ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues

دانلود کتاب کتاب راهنمای سنجش نوری گلوکز در مایعات و بافت های بیولوژیکی

Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues

مشخصات کتاب

Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues

ویرایش:  
نویسندگان:   
سری: Series in Medical Physics and Biomedical Engineering 
ISBN (شابک) : 9781584889748, 1584889748 
ناشر: CRC Press 
سال نشر: 2008 
تعداد صفحات: 716 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای سنجش نوری گلوکز در مایعات و بافت های بیولوژیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهنمای سنجش نوری گلوکز در مایعات و بافت های بیولوژیکی

اگرچه نظارت مداوم و غیرتهاجمی غلظت گلوکز در خون و بافت‌ها یکی از چالش برانگیزترین حوزه‌های پزشکی است، اخیراً طیف وسیعی از تکنیک‌های نوری برای کمک به توسعه روش‌های غیرتهاجمی قوی برای سنجش گلوکز طراحی شده‌اند. برای اولین بار در قالب کتاب،راهنمای سنجش نوری گلوکز در سیالات و بافت های بیولوژیکیروندها در سنجش نوری غیرتهاجمی گلوکز را تجزیه و تحلیل می کند و تاثیر آن را بر خواص نوری بافت مورد بحث قرار می دهد. این کتاب راهنما روش‌هایی را ارائه می‌کند که دقت در پیش‌بینی گلوکز را بر اساس طیف‌سنجی جذب مادون قرمز، مطالعات اخیر در مورد تأثیر هیپرگلیسمی حاد بر جریان خون مغزی، و همبستگی بین دیابت و پاسخ حرارتی-اپتیکی پوست انسان را بهبود می‌بخشد. نظارت بر گلوکز پوست را با طیف‌سنجی مادون قرمز نزدیک (NIR)، حسگرهای زیستی گلوکز مبتنی بر فلورسانس و حسگر لنز تماسی کریستال فوتونی بررسی می‌کند. همکاران همچنین مشکلات سنجش گلوکز پلاریمتری در بافت‌های شفاف و کدر را بررسی می‌کنند و همچنین یک تکنیک نوری با وضوح بالا برای پایش غیرتهاجمی، مداوم و دقیق قند خون و اندازه‌گیری انتشار گلوکز ارائه می‌دهند.

نوشته شده توسط جهان - متخصصان مشهور در اپتیک بیوپزشکی و بیوفتونیک، این کتاب یک رساله کامل و پیشرفته در مورد طراحی و کاربرد روش‌ها و ابزارهای نوری غیرتهاجمی برای سنجش گلوکز ارائه می‌دهد.


توضیحاتی درمورد کتاب به خارجی

Although noninvasive, continuous monitoring of glucose concentration in blood and tissues is one of the most challenging areas in medicine, a wide range of optical techniques has recently been designed to help develop robust noninvasive methods for glucose sensing. For the first time in book form, theHandbook of Optical Sensing of Glucose in Biological Fluids and Tissuesanalyzes trends in noninvasive optical glucose sensing and discusses its impact on tissue optical properties. This handbook presents methods that improve the accuracy in glucose prediction based on infrared absorption spectroscopy, recent studies on the influence of acute hyperglycemia on cerebral blood flow, and the correlation between diabetes and the thermo-optical response of human skin. It examines skin glucose monitoring by near-infrared spectroscopy (NIR), fluorescence-based glucose biosensors, and a photonic crystal contact lens sensor. The contributors also explore problems of polarimetric glucose sensing in transparent and turbid tissues as well as offer a high-resolution optical technique for noninvasive, continuous, and accurate blood glucose monitoring and glucose diffusion measurement.

Written by world-renowned experts in biomedical optics and biophotonics, this book gives a complete, state-of-the-art treatise on the design and applications of noninvasive optical methods and instruments for glucose sensing.



