط عادی و استرس زا، شامل گیاهان پایین تر و بالاتر و همچنین بیوشیمی مرتبط و زیست شناسی مولکولی گیاهی می کند. این کتاب راهنما که برای سهولت ارجاع به چهارده بخش تقسیم شده است، با نزدیک به 8000 استناد کتابشناختی، شامل مشارکت های معتبر بیش از 80 دانشمند است. این شامل تقریباً 500 طراحی، عکس، جداول و معادله است که همگی برای تقویت و شفافسازی مطالب مهم متن طراحی شدهاند.
Quite naturally, photosynthesis has achieved massive amounts of attention in recent years. Aside from being the most spectacular physiological process in plant growth, it is actually the key to our dealing with the potentially cataclysmic accumulation of carbon dioxide in the earth’s atmosphere. Unfortunately, while information is plentiful, all this attention has resulted in a scattered database on photosynthesis, with no contemporary starting point…at least until now. With the second edition of the Handbook of Photosynthesis, Mohammad Pessarakli once again fills the need for an authoritative and balanced resource by assembling a team of experts from across the globe. Together, they have created a comprehensive reference that in a single volume includes important background information, as well as the most recent research findings on photosynthesis. Completely Revised with Several New Chapters The handbook, a completely updated reworking of the critically acclaimed first edition, details all of the photosynthetic factors and processes under both normal and stressful conditions, covering lower and higher plants as well as related biochemistry and plant molecular biology. Divided into fourteen sections for ease of reference, with nearly 8000 bibliographic citations, the handbook contains authoritative contributions from over 80 scientists. It includes approximately 500 drawings, photographs, tables, and equations— all designed to reinforce and clarify important text material.
Handbook of Photosynthesis, Second Edition......Page 5
Dedication......Page 7
Preface......Page 8
Editor......Page 10
Acknowledgments......Page 11
Contributors......Page 12
Table of Contents......Page 17
Section I: Principles of Photosynthesis......Page 20
Table of Contents......Page 0
A. FUNDAMENTAL RESULTS......Page 21
B. PROBLEMS AND HYPOTHESES......Page 23
C. VARIATION IN THE NUMBER OF EFFECTIVELY FUNCTIONING OXYGEN-EVOLVING (REACTION) CENTERS......Page 25
A. EXPERIMENTAL GROUNDS......Page 30
B. PHOTOSYNTHESIS WITH SOLE PHOTOSYSTEM......Page 33
IV. CONCLUSION......Page 34
REFERENCES......Page 36
I. INTRODUCTION......Page 38
A. THEORY OF THERMOLUMINESCENCE......Page 39
D. CHARACTERISTICS OF GLOW CURVES......Page 40
III. A NEW PHENOMENON: QUANTUM CONFINEMENT AS A SOURCE OF TL......Page 42
A. EFFECT OF ELEVATED LIGHT ON PSII......Page 43
C. TEMPERATURE STRESS......Page 44
F. INDICATOR OF BIOTIC AND ABIOTIC STRESSES IN PLANTS......Page 45
H. HERBICIDE EFFECTS......Page 46
I. ROLE OF SMALL COMPONENTS OF PSII IN ELECTRON TRANSPORT — A TL STUDY......Page 47
V. CONCLUDING REMARKS......Page 48
REFERENCES......Page 49
Section II: Biochemistry of Photosynthesis......Page 52
I. INTRODUCTION......Page 53
A. URO-III FORMATION......Page 55
A. MAGNESIUM INSERTION......Page 56
V. FROM PCHLIDE TO CHLIDE a......Page 57
A. REGULATION OF THE CHLOROPHYLL BIOSYNTHETIC PATHWAY......Page 58
B. INTERACTIONS OF TETRAPYRROLES WITH OTHER BIOSYNTHETIC PATHWAYS......Page 61
IX. PERSPECTIVES......Page 63
REFERENCES......Page 64
CONTENTS......Page 71
I. INTRODUCTION......Page 73
B. CHEMICALS......Page 75
G. SPECTROFLUOROMETRIC DETERMINATIONS OF TETRAPYRROLES AT ROOM TEMPERATURE......Page 76
K. CORRECTION FOR ENDOGENOUS RESONANCE EXCITATION ENERGY TRANSFER......Page 77
