دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2019
نویسندگان: Gang-Ding Peng
سری:
ISBN (شابک) : 9789811070853, 9789811070877
ناشر: Springer Singapore
سال نشر: 2019
تعداد صفحات: 2396
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 111 مگابایت
کلمات کلیدی مربوط به کتاب کتابچه راهنمای فیبرهای نوری: علم مواد، مواد نوری و الکترونیک، مایکروویو، RF و مهندسی نوری، اپتیک، لیزر، فوتونیک، دستگاههای نوری
در صورت تبدیل فایل کتاب Handbook of Optical Fibers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای فیبرهای نوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پژوهشی و کاربردی محورهای اصلی فیبرهای نوری را پوشش می دهد. انتخاب فصول بر روی موضوعات فنی و کاربردی متمرکز است، که تا حد زیادی بازتابی از این است که تحقیقات به کجا می رود و محققان به دنبال چه هستند. فصلها در قالبی کاربرپسند و اساساً مستقل و با ارجاعات متقابل گسترده مرتب شدهاند. آنها در بخش های زیر سازماندهی شده اند: - ارتباطات فیبر نوری | ویراستاران: مینگ جون لی و چائو لو - سالیتون ها و امواج غیرخطی در فیبرهای نوری | ویرایشگر: Boris A. Malomed - Optical Fiber Fabrication | ویراستار: حیرالازهر بن عبدالرشید - فیبرهای نوری فعال | ویرایشگر: Kyunghwan Oh - Special Optical Fibers | ویراستاران: Perry Shum و Zhilin Xu - Optical Fiber Measurement | ویرایشگر: Jianzhong Zhang - Optical Fiber Devices | ویراستاران: John Canning و Tuan Guo - Optical Fiber Device Measurement | ویرایشگر: Yanhua Luo - Distributed Optical Fiber Sensing | ویرایشگر: Yosuke Mizuno - حسگرهای فیبر نوری برای کاربردهای صنعتی | ویرایشگر: Tong Sun OBE - Polymer Optical Fiber Sensing | ویرایشگر: Ginu Rajan - Photonic Crystal Fiber Sensing | ویرایشگر: D. N. Wang - Optical Fiber Microfluidic Sensors | ویراستار: یوان گونگ
This research- and application-oriented book covers main topical areas of optical fibers. The selection of the chapters is weighted on technological and application-specific topics, very much a reflection of where research is heading to and what researchers are looking for. Chapters are arranged in a user-friendly format essentially self-contained and with extensive cross-references. They are organized in the following sections: - Optical Fiber Communication | Editors: Ming-Jun Li and Chao Lu - Solitons and Nonlinear Waves in Optical Fibers | Editor: Boris A. Malomed - Optical Fiber Fabrication | Editor: Hairul Azhar Bin Abdul Rashid - Active Optical Fibers | Editor: Kyunghwan Oh - Special Optical Fibers | Editors: Perry Shum and Zhilin Xu - Optical Fiber Measurement | Editor: Jianzhong Zhang - Optical Fiber Devices | Editors: John Canning and Tuan Guo - Optical Fiber Device Measurement | Editor: Yanhua Luo - Distributed Optical Fiber Sensing | Editor: Yosuke Mizuno - Optical Fiber Sensors for Industrial Applications | Editor: Tong Sun OBE - Polymer Optical Fiber Sensing | Editor: Ginu Rajan - Photonic Crystal Fiber Sensing | Editor: D. N. Wang - Optical Fiber Microfluidic Sensors | Editor: Yuan Gong
Preface......Page 5
Contents......Page 7
About the Editor......Page 13
Section Editors......Page 14
Contributors......Page 22
Part I Optical Fiber for Communication......Page 33
1 Single-Mode Fibers for High Speed and Long-HaulTransmission......Page 34
Introduction......Page 35
History of Fiber Evolution (1966–1987)......Page 36
History of Fiber Evolution (1987–2007)......Page 37
History of Fiber Evolution (2007 Onwards)......Page 39
Optical Fiber Designs for Long-Haul Transmission......Page 42
Quantification of System Level Performance......Page 47
Long-Haul and Ultra-Long-Haul Transmission Systems......Page 48
Raman Gain Considerations......Page 51
Unrepeatered Span Transmission Systems......Page 54
Transmission System Modeling and Experiments......Page 58
Splice Loss......Page 61
Practical Benefits of Ultra-Low Attenuation and Large Effective Area Fibers......Page 62
Potential Future Directions......Page 66
Conclusions......Page 67
References......Page 69
2 Multimode Fibers for Data Centers......Page 71
Introduction of Multimode Fibers......Page 72
Light Propagation, Characterization, and Link Performance......Page 75
MMF Characterization: Modal Bandwidth and DMD......Page 81
Source Characterization (Encircled Flux)......Page 84