فهرست مطالب

1584889748......Page 1
c9748_c000......Page 2
Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues......Page 4
Contents......Page 6
Preface......Page 17
References......Page 23
List of Contributors......Page 27
Chapter 1: Glucose: Physiological Norm and Pathology......Page 33
Table of Contents......Page 0
1.1.2 Terms and definitions......Page 34
1.2.1 Glucose transporters......Page 36
1.2.2 Pathways of glucose concentration change: glucose distribution and concentrations in human organism......Page 37
1.2.3 Regulation of glucose metabolism: main pathways and processes......Page 40
1.2.3.1 Free fatty acids role in glucose metabolism regulation......Page 41
1.2.4 Insulin: the key hormone of glucose metabolism......Page 42
1.2.4.1 Nonglycemical insulin activities......Page 44
1.2.5 Endothelium and glucose metabolism......Page 45
1.3.1 Diabetes mellitus: glucose — victim or culprit?......Page 46
1.3.1.2 Free fatty acids......Page 48
1.3.1.3 Diabetes mellitus complications and glucose......Page 49
1.3.2.1 Hyperglycemia and atherogenesis......Page 50
1.3.2.2 Haemostasis and rheology modifications and glucose......Page 52
1.4.1 Glucose level regulation system tests: clinical and experimental use......Page 53
1.4.3 Current state of the problem: unsolved questions......Page 54
1.5 Conclusion......Page 56
1.6 Glossary......Page 57
References......Page 58
Chapter 2: Commercial Biosensors for Diabetes......Page 73
2.1 Introduction......Page 74
2.2.3 Gestational diabetes......Page 75
2.2.4 Incidence - A major world problem......Page 76
2.2.5 Treatments......Page 77
2.3.2 Blood glucose monitoring......Page 78
2.5.1 The Clark enzyme electrode......Page 79
2.5.3 Mediated biosensors......Page 81
2.6.1 General principles......Page 82
2.6.2.1 Roche Diagnostics......Page 83
2.6.2.2 LifeScan......Page 84
2.6.2.4 Bayer HealthCare......Page 85
2.7 Integrated Devices......Page 86
2.8.1 Minimally invasive testing......Page 88
2.8.2.1 Continuous glucose monitoring system – Electrochemical detection of glucose oxidase......Page 89
2.8.2.2 Continuous glucose monitoring system – Optical detection of glucose oxidase......Page 90
2.9 Challenges and Hurdles Facing Glucose Biosensors......Page 91
2.10 Future Perspectives & Conclusions......Page 93
References......Page 94
Chapter 3: Monte Carlo Simulation of Light Propagation in Human Tissues and Noninvasive Glucose Sensing......Page 97
3.1 Introduction......Page 98
3.2 Effect of Glucose on Optical Parameters of Particulate Media......Page 99
3.3.1 Basics of the Monte Carlo method......Page 100
3.3.2 Monte Carlo algorithm......Page 101
3.4.1 Principles of OCT......Page 104
3.4.2 Simulation of the OCT A-scan......Page 105
3.4.3 Comparison of simulated and experimental results......Page 107
3.5.1 Multilayer biotissue phantom and its optical properties for Monte Carlo simulation......Page 109
3.5.2 SRR-signal......Page 110
3.5.3 Relative sensitivity of SRR......Page 112
3.5.5 Dependence of SRR-signal on glucose concentration......Page 113
3.6 Modeling of Glucose Sensing with Time Domain Technique......Page 115
3.6.1 Output time-of-flight signal......Page 116
3.6.2 Relative sensitivity of the TOF signals to glucose concentration......Page 117
3.7.1 Principles of frequency domain technique......Page 118
3.7.2 Simulation of frequency domain signals......Page 120
3.7.3 Analysis of glucose sensing potentialities of the frequency domain technique......Page 121
3.8 Conclusion......Page 122
References......Page 123
Chapter 4: Statistical Analysis for Glucose Prediction in Blood Samples by Infrared Spectroscopy......Page 128
4.1 Introduction......Page 129
4.2.1 Optimal wavelength region in the mid infrared......Page 131
4.2.2 Optimal wavelength region in the near infrared......Page 133
4.3 Minimization of Hemoglobin Interference......Page 136
4.3.2 Hemoglobin influence in the near infrared region......Page 137
4.4 Independent Component Analysis without Calibration Process......Page 139