N. DETERMINATION OF EXCITATION SPECTRA OF RECONSTITUTED TETRAPYRROLE–CHLOROPLAST LIPOPROTEIN COMPLEXES......Page 78
R. DETERMINATION OF THE MOLAR EXTINCTION COEFFICIENTS OF TOTAL CHL A IN SITU AT 77K......Page 79
S. ESTIMATION OF THE MOLAR EXTINCTION COEFFICIENTS OF CHL A ~F685, ~F695, AND ~F735 AT 77K......Page 80
V. CALCULATION OF R60......Page 81
X. CALCULATION OF Jnu, THE OVERLAP INTEGRAL AT 77K......Page 82
Y. CALCULATION OF nu0, THE MEAN WAVENUMBER OF ABSORPTION AND FLUORESCENCE PEAKS OF DONORS AT 77K......Page 83
Z. CALCULATION OF tau0, THE INHERENT RADIATIVE LIFETIME OF DONORS AT 77K......Page 84
AA. CALCULATION OF FYDA THE RELATIVE FLUORESCENCE YIELD OF TETRAPYRROLE DONORS IN THE PRESENCE OF CHL ACCEPTORS IN SITU AT 77K......Page 85
AB. CALCULATION OF tauD, THE ACTUAL MEAN FLUORESCENCE LIFETIME OF EXCITED DONORS IN THE PRESENCE OF ACCEPTORS AT 77K......Page 86
AC. CALCULATION OF R60 FOR PROTO, MP(E), AND PCHLIDE A DONOR–CHL A ACCEPTOR PAIRS AT 77K......Page 87
AD. SELECTION OF FIXED DISTANCES R SEPARATING ANABOLIC TETRAPYRROLE DONORS FROM CHL A ACCEPTORS......Page 88
AH. CALCULATION OF E, THE EFFICIENCY OF ENERGY TRANSFER IN SITU AT 77K......Page 89
AI. SAMPLE CALCULATION OF THE DISTANCE R SEPARATING ANABOLIC TETRAPYRROLE DONORS FROM VARIOUS CHL A ACCEPTORS......Page 90
1. Excitation Spectra of Accumulated Tetrapyrroles in Isolated Etioplasts......Page 91
3. Evidence of Resonance Excitation Energy Transfer from Proto to Chl a ~F695......Page 93
4. Evidence of Resonance Excitation Energy Transfer from Proto to Chl a ~F735......Page 96
8. Evidence of Resonance Energy Transfer from Pchlide a to Chl a ~F685......Page 98
11. Comparison of Excitation Spectra of Reconstituted Tetrapyrroles-Cucumber Plastid Lipoproteins to the Resonance Excitation Energy Transfer Profiles Observed In Situ......Page 99
1. Energy Transfer Rates from Proto to Various Chl a–Protein Species at Fixed Distances R That May Prevail in the SBP-Single Location Chl–Thylakoid Apoprotein Biosynthesis Model......Page 100
2. Resonance Excitation Energy Transfer Rates from Mg-Proto (Ester) to Chl a ~F685, ~F695, and ~F735 at Fixed Distances R That May Prevail in the SBP-Single Location Chl–Thylakoid Apoprotein Biosynthesis Model......Page 102
3. Energy Transfer Rates from Pchlide a to Chl a ~F685, ~F695, and F~735 at Fixed Distances R That May Prevail in the Single-Branched Single-Location Chl–Thylakoid Apoprotein Biosynthesis Model......Page 103
IV. DISCUSSION......Page 104
REFERENCES......Page 109
A. THE NADPH:PCHLIDE REDUCTASES......Page 112
1. Formation of Photoactive and Nonphotoactive Pchlide Aggregates......Page 114
2. The First Products of Photoreduction, the Spectral Shifts, and the Regeneration of Photoactive Pchlide......Page 116
IV. CONCLUSION AND PERSPECTIVES......Page 118
REFERENCES......Page 119
I. INTRODUCTION......Page 123
C. ASSEMBLY OF THYLAKOID COMPLEXES......Page 124
1. Organization and Assembly of PSII......Page 125
3. LHC Assembly......Page 126
A. LEAF SENESCENCE IS GENETICALLY PROGRAMMED......Page 127
a. Degradation of Chlorophyll......Page 128
C. DISASSEMBLY OF THYLAKOID COMPLEXES AND LOSS IN PRIMARY PHOTOCHEMICAL REACTIONS......Page 129
D. DECLINE IN RUBISCO ACTIVITY AND LOSS IN THE ENZYME PROTEIN......Page 130
B. SIGNALS THAT REGULATE NUCLEAR GENE EXPRESSION FOR THE SYNTHESIS OF CHLOROPLAST PROTEINS......Page 131
E. NUCLEAR FACTOR FOR CHLOROPLAST DEGRADATION......Page 132
V. THE FUTURE......Page 133
REFERENCES......Page 134
I. INTRODUCTION......Page 137
A. PHOSPHATE TRANSLOCATORS......Page 139
C. STARCH BIOSYNTHESIS......Page 141