System Link Models......Page 88
Limitation of VCSEL-MMF Transmission and Novel Solutions......Page 91
Limiting Factors for VCSEL-MMF Transmission......Page 92
Chromatic Dispersion Compensation......Page 94
Performance of MMF with Different Peak Wavelength in WDM-Based Transceivers......Page 98
Modal Dispersion Compensation for SWDM Applications......Page 101
Motivation for Long Wavelength MMF Systems......Page 104
Design of MMF for Long Wavelength Transceivers......Page 105
System Testing of MMF Optimized for 1310 nm......Page 107
Universal Fiber Concept and Benefits......Page 109
Fiber Designs......Page 111
System Level Testing and Verification for Major MM and SM Applications......Page 113
Optical Trends in the Data Center......Page 117
Concluding Remarks......Page 124
References......Page 126
3 Multi-core Fibers for Space Division Multiplexing......Page 128
Introduction......Page 129
Coupled-Mode Theory for Orthogonal Modes......Page 130
Coupled-Mode Theory for Non-orthogonal Modes......Page 131
Uncoupled Multi-core Fibers......Page 132
Mode Coupling in Weakly Coupled MCF......Page 133
Random Mode Coupling Due to Longitudinal Perturbations......Page 135
Discrete Coupling Model and Statistical Distribution of the Crosstalk......Page 137
Coupled Power Theory for Predicting the Statistical Mean of the Crosstalk......Page 141
Local Power Coupling Coefficient Under High-Spatial-Frequency Perturbations Without Bend Radius Change and Fiber Twisting......Page 143
Power Coupling Coefficient Averaged Over Fiber Twisting......Page 146
Crosstalk Suppression Strategy......Page 149
Suppression of the Mode Coupling Coefficient......Page 150
Suppression of the Phase Matching......Page 151
Systematically Coupled Multi-core Fiber......Page 154
Mechanism of Random Mode Coupling......Page 157
Group Delay Spread in Randomly Coupled Multi-core Fiber......Page 163
Cutoff Wavelength Variation Due to Surrounding Cores......Page 168
Cladding Diameter......Page 169
References......Page 171
4 Optical Coherent Detection and Digital Signal Processing of Channel Impairments......Page 175
Introduction......Page 177
Mach-Zehnder Modulator......Page 181
Analytical Baseband Model......Page 183
Optical-to-Electrical Downconversion......Page 184
Single-Polarization Optical-to-Electrical Downconverter......Page 185
Single-Sided Photodetection......Page 187
Dual-Polarization Optical-to-Electrical Downconversion......Page 188
I/Q Imbalance......Page 189
Signal Conditioning Circuit......Page 190
Analytical Baseband Model......Page 191
Emulation of Other Detector Types......Page 192
Nonlinear Schrödinger Equation (NLSE)......Page 193
Linear Time-Invariant (LTI) Model......Page 194
Introduction......Page 196
Sampling Rate Requirement......Page 198
Discrete-Time Fourier Transform......Page 200
Minimum Mean Square Error (MMSE) Equalizer......Page 201
Equalizer Length Requirement......Page 203
MMSE Performance......Page 205
Frequency Domain Equalizer (FDE)......Page 207
Adaptive Time-Domain Equalizer (TDE)......Page 208
Coefficient Update......Page 209
Least Mean Square (LMS) Algorithm......Page 210
Adaptive Frequency-Domain Equalizer (FDE)......Page 211
Adaptive Multidelay Block Frequency-Domain Equalizer......Page 212
Hybrid Equalizer Structure......Page 213
Laser Phase Noise......Page 214
Phase Estimation in the Absence of Data Modulation......Page 215
Phase Estimation in the Presence of Data Modulation......Page 217
Combining Laser Phase Noise Compensation with Linear Equalization......Page 219
Digital Backpropagation......Page 221
Split-Step Fourier Method......Page 223
Reduced Complexity Nonlinear Compensation Algorithms......Page 226
Interchannel Nonlinear Compensation......Page 227
Timing Recovery......Page 230
Digital Timing Recovery......Page 231
Space-Division Multiplexing......Page 234
Optical Performance Monitoring......Page 237
Conclusions......Page 238
References......Page 240
Part II Solitons and Nonlinear Waves in Optical Fibers......Page 246
5 A Brief History of Fiber-Optic Soliton Transmission......Page 247
Nonlinear Waves......Page 248
Optical Fiber Technology......Page 250