4.5 Conclusion......Page 142
References......Page 144
Chapter 5: Near-Infrared Reflection Spectroscopy for Noninvasive Monitoring of Glucose — Established and Novel Strategies for Multivariate Calibration......Page 146
5.1 Introduction......Page 147
5.2.1 Patients and calibration design......Page 149
5.2.2 Reference measurements and calibration method......Page 150
5.2.3 Experiments and spectroscopic data......Page 151
5.3 Results Obtained by Conventional Calibration and Discussion......Page 155
5.4 Advantages of the “Science-Based” Calibration Method......Page 163
5.5 Theory and Background......Page 164
5.6 Specificity of Response......Page 167
5.7 Illustration of the Science-Based Calibration Method......Page 172
5.7.1 Outlook for the novel calibration method......Page 181
5.8 Conclusions......Page 182
Acknowledgments......Page 183
References......Page 184
6.1 Introduction......Page 188
6.2.1.1 Laser speckle phenomenon......Page 190
6.2.1.2 Laser speckle contrast analysis......Page 191
6.2.1.4 Measuring CBF through LSI......Page 192
6.2.2.1 Principles on intrinsic optical signal imaging......Page 193
6.2.2.3 Monitoring IOS changes during SD by IOSI......Page 194
6.3.1 Long-term monitoring the influence of glucose upon CBF in rat cortex......Page 195
6.3.2 Optical imaging of hemodynamic response during cortical spreading depression in the normal or acute hyperglycemic rat cortex......Page 198
6.4 Conclusion......Page 200
Acknowledgment......Page 201
References......Page 205
Chapter 7: Near-Infrared Thermo-Optical Response of the Localized Reflectance of Diabetic and Non-Diabetic Human Skin......Page 212
7.1 Introduction......Page 213
7.2 Experimental Setup......Page 215
7.3 Temperature Dependence of µa and µ's of Individual’s Skin......Page 216
7.4 Temperature Modulation of µa and µ's of Skin Over Prolonged Interaction Between the Optical Probe and Skin......Page 221
7.5 Dependence of Thermo-Optical Response of Localized Reflectance of Human Skin on Diabetic State......Page 223
7.6 Test for Diabetic State......Page 224
7.7 Biological Noise and Glucose Determinations......Page 225
7.8 Conclusions......Page 228
Acknowledgments......Page 229
References......Page 230
Chapter 8: In Vivo Nondestructive Measurement of Blood Glucose by Near-Infrared Diffuse-Reflectance Spectroscopy......Page 235
8.1 Introduction......Page 236
8.2 Importance of NIR In Vivo Monitoring of Blood Glucose......Page 237
8.3 The NIR System for Noninvasive Blood Glucose Assay......Page 238
8.3.1 Outline of the NIR instrument......Page 239
8.4.1 NIR spectra of human skin......Page 240
8.4.3 Blood glucose assay......Page 241
8.4.5 The prediction of blood glucose content......Page 244
8.5 New Chemometrics Algorithms for Wavelength Interval Selection and Sample Selection and Their Applications to In Vivo Near-Infrared Spectroscopic Determination of Blood Glucose......Page 247
8.5.1 Moving window partial least squares regression (MWPLSR)......Page 249
8.5.2 Changeable size moving window partial least squares (CSMWPLS) and searching combination moving window partial least squares (SCMWPLS)......Page 251
8.5.3 Application of MWPLSR and SCMWPLS to noninvasive blood glucose assay with NIR spectroscopy......Page 252
8.6.1 Multi-objective genetic algorithm......Page 256
8.6.2 Sample selection by multi-objective GA in PLS......Page 257
8.6.3 Applications of multi-objective GA to NIR spectra of human skin......Page 258
8.7 Region Orthogonal Signal Correction (ROSC) and Its Application to In Vivo NIR Spectra of Human Skin......Page 261
References......Page 263
Chapter 9: Glucose Correlation with Light Scattering Patterns......Page 267
9.1.2 Current art of noninvasive blood measurements......Page 268
9.1.3 Red blood cells aggregation phenomena......Page 270
9.1.5 Clinical relevance of RBC aggregation......Page 272
9.1.6 Measurement of RBC aggregation......Page 273
9.2.1 Aggregation assisted optical signal in vivo......Page 274
9.2.2 The occlusion spectroscopy system......Page 275