D. SUCROSE BIOSYNTHESIS......Page 142
III. LONG-TERM IN VIVO EFFECTS OF Pi DEPRIVATION......Page 143
A. PLANT GROWTH RESPONSE AND PHOSPHATE CONCENTRATION......Page 144
B. PHOTOSYNTHETIC MACHINERY......Page 146
C. CARBON METABOLISM......Page 147
D. INTRACELLULAR PI COMPARTMENTATION......Page 149
E. CARBON PARTITIONING AND EXPORT......Page 150
IV. RECOVERY OF PLANTS FROM PHOSPHATE DEFICIENCY......Page 152
VI. CONCLUSIONS......Page 153
REFERENCES......Page 154
A. PS II REACTION CENTER AND WATER OXIDATION......Page 163
B. NONHEME IRON......Page 164
C. PLASTOQUINONE......Page 167
D. CYTOCHROME b6f COMPLEX......Page 168
IV. PHOTOSYSTEM I......Page 170
B. FERREDOXIN AND FNR......Page 172
REFERENCES......Page 173
Section III: Molecular Aspects of Photosynthesis: Photosystems, Photosynthetic Enzymes and Genes......Page 181
CONTENTS......Page 182
I. HISTORICAL BACKGROUND AND OVERVIEW......Page 183
3. Artificial Electron Donors......Page 185
2. Artificial Electron Acceptors......Page 186
2. Quantitative Determination of P700......Page 187
3. Kinetics of Flash-Induced Absorbance Changes......Page 188
5. EPR Signals......Page 189
1. PsaA (Subunit Ia) and PsaB (Subunit Ib)......Page 190
2. PsaC (Subunit VII)......Page 191
5. PsaF (Subunit III)......Page 192
7. PsaI (Subunit X) and PsaJ (Subunit IX)......Page 193
11. PsaN......Page 195
12. PsaX and PsaY......Page 197
13. Plastocyanin......Page 198
B. WHAT IS P700?......Page 199
IV. CONCLUDING REMARKS......Page 200
ACKNOWLEDGMENTS......Page 201
REFERENCES......Page 202
CONTENTS......Page 206
A. N-TERMINAL PROCESSING......Page 207
e. Are the low-molecular-weight polypeptides of PS II phosphorylated?......Page 208
f. What is the function of PS II reaction center polypeptide phosphorylation?......Page 209
D. FATTY ACYLATION......Page 210
1. Photosynthetically Active Radiation — Imbalance of Electron Transport......Page 211
1. Controlled Protease Treatments Can Be Used to Modify PS II Activity......Page 212
5. Chemical Cross-Linking of PS II Reaction Center Polypeptides......Page 213
1. Introduction......Page 214
a. Choice of hosts......Page 215
d. Segregation......Page 216
IV. CONCLUSIONS......Page 218
REFERENCES......Page 219
I. INTRODUCTION......Page 222
II. PRODUCTION AND DETOXIFICATION OF ROS......Page 223
III. ROS MEDIATED SIGNAL TRANSDUCTION IN PLANTS......Page 225
IV. ROS ARE INVOLVED IN PLANT ADAPTATION TO STRESS......Page 227
REFERENCES......Page 229
A. CLASSIFICATION AND DISTRIBUTION OF PLASTIDS......Page 234
B. PLASTID ONTOGENY......Page 238
1. Plastid Differentiation in Light......Page 239
3. Ability of Gymnosperms to Form Chloroplasts in the Dark......Page 241
C. CHLOROPLASTS......Page 243
1. Chloroplast of C3 Plants......Page 244
2. Chloroplasts of C4 Plants......Page 246
D. CHROMOPLASTS......Page 247
E. PLASTID SENESCENCE......Page 249
F. PLASTIDS OF HETEROTROPHIC PLANTS......Page 250
G. PLASTIDS OF EVERGREEN PLANTS......Page 252
H. PLASTID REGENERATION......Page 253
REFERENCES......Page 255
I. INTRODUCTION......Page 259
A. CLP PROTEASES......Page 260
C. FTSH PROTEASES......Page 261
A. BACKGROUND......Page 262
1. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco)......Page 263
D. NADPH: PROTOCHLOROPHYLLIDE REDUCTASE DEGRADATION......Page 264
REFERENCES......Page 265
I. INTRODUCTION......Page 271
II. PROTEIN-CROWDED ENVIRONMENT IN THE CHLOROPLAST MATRIX......Page 272
IV. ISOLATION AND CHARACTERIZATION OF CALVIN CYCLE MULTIENZYME COMPLEXES......Page 273
V. SUBSTRATE CHANNELING AND ADVANTAGES OF ORGANIZED STATE......Page 275
VI. ARE THERE TWO POPULATIONS OF RUBISCO?......Page 276