Toward Experimental Proof of Principle......Page 251
Some Facts About Fibers......Page 253
Some Facts About the NLSE and Its Soliton Solution......Page 254
The Soliton Solution......Page 256
Deviations from the Exact Solution......Page 257
The Soliton Laser......Page 258
The Raman Shift......Page 259
Soliton Interaction......Page 260
Coding Formats for Optical Telecommunications......Page 261
Generalized NLSE......Page 262
Optical Amplifiers......Page 264
Gordon-Haus Jitter......Page 265
Four-Wave Mixing......Page 268
Dispersion Managed Solitons......Page 269
Commercial Soliton Systems......Page 271
Telecommunications and Limits to Growth......Page 272
Soliton Molecules......Page 274
Soliton Structures on a Background......Page 276
Supercontinuum Generation......Page 277
Fiber Lasers......Page 280
Beyond the Nonlinear Schrödinger Ansatz......Page 282
Conclusion......Page 283
References......Page 284
6 Perturbations of Solitons in Optical Fibers......Page 294
Introduction......Page 295
Physical Model and Nonlinear Schrödinger (NLS) Equation......Page 296
Bright Solitons......Page 299
Dark Solitons......Page 300
Solitons Under Perturbations......Page 302
Bright Solitons Under Perturbations......Page 303
The Background......Page 305
The Soliton and the Shelf......Page 307
Adiabatic Dynamics......Page 309
Dark Solitons Under Perturbations......Page 313
Beyond the Adiabatic Theory: Soliton Radiation......Page 317
Summary and Conclusions......Page 321
References......Page 322
7 Emission of Dispersive Waves from Solitons in Axially Varying Optical Fibers......Page 325
Introduction......Page 326
Fundamental Soliton......Page 327
Dispersive Wave......Page 328
Axially Varying Optical Fibers......Page 330
Emission of Multiple Dispersive Waves Along the Fiber......Page 331
Cascading of Dispersive Waves......Page 333
Transformation of a Dispersive Wave into a Fundamental Soliton......Page 334
Emission of Polychromatic Dispersive Waves......Page 335
Generation of a Dispersive Wave Continuum......Page 337
Conclusion and Perspectives......Page 338
References......Page 339
8 Nonlinear Waves in Multimode Fibers......Page 341
Introduction......Page 343
Spatiotemporal Pulse Shaping in Multicore Fibers......Page 345
Pulse Propagation in Multicore Fibers......Page 346
Pulse Compression and Combining......Page 348
Spatial-Division Multiplexing......Page 352
Nonlinear Propagation in Multimode Fibers......Page 353
The Influence of Nonlinear Effects on the Propagation of Optical Signals......Page 355
Raman Cleanup Effect and Raman Lasing in Multimode Graded-Index Fibers......Page 358
Experimental Observations and Theoretical Models of Raman Cleanup Effect......Page 360
Raman Cleanup Effect in Raman Fiber Amplifiers and Lasers......Page 364
GRIN Fiber Raman Lasers Directly Pumped by Multimode Laser Diodes......Page 366
Combined Action of Raman Beam Cleanup and Mode-Selecting FBGs in GRIN Fiber Raman Lasers......Page 370
Kerr Beam Self-Cleaning......Page 377
Theoretical Models of Spatiotemporal Dynamics......Page 379
Kerr Beam Cleanup in GRIN MMF......Page 382
Kerr Beam Cleanup in Step-Index Active MMF with Loss or Gain......Page 387
Self-Cleaning in a MMF Laser Cavity......Page 390
References......Page 392
9 Shock Waves......Page 396
Introduction......Page 397
Gradient Catastrophe and Classical Shock Waves......Page 400
Regularization Mechanisms......Page 402
Shock Formation in Optical Fibers......Page 404
Mechanisms of Wave-Breaking in the Normal GVD Regime......Page 409
Shock in Multiple Four-Wave Mixing......Page 413
The Focusing Singularity......Page 415
Control of DSW and Hopf Dynamics......Page 418
Riemann Problem and Dam Breaking......Page 421
Competing Wave-Breaking Mechanisms......Page 424
Resonant Radiation Emitted by Dispersive Shocks......Page 426
Phase-Matching Condition......Page 427
Bright Pulses......Page 429
Periodic Input......Page 431
Shock Waves in Passive Cavities......Page 432
Appendix A......Page 434
References......Page 439
10 A Variety of Dynamical Settings in Dual-CoreNonlinear Fibers......Page 443
Introduction......Page 444