9.3.1 The parametric slope......Page 277
9.3.2 Structure of parametric slope in vivo......Page 278
9.3.3 In vitro measurement of POS signal......Page 280
9.4.1 Mismatch of refractive index......Page 283
9.4.2 Mismatch of refractive index as a function of glucose......Page 284
9.5.1 Time dependent optical parameters......Page 286
9.5.2 General expression for the PS......Page 288
9.6.2 PS for Mie scattering approximation......Page 292
9.6.3 PSV as a function of glucose......Page 294
9.6.4 PSS as function of blood plasma glucose for small aggregates......Page 296
9.7.1 WKB approximation......Page 297
9.7.2 Expression for the K-function......Page 299
9.7.3 Critical wavelength......Page 300
9.8 Conclusions......Page 303
Acknowledgments......Page 305
References......Page 306
Chapter 10: Challenges and Countermeasures in NIR Noninvasive Blood Glucose Monitoring......Page 311
10.1.1 The principle of blood glucose measurement using near infrared spectroscopy......Page 312
10.1.2 Noninvasive glucose measurement by diffuse reflectance spectroscopy......Page 313
10.1.3 The main questions of noninvasive glucose measurement by NIR spectroscopy......Page 316
10.2 Factors of Influencing the Measuring Precision of Glucose Monitor......Page 317
10.2.1 The relationship between measuring precision and instrumental precision......Page 318
10.2.2 An effective calibration method to improve the measuring precision of glucose concentration......Page 319
10.2.3 The influence of sample complexity on measuring precision......Page 320
10.2.4 The optimal pathlength method to improve the measuring precision of glucose concentration......Page 323
10.2.5 Precision analysis of the glucose concentration measurement by diffuse reflectance spectroscopy from dermis layer......Page 325
10.3.1 The influence of measurement site and position......Page 327
10.3.2 The influence of contact pressure......Page 329
10.3.2.1 Experiment on the influence of contact pressure......Page 330
10.3.2.2 The optimal contact state......Page 331
10.3.2.3 The optimal measurement time......Page 333
10.3.3 The measuring conditions reproducible system (MCRS) and human glucose sensing experiments......Page 334
10.4.1 The influence of the time dependent variations from physiological background on the glucose measurement......Page 337
10.4.2 The floating-reference method solution......Page 339
10.4.3 The preliminary experimental validation of the floating-reference method......Page 342
10.4.4 Summary......Page 345
References......Page 346
11.1 Introduction......Page 348
11.3 Issues Involved with In Vivo Glucose Monitoring Using Fluorescent Sensors......Page 350
11.4 Fluorescence-Based Glucose-Binding Protein Assays......Page 353
11.4.1 Concanavalin A-based approaches......Page 354
11.4.2 Engineered glucose-binding proteins......Page 360
11.5 Fluorescence Resonance Energy Transfer Systems for Glucose Monitoring......Page 361
11.5.1 Single-molecule RET systems using dual-labeled engineered proteins......Page 364
11.6 Enzyme-Based Glucose Sensors......Page 365
11.6.1 Apo-glucose oxidase......Page 366
11.7 Boronic Acid Derivatives......Page 367
11.8 Summary and Concluding Remarks......Page 370
References......Page 371
Chapter 12: Quantitative Biological Raman Spectroscopy......Page 382
12.1.1 Introduction to Raman spectroscopy......Page 383
12.2 Review......Page 385
12.2.3 Multivariate implementation......Page 386
12.3 Quantitative Considerations for Raman Spectroscopy......Page 387
12.3.3 Chance or spurious correlation......Page 388
12.3.4 Spectral evidence of the analyte of interest......Page 389
12.4.1 Using near infrared radiation......Page 390
12.4.2 Background signal in biological Raman spectra......Page 391
12.5 Instrumentation......Page 393
12.5.2 Light delivery, collection, and transport......Page 394
12.5.3 Spectrograph and detector......Page 395
12.6.1 Image curvature correction......Page 396
12.6.2 Spectral range selection......Page 398
12.6.5 Random noise rejection and suppression......Page 399