VII. ASSOCIATION OF WATER-SOLUBLE ENZYMES WITH THE THYLAKOID MEMBRANES......Page 277
VIII. QUANTASOMES, PHOTOSYNTHESOMES, METABONUCLEONS......Page 279
IX. FUTURE DIRECTIONS IN THE STUDIES ON SUPRAMOLECULAR ORGANIZATION......Page 280
ABBREVIATIONS......Page 281
REFERENCES......Page 282
A. GENOME CONTENT AND ORGANIZATION......Page 285
B. PROPERTIES OF THE MATURE CODING SEQUENCES......Page 287
C. ROLE OF SPECIFIC CYT c6 GENES......Page 288
IV. PROPERTIES AND ISOLATION OF CYT c6......Page 290
V. HETEROLOGOUS EXPRESSION OF CYT c6 GENE IN BACTERIA......Page 293
REFERENCES......Page 294
Section IV: Atmospheric and Environmental Factors Affecting Photosynthesis......Page 297
I. INTRODUCTION......Page 298
B. AIR TEMPERATURE......Page 299
A. STOMATAL CLOSURE......Page 300
E. DEVELOPMENT STAGE......Page 301
B. DECREASE IN RUBISCO ACTIVITY......Page 302
D. DECLINE IN PHOTOSYSTEM II PHOTOCHEMICAL EFFICIENCY......Page 303
A. ADAPTIVE IMPORTANCE......Page 304
REFERENCES......Page 305
I. INTRODUCTION......Page 309
II. FLOODING AND HYPOXIA EFFECTS ON SOIL PROCESSES......Page 310
IV. HYPOXIA AND STOMATAL CLOSURE......Page 312
V. STOMATA CLOSURE MECHANISMS......Page 317
REFERENCES......Page 318
I. INTRODUCTION......Page 325
II. LEAF PHOTOSYNTHESIS ACCLIMATION TO ELEVATED [CO2]......Page 326
III. PHOTOSYNTHESIS DURING LEAF ONTOGENY AT ELEVATED [CO2]......Page 327
B. LIMITED SOIL WATER AVAILABILITY......Page 330
REFERENCES......Page 331
A. MOLECULAR MECHANISM......Page 337
1. D1 Synthesis/Degradation......Page 338
2. D1 Cleavage Mechanism......Page 339
III. PHOTOINHIBITION IN PSI......Page 340
A. MECHANISM OF PHOTOBLEACHING......Page 341
B. ENERGY DISSIPATION PATHWAYS......Page 342
B. NONPHOTOCHEMICAL FLUORESCENCE QUENCHING......Page 343
REFERENCES......Page 345
I. INTRODUCTION......Page 353
III. ACTION OF LIGHT ON THE STRUCTURAL AND FUNCTIONAL ORGANIZATION OF ETIOPLASTS......Page 354
C. PIGMENT–PROTEIN COMPLEXES......Page 355
D. APPEARANCE OF PHOTOSYNTHETIC ACTIVITIES......Page 356
A. RECEPTOR SIDE OF LIGHT-INDUCED PROCESSES......Page 357
B. REGULATION OF LIGHT-INDUCED EXPRESSION OF CHLOROPLAST GENES......Page 358
C. REGULATION OF LIGHT-INDUCED EXPRESSION OF NUCLEAR-ENCODED GENES......Page 359
D. REGULATION OF THE OPERATION OF PHOTOSYNTHETIC APPARATUS BY LIGHT......Page 360
2. Long-Term Acclimation......Page 361
A. CYTOKININS......Page 362
B. OTHER PHYTOHORMONES......Page 365
REFERENCES......Page 366
Section V: Photosynthetic Pathways in Various Crop Plants......Page 374
I. INTRODUCTION......Page 375
A. CALVIN CYCLE......Page 376
B. REGULATION OF C3 PHOTOSYNTHESIS......Page 377
2. Activase as Potential Target for Increasing Photosynthesis......Page 378
C. PHOTORESPIRATION......Page 379
A. BASIC PHENOMENA......Page 380
a. Regulation of C4 pathway......Page 381
b. Function of C4 pathway of photosynthesis......Page 383
4. Leaf Development and Differential Gene Expression......Page 384
e. Energetics of C4 pathway......Page 385
g. Evolution of C4 pathway......Page 386
h. Possibility of using single-cell C4-like system in air......Page 387
IV. PHOTOSYNTHESIS IN C3–C4 INTERMEDIATES......Page 388
1. Comparative Aspects of C3, C4, and CAM Plants......Page 389
6. Regulation of Decarboxylation......Page 390
8. Circadian Rhythm in CAM Plants......Page 391
REFERENCES......Page 392
CONTENTS......Page 398
I. INTRODUCTION......Page 399
1. Anatomical Description......Page 400
5. Localization of Key Enzymes Participating in C4 Photosynthesis......Page 401
2. Physiological and Biochemical Studies......Page 402
3. Anatomical Features and Localization of Key Enzymes Participating in C4 Photosynthesis......Page 403