12.7.1 Model validation protocol and summary statistics......Page 400
12.7.2 Blood serum......Page 401
12.7.4 Human study......Page 402
12.8.1 Analyte-specific information extraction using hybrid calibration methods......Page 403
12.8.3 Constrained regularization (CR)......Page 404
12.8.5 Corrections based on photon migration theory......Page 406
12.8.6 Intrinsic Raman spectroscopy (IRS)......Page 407
12.8.7.2 Tissue morphology and skin heterogeneity......Page 408
Acknowledgments......Page 409
References......Page 410
Chapter 13: Tear Fluid Photonic Crystal Contact Lens Noninvasive Glucose Sensors......Page 415
13.1 Importance of Glucose Monitoring in Diabetes Management......Page 416
13.2 Eye Tear Film......Page 417
13.3.1 Tear fluid glucose transport......Page 418
13.3.2 Tear glucose in diabetic subjects......Page 419
13.4.1 Previous measurements of tears in extracted tear fluid......Page 420
13.4.2 Mechanical tear fluid stimulation......Page 421
13.4.3 Chemical and non-contact tear fluid stimulation......Page 422
13.4.4 Non-stimulated tear fluid......Page 423
13.5 Recent Tear Fluid Glucose Determinations......Page 424
13.6 In Situ Tear Glucose Measurements......Page 428
13.7 Photonic Crystal Glucose Sensors......Page 429
13.8 Summary......Page 437
Financial Disclosures......Page 438
References......Page 439
14.1 Introduction......Page 446
14.2 Theoretical Aspects of PA Techniques Used in Glucose Measurements......Page 449
14.2.1 Cylindrical PA source in a weakly absorbing liquid......Page 450
14.2.2 Plane PA source in strongly absorbing and scattering tissues......Page 452
14.2.3 Spherical PA source......Page 455
14.3.1 Optical sources......Page 457
14.3.2.1 Piezoelectric detection......Page 459
14.3.2.2 Optical detection......Page 462
14.4 PA Glucose Determination......Page 464
14.4.1.1 Water solutions......Page 465
14.4.1.2 Tissue phantoms......Page 466
14.4.1.3 Tissue......Page 468
14.4.2 In vivo noninvasive glucose determination......Page 470
14.5 Problems and Future Perspectives......Page 472
References......Page 475
Chapter 15: A Noninvasive Glucose Sensor Based on Polarimetric Measurements Through the Aqueous Humor of the Eye......Page 483
15.2 Theory of Polarized Light for Detecting Chemical Compounds......Page 484
15.3.1 Why use the eye?......Page 488
15.3.2 The anatomy and physiology of the eye toward glucose monitoring......Page 489
15.3.3 Corneal curvature and birefringence......Page 491
15.4 Polarimetric Glucose Monitoring Using a Single Wavelength......Page 495
15.5 Measurement of Optical Rotatory Dispersion of Aqueous Humor Analytes......Page 496
15.6 Corneal Birefringence Simulation and Experimental Measurement......Page 501
15.7 Dual Wavelength (Multi-Spectral) Polarimetric Glucose Monitoring......Page 506
15.8 Concluding Remarks Regarding the Use of Polarization for Glucose Monitoring......Page 507
References......Page 509
Chapter 16: Noninvasive Measurements of Glucose in the Human Body Using Polarimetry and Brewster-Reflection Off of the Eye Lens......Page 512
16.1 Introduction......Page 513
16.2 Basic Theory......Page 514
16.3.1 Polarization effects in the eye’s anterior chamber......Page 515
16.3.2 The Navarro eye model......Page 516
16.4.2 Brewster scheme......Page 518
16.5.1 Working principle......Page 523
16.5.2 Angle detection unit......Page 524
16.5.3 Experimental set-up......Page 525
16.6 Performance of the Glucose Sensor Based on the Brewster Scheme......Page 526
16.6.1.1 Error due to optical path length variations......Page 527
16.6.1.2 Error due to reflection off the ocular lens......Page 528
16.6.1.3 Error due to refraction at the cornea......Page 530
16.6.1.4 Error due to dispersion of the eye media......Page 531
16.6.1.5.1 Influence of wavelength variations......Page 534
16.6.1.5.2 Influence of entrance condition variations......Page 536
16.6.1.5.3 Influence of anterior lens shape variations......Page 537
16.6.1.5.4 Influence of anterior cornea shape variations......Page 538