5. Molecular Studies of Phosphoenolpyruvate Carboxylase and NADP–ME......Page 404
D. EVOLUTIONARY CONTEXT......Page 405
2. The Beginning: C4–C3 Characterization......Page 406
3. Going Deeper: The Ultrastructural Characterization of Photosynthetic Cells......Page 407
4. In Situ Immunolocalization Studies......Page 408
6. Structure and Analysis of the Expression of Photosynthetic Enzymes......Page 409
8. Regulation of Differentiation......Page 410
1. Occurrence and Description......Page 411
3. Biochemical Studies: Carbon Isotope Composition and 14CO2 Fixation......Page 412
1. Occurrence and Description......Page 413
4. Biochemical Studies: Analysis of Main Photosynthetic Enzymes......Page 414
V. STUDY OF THE TRANSITION FROM C4 PHOTOSYNTHESIS TO CRASSULACEAN ACID-LIKE METABOLISM IN THE PORTULACA GENUS......Page 415
3. Conditions for CAM Induction in P. oleracea......Page 416
5. Leaf Anatomy Studies in Control and Water Stressed Plants......Page 417
9. Carbohydrate Metabolism-Related Enzymes......Page 418
10. Biochemical Pathways Operating in Control and Stressed P. oleracea Leaves......Page 419
2. Anatomical and Ultrastructural Studies......Page 420
C. THE CASE OF PORTULACA MUNDULA......Page 421
VI. SUMMARY AND CONCLUDING REMARKS......Page 422
REFERENCES......Page 423
I. INTRODUCTION......Page 430
II. PIGMENT, POLYPEPTIDE ORGANIZATION, AND FUNCTIONING OF THE PHYCOBILISOMES......Page 431
III. PIGMENT BIOSYNTHESIS......Page 432
IV. GENOME ORGANIZATION......Page 433
B. STRESS BY LIGHT......Page 435
VI. REGULATORY LOGIC......Page 437
B. THE KEY REGULATORY PROTEINS......Page 438
C. COMMON THEMES OF REGULATION......Page 439
REFERENCES......Page 440
Section VII: Photosynthesis in Higher Plants......Page 444
II. SHORT-TERM CONTROL OF PHOTOSYNTHESIS......Page 445
III. LONG-TERM CONTROL OF PHOTOSYNTHESIS......Page 447
A. CARBOHYDRATE CONTROL OF GENE EXPRESSION......Page 448
B. INVERTASE, SUCROSE CYCLING, AND A POSSIBLE CONTROL POINT OF PHOTOSYNTHESIS......Page 449
IV. CONCLUSIONS......Page 451
REFERENCES......Page 452
I. INTRODUCTION......Page 454
1. Pchlide as the Main Chl Precursor of Dark-Grown Leaves......Page 456
2. Light-Dependent Transformation of Pchlide to Chlide......Page 457
3. Spectral Changes after Irradiation of Re-Etiolated Leaves......Page 458
4. Carotenoid Contribution to Plastid Development......Page 459
1. POR Structure and Enzymatic Activity......Page 460
2. POR is Encoded in the Nucleus, Translated in the Cytosol, and Transported into Plastids......Page 461
3. POR Import and Assembly into Plastids......Page 462
C. LIPIDS OF INNER PLASTID MEMBRANES......Page 463
A. STRUCTURE OF THE PLBS......Page 464
IV. USE OF FLUORESCENCE PROBES FOR INVESTIGATING PIGMENT–PROTEIN COMPLEXES IN PLASTID MEMBRANES......Page 465
REFERENCES......Page 470
Section VIII: Photosynthesis in Different Plant Parts......Page 479
I. INTRODUCTION......Page 480
B. C4 PLANTS......Page 481
3. Plant Gender......Page 482
3. Irradiance......Page 483
2. Cladodes......Page 484
B. STEM PHOTOSYNTHESIS — CO2 REFIXATION......Page 485
A. FLORAL PARTS......Page 486
V. PHOTOSYNTHESIS IN FRUIT......Page 487
VII. CONTRIBUTION OF LEAF, STEM, FLOWER, AND FRUIT PHOTOSYNTHESIS TO PRODUCTIVITY......Page 490
REFERENCES......Page 492
Section IX: Photosynthesis and Plant/Crop Productivity and Photosynthetic Products......Page 499
CONTENTS......Page 500
I. DRY MATTER PRODUCTION IN A CROP CANOPY......Page 501
A. LENGTH OF THE GROWING PERIOD......Page 502
B. LEAF AREA INDEX......Page 503
D. DYNAMICS OF LEAF AREA INDEX......Page 504
E. RADIATION USE EFFICIENCY......Page 505
F. EFFICIENCY OF SOLAR ENERGY UTILIZATION IN CANOPIES......Page 506
G. THE ROLE OF RESPIRATION......Page 509
A. PHOTOSYNTHESIS AND SINKS......Page 510
B. ASSIMILATE DISTRIBUTION AND DRY MATTER PRODUCTION......Page 511
D. HARVEST INDEX......Page 512
III. PLANT PHOTOSYNTHETIC CHARACTERISTICS AND YIELD IMPROVEMENT......Page 513
1. Plant Morphology......Page 514
5. Introduction of C4 Photosynthesis into C3 Plants......Page 515
B. MINERAL NUTRIENTS......Page 516
1. Mineral Nutrients and Yield......Page 517
2. Nitrogen and Photosynthesis......Page 518
3. Nitrogen Allocation......Page 519
REFERENCES......Page 520
I. INTRODUCTION......Page 524
A. STARCH SYNTHESIS AND BREAKDOWN......Page 525
B. TRANSPORT OF METABOLITES ACROSS THE CHLOROPLAST ENVELOPE......Page 529
C. SUCROSE SYNTHESIS AND BREAKDOWN......Page 531
D. BALANCE OF CARBON DISTRIBUTION BETWEEN SUCROSE, STARCH, AND RESPIRATORY METABOLISM......Page 533
III. TRANSPORT OF CARBON FROM SOURCES TO SINKS......Page 534
A. CARBON METABOLISM IN THE CYTOSOL......Page 535
B. CARBON METABOLISM IN AMYLOPLASTS......Page 537
REFERENCES......Page 539
Section X: Photosynthesis and Plant Genetics......Page 545
I. INTRODUCTION......Page 546
II. COMPONENTS OF RUE......Page 547
III. EFFICIENCY OF PHOTOSYNTHESIS IN CONVERTING ENERGY INTO BIOMASS......Page 548
A. DETERMINATION OF RUE......Page 549
B. RUE IN VARIOUS CROP SPECIES......Page 550
A. GROWTH STAGE......Page 551
B. NITROGEN STATUS......Page 553
C. WATER STATUS......Page 554
E. SHADING......Page 555
V. OPPORTUNITIES TO IMPROVE RUE IN CROPS......Page 556
A. IMPROVING THE LIGHT DISTRIBUTION IN THE CANOPY......Page 557
1. Photosynthetic Efficiency at Low Levels of Irradiance......Page 559
D. CAN PHOTORESPIRATION BE SUPPRESSED?......Page 560
VI. IMPORTANCE OF RUE IN CROP PRODUCTIVITY AND YIELD POTENTIAL......Page 561
VII. CHALLENGES AND CONSTRAINTS TO IMPROVE RUE......Page 563
REFERENCES......Page 564
CONTENTS......Page 573
I. INTRODUCTION......Page 574
II. RELEVANCE OF DROUGHT STRESS TO THE SEMIARID TROPICS AND POTENTIAL YIELD GAINS FROM CROP IMPROVEMENT......Page 575
III. CROP YIELD AND WATER USE......Page 576
A. THE OLD PARADIGM......Page 577
C. STRATEGY OF THE NEW PARADIGM......Page 578
A. BLACKBOX APPROACH......Page 579
B. IDEOTYPE APPROACH......Page 580
A. FUNCTIONAL RELATIONSHIPS AND THEIR SIGNIFICANCE FOR THE TRAITS OF INTEREST......Page 581
VII. NECESSITY OF A THOROUGH UNDERSTANDING OF PHYSIOLOGICAL MECHANISMS TO DETERMINE THEIR ADAPTIVE ROLE......Page 582
A. MOLECULAR MARKERS......Page 583
IX. VISION AND RESEARCH PRIORITIES IN DROUGHT RESEARCH......Page 584
X. CONCLUDING REMARKS......Page 585
REFERENCES......Page 586
Section XI: Photosynthetic Activity Measurements and Analysis of Photosynthetic Pigments......Page 591
I. INTRODUCTION......Page 592
A. INVASIVE ANALYSIS OF BIOMASS GAIN......Page 593
2. Net Carbon Exchange Rate and Net Carbon Gain......Page 594
A. LIGHT......Page 596
B. CO2 CONCENTRATION......Page 597
D. C/N BALANCE......Page 600
E. GROWTH REGULATORS......Page 601
F. CANOPY ARCHITECTURE......Page 602
IV. CONCLUSIONS......Page 603
REFERENCES......Page 604
A. MEASUREMENTS OF HILL ACTIVITY USING ARTIFICIAL ELECTRON ACCEPTOR 2,6-DICHLOROPHENOLINDOPHENOL......Page 612
B. MEASUREMENTS OF OXYGEN EVOLUTION RATE BY CLARK ELECTRODE......Page 615
C. DETERMINATION OF EXTENT OF PS 2 DAMAGE BY ELECTRON SPIN RESONANCE SPECTROSCOPY......Page 617
D. RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE ACTIVITY......Page 619
E. PIGMENT ANALYSIS USING HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY......Page 621