16.6.1.5.5 Influence of involuntary eye movements......Page 539
16.6.2.1 Rotating linear polarizer......Page 541
16.6.2.2 Rotating lambda/4 plate......Page 543
16.7 Conclusion......Page 548
References......Page 549
Chapter 17: Toward Noninvasive Glucose Sensing Using Polarization Analysis of Multiply Scattered Light......Page 552
17.1 Introduction......Page 553
17.2 Polarimetry in Turbid Media: Experimental Platform for Sensitive Polarization Measurements in the Presence of Large Depolarized Noise......Page 555
17.3 Polarimetry in Turbid Media: Accurate Forward Modeling Using the Monte Carlo Approach......Page 561
17.4 Tackling the Inverse Problem: Polar Decomposition of the Lumped Mueller Matrix to Extract Individual Polarization Contributions......Page 565
17.5 Monte Carlo Modeling Results for Measurement Geometry, Optical Pathlength, Detection Depth, and Sampling Volume Quantification......Page 572
17.6 Combining Intensity and Polarization Information via Spectroscopic Turbid Polarimetry with Chemometric Analysis......Page 578
Acknowledgments......Page 583
References......Page 584
Chapter 18: Noninvasive Monitoring of Glucose Concentration with Optical Coherence Tomography......Page 588
18.1 Introduction......Page 589
18.2 Noninvasive Optical Techniques for Glucose Monitoring......Page 591
18.3 Optical Coherence Tomography......Page 592
18.4 Experimental Setup......Page 594
18.5 Studies in Tissue Phantoms......Page 595
18.6 Animal Studies......Page 596
18.7 Specificity Studies......Page 597
18.8 Clinical Studies......Page 599
18.9 Mechanisms of Glucose-Induced Changes in Optical Properties of Tissue......Page 601
Acknowledgments......Page 603
References......Page 604
Chapter 19: Measurement of Glucose Diffusion Coefficients in Human Tissues......Page 612
19.1 Introduction......Page 613
19.2 Spectroscopic Methods......Page 614
19.3 Photoacoustic Technique......Page 621
19.4 Use of Radioactive Labels for Detecting Matter Flux......Page 623
19.5.1 Spectrophotometry......Page 625
19.5.2 OCT and interferometry......Page 635
19.6 Conclusion......Page 637
Acknowledgments......Page 638
References......Page 639
Chapter 20: Monitoring of Glucose Diffusion in Epithelial Tissues with Optical Coherence Tomography......Page 647
20.1 Introduction......Page 648
20.2 Basic Theories of Glucose-Induced Changes of Tissue Optical Properties......Page 651
20.3.1 Materials and methods......Page 654
20.3.2 Quantification of molecular diffusion in ocular tissues (cornea and sclera) in vitro......Page 656
20.3.3 Quantification of glucose diffusion in skin in vitro......Page 660
20.3.5 Quantification of glucose diffusion in healthy and diseased aortas in vitro......Page 661
20.3.6 Comparative studies for assessment of molecular diffusion with OCT and histology......Page 664
20.3.7 Assessment of optical clearing of ocular tissues with OCT......Page 666
20.3.8 Depth-resolved assessment of glucose diffusion in tissues......Page 667
Acknowledgments......Page 669
References......Page 670
Chapter 21: Glucose-Induced Optical Clearing Effects in Tissues and Blood......Page 681
21.1 Introduction......Page 682
21.2.1 Structure, physical and optical properties of fibrous tissues......Page 683
21.2.2 Structure, physical and optical properties of skin......Page 684
21.2.3 Optical model of fibrous tissue......Page 685
21.2.4 Structure, physical and optical properties of blood......Page 687
21.2.5 Optical model of blood......Page 688
21.3.1 Mechanisms of optical immersion clearing......Page 690
21.3.2.1 In vitro spectral measurements......Page 691
21.3.2.2 In vivo spectral measurements......Page 693
21.3.2.3 Polarization measurements......Page 695
21.3.3.2 Two-photon microscopy......Page 696
21.3.3.3 OCT imaging......Page 698
21.3.3.5 In vivo spectral and fluorescence measurements......Page 699
21.4.1 Optical clearing of blood......Page 703
21.4.3 Experimental results......Page 706
Acknowledgment......Page 707
References......Page 708




نظرات کاربران