F. CO2 EXCHANGE IN OPEN AND CLOSED SYSTEMS......Page 624
G. QUANTITATIVE PHOTOSYNTHETIC PARAMETERS IN MATHEMATICAL MODELS......Page 633
A. QUALITATIVE AND QUANTITATIVE ESTIMATION OF PHOTOSYNTHETIC PIGMENTS......Page 634
B. MEASUREMENT OF PHOTOSYNTHESIS IN THE FOREST STAND......Page 636
C. GROWTH ANALYSIS METHOD......Page 643
IV. CONCLUSIONS......Page 646
REFERENCES......Page 647
I. INTRODUCTION......Page 652
1. Imaging......Page 653
B. EXTRACTION......Page 654
2. Thin Layer Chromatography......Page 655
E. MOLECULAR IDENTIFICATION AND QUANTIFICATION......Page 656
6. Mass Spectrometry......Page 657
ACKNOWLEDGMENTS......Page 658
REFERENCES......Page 659
Section XII: Photosynthesis and Its Relationship with Other Plant Physiological Processes......Page 664
A. CHLOROPLASTS......Page 665
C. RIBULOSE BISPHOSPHATE CARBOXYLASE......Page 666
E. C3, C4, AND CAM PLANTS......Page 667
4. The Pasteur Effect and Respiratory Control......Page 668
A. CROP PLANTS......Page 669
REFERENCES......Page 670
I. INTRODUCTION......Page 672
A. INITIATION......Page 673
C. RHIZOBIAL POLYSACCHARIDES......Page 674
D. MATURATION......Page 675
III. THE METABOLISM OF NITROGEN FIXATION IN LEGUMES......Page 676
V. INCORPORATION OF AMMONIUM INTO ORGANIC COMPOUNDS......Page 678
REFERENCES......Page 680
I. INTRODUCTION......Page 684
A. METHODS OF IDENTIFICATION AND CHARACTERIZATION OF SENESCENCE-ASSOCIATED GENES......Page 685
1. Enzymes Involved in Protein Degradation......Page 688
4. Enzymes Involved in Lipid Degradation in Peroxisomes/Glioxysomes......Page 689
C. CHARACTERISTICS OF GENES AND THEIR PRODUCTS THAT HAVE PROTECTIVE FUNCTION DURING LEAF SENESCENCE......Page 690
III. DEGRADATION OF PHOTOSYNTHETIC APPARATUS DURING LEAF SENESCENCE......Page 691
V. ASPECTS OF PCD DURING LEAF SENESCENCE......Page 692
VI. LEAF SENESCENCE INDUCED BY ENVIRONMENTAL FACTORS......Page 699
B. ROLE OF ETHYLENE......Page 700
F. ROLE OF ROS AND NITRIC OXIDE......Page 701
REFERENCES......Page 702
Section XIII: Photosynthesis under Environmental Stress Conditions......Page 708
I. INTRODUCTION......Page 709
1. Stomatal Closure and Gas Exchange Processes......Page 710
2. Chloroplast Structure and Pigment Composition......Page 712
3. Photosystems and Photochemical Activities......Page 713
1. Leaf Area and Stomatal Conductance......Page 715
2. Ultrastructural Changes in Chloroplasts......Page 716
3. Chlorophyll Fluorescence and Photochemical Reactions......Page 717
4. Carboxylation under Water Stress......Page 718
C. HEAT STRESS......Page 719
D. CHILLING......Page 720
F. AIR POLLUTANTS......Page 722
G. HEAVY METALS......Page 723
REFERENCES......Page 725
I. INTRODUCTION......Page 730
a. Turnover of D1 protein......Page 731
b. Zeaxanthin, an effective xanthophyll for thermal dissipation of excess quanta during photoinhibition......Page 732
2. PS I Photoinhibition......Page 733
D. TEMPERATURE EXTREMES: CHANGES IN THE STRUCTURE AND FUNCTION OF CHLOROPLASTS......Page 734
V. MOLECULAR BIOLOGY OF STRESS RESPONSE......Page 735
C. MOLECULAR BIOLOGY OF OXIDATIVE STRESS......Page 736
D. GENE MANIPULATION AND CHLOROPLAST RESISTANCE TO STRESS......Page 737
VI. CONCLUSIONS AND PERSPECTIVES......Page 738
REFERENCES......Page 739
CONTENTS......Page 741
A. SHORT- AND LONG-TERM RESPONSE......Page 742
D. LIMITATION OF ASSIMILATION RATE BY FACTORS OTHER THAN LOW INTERNAL LEAF CO2 CONCENTRATION......Page 743
III. LIGHT CAPTURE......Page 745
C. ELECTRON CONSUMPTION BY REACTIONS OTHER THAN CO2 FIXATION......Page 746
C. RUBP CONCENTRATIONS AND RUBISCO ACTIVITY......Page 747
E. LIMITATION OF RUBP REGENERATION BY NADPH AND ATP AVAILABILITY......Page 748
A. PHOTORESPIRATION......Page 749
D. ENZYMATIC DETOXIFICATION OF ROS......Page 750
G. PHYSIOLOGICAL IMPORTANCE OF ROS PRODUCTION AS AN ELECTRON SINK METABOLISM......Page 751
C. PROLINE......Page 753
VII. MEMBRANES AND LIPIDS......Page 755
IX. STRESS EFFECTS ON ENZYMES......Page 756
D. V-ATPASE......Page 757
X. A GENERAL MECHANISM UNDERLYING STRESS EFFECTS......Page 758
B. FUNCTION OF COMPATIBLE SOLUTES......Page 759
REFERENCES......Page 760
A. LONG VS. SHORT-TERM EFFECTS......Page 768
B. IONIC EFFECTS AND TOXICITY AND ION COMPARTMENTATION......Page 769
E. PHOTOSYNTHATE PARTITIONING AND OSMOTIC ADJUSTMENT......Page 770
F. RIBULOSE BISPHOSPHATE CARBOXYLASE/OXYGENASE......Page 771
H. REDUCTION OF PHOTOSYNTHETIC CAPACITY BY FEEDBACK INHIBITION......Page 772
IV. PHOTOSYNTHETIC EFFICIENCY AND PRODUCTIVITY UNDER STRESS CONDITIONS......Page 773
C. INDUCTION OF CAM......Page 774
REFERENCES......Page 775
I. INTRODUCTION......Page 782
1. Stomatal Closure — A Major Response to Drought......Page 783
3. Internal CO2 Concentration (Ci) under Drought Stress......Page 784
a. Light reaction......Page 786
b. Chlorophyll fluorescence......Page 787
2. Effects of Drought on Metabolic Factors......Page 788
b. Drought effects on ATP synthesis......Page 789
IV. EFFECTS OF DROUGHT ON C4 PLANTS......Page 790
V. EFFECTS OF DROUGHT ON CAM PLANTS......Page 791
ACKNOWLEDGMENTS......Page 792
REFERENCES......Page 793
I. INTRODUCTION......Page 799
A. BIOSYNTHESIS AND COMPARTMENTATION......Page 800
C. ENVIRONMENTAL MODULATION OF STOMATAL SENSITIVITY TO ABA......Page 801
A. AUXINS......Page 802
C. GIBBERELLINS......Page 803
A. DEFINING STOMATAL LIMITATIONS......Page 804
B. ABA AND STOMATAL LIMITATION......Page 805
VII. SUMMARY......Page 807
REFERENCES......Page 808
I. INTRODUCTION......Page 814
C. LIPIDS......Page 815
III. UV-B EFFECTS ON NET PHOTOSYNTHESIS......Page 816
A. THE STRUCTURE AND FUNCTION OF PSII......Page 817
3. The Water-Oxidizing Complex......Page 818
D. POSSIBLE MECHANISMS OF UV ACTION ON PSII REDOX COMPONENTS......Page 819
E. DAMAGE OF PSII PROTEIN STRUCTURE BY UV RADIATION......Page 820
B. THE CYTOCHROME B6/F COMPLEX......Page 821
VI. PROTECTION, ADAPTATION, AND REPAIR......Page 822
ACKNOWLEDGMENTS......Page 823
REFERENCES......Page 824
I. INTRODUCTION......Page 831
A. COPPER......Page 833
1. Ultrastructural Changes in Chloroplasts......Page 834
3. Electron Transport and RUBISCO Activity......Page 835
B. MANGANESE......Page 836
3. CO2 Assimilation......Page 837
D. IRON......Page 838
E. CADMIUM......Page 839
F. LEAD......Page 840
G. NICKEL......Page 841
III. CONCLUSIONS......Page 842
REFERENCES......Page 843
I. INTRODUCTION......Page 850
II. CHLOROPHYLL–PROTEIN COMPLEXES IN HIGHER PLANTS......Page 851
1. PSII Core......Page 853
2. LHCII......Page 854
B. CHANGES IN THE ACCUMULATION OF CHLOROPHYLL–PROTEINS UNDER HEAVY METAL STRESS......Page 855
A. INFLUENCE OF HEAVY METALS ON PHOTOSYNTHETIC PIGMENTS AND MEMBRANE LIPIDS......Page 858
B. DISTURBANCE OF MINERAL METABOLISM BY HEAVY METALS......Page 859
1. Effects of Reactive Oxygen Species on Chl–Protein Complexes......Page 861
2. Regulatory Processes under Excess Light......Page 862
ACKNOWLEDGMENTS......Page 864
REFERENCES......Page 865
Section XIV: Photosynthesis in the Past, Present, and Future......Page 874
A. ATMOSPHERE OF THE EARLY EARTH......Page 875
B. PROKARYOTIC PHOTOSYNTHESIS......Page 876
B. MICROBODIES AND MITOCHONDRIA......Page 877
A. LIGHT-HARVESTING EFFICIENCY......Page 879
V. CRASSULACEAN ACID METABOLISM......Page 880
VIII SUMMARY......Page 881
REFERENCES......Page 882