The Formulation of the Model......Page 448
Continuous-Wave (CW) States and Their Modulational Instability (MI)......Page 451
The Variational Approximation (VA) for Solitons......Page 452
Gap Solitons in Asymmetric Dual-Core Fibers......Page 455
The Coupler with Separated Nonlinearity and Dispersion......Page 458
Two Polarizations of Light in the Dual-Core Fiber......Page 460
Solitons in Linearly Coupled Fiber Bragg Gratings (BGs)......Page 462
Bifurcation Loops for Solitons in Couplers with the Cubic-Quintic (CQ) Nonlinearity......Page 467
Introduction......Page 472
The Exact SP (Solitary-Pulse) Solution......Page 474
Special Cases of Stable SPs (Solitary Pulses)......Page 477
Stability of the Solitary Pulses and Dynamical Effects......Page 478
Interactions Between Solitary Pulses......Page 481
CW (Continuous-Wave) States and Dark Solitons (``Holes\'\')......Page 482
Evolution of Solitary Pulses Beyond the Onset of Instability......Page 483
Soliton Stability in PT (Parity-Time)-Symmetric Nonlinear Dual-Core Fibers......Page 485
Conclusion......Page 488
References......Page 490
Part III Optical Fiber Fabrication......Page 497
11 Advanced Nano-engineered Glass-Based Optical Fibers for Photonics Applications......Page 498
Introduction......Page 500
Importance of the Nano-engineered Glass-Based Optical Fiber......Page 504
The Basic Material of Nano-engineered Glass-Based Optical Fiber......Page 505
Mechanism to Develop Nano-engineered Glass-Based Optical Fiber......Page 506
Fabrication of Erbium-Doped Nano-engineered Zirconia-Yttria-Alumina-Phospho-Silica (ZYAPS) Glass-Based Optical Fiber......Page 507
Material Characterization of Erbium-Doped Nano-engineered ZYAPS Glass-Based Optical Preform and Fiber......Page 509
The Optical Performance of Erbium-Doped Nano-engineered ZYAPS Glass-Based Optical Fiber......Page 512
Fabrication of Erbium-Doped Nano-engineered Scandium-Phospho-Yttria-Alumina-Silica (SPYAS) Glass-Based Optical Fiber......Page 515
Material Characterization of Erbium-Doped Nano-engineered SPYAS Glass-Based Optical Preform and Fiber......Page 516
The Optical Performance of Erbium-Doped Nano-engineered SPYAS Glass-Based Optical Fiber......Page 519
Fabrication of Multielement (P-Yb-Zr-Ce-Al-Ca) Fiber for Moderate-Power Laser Application......Page 524
Material Characterization of Multielement (P-Yb-Zr-Ce-Al-Ca) Optical Preform and Fiber......Page 528
The Optical Performance of Multielement (P-Yb-Zr-Ce-Al-Ca) Optical Fiber......Page 530
Fabrication of Chromium-Doped Nano-phase Separated Yttria-Alumina-Silica (YAS) Glass-Based Optical Fiber......Page 534
Material Characterization of Chromium-Doped Nano-phase Separated YAS Glass-Based Optical Preform and Fiber......Page 535
The Optical Performance of Chromium-Doped Nano-phase Separated YAS Glass-Based Optical Fiber......Page 539
Conclusions......Page 544
References......Page 546
12 Fabrication of Negative Curvature Hollow Core Fiber......Page 550
Photonic Crystal Fiber......Page 551
Development of Hollow Core Fiber......Page 552
Development of Negative Curvature Hollow Core Fibers......Page 554
The Importance Negative Curvature......Page 555
Antiresonant Reflecting Optical Waveguide (ARROW)......Page 556
Marcatili and Schmeltzer\'s Model......Page 558
Fabrication of Fiber......Page 559
Stack......Page 560
Drawing of Cane......Page 561
Fiber Design......Page 563
Attenuation Measurement: Cutback Method......Page 564
References......Page 566
13 Optimized Fabrication of Thulium Doped Silica Optical Fiber Using MCVD......Page 571
Introduction......Page 572
Thulium Doped Fibers......Page 573
Fabrication Methods of Silica Fibers......Page 575
MCVD-Solution Doping Technique......Page 576
Fabrication and Characterization of Optical Fiber Preforms......Page 579
Soot Deposition Temperature......Page 581
Mechanism of Soot Deposition......Page 582
Soot Characteristics: Physisorption and Scanning Electron Microscope (SEM) Measurements......Page 584
Effect of Soot Condition on the Final Preform Characteristics......Page 589
Alumina, Gallia, and Baria Solution Doped Silica Preforms......Page 592
Aluminum Doped Preforms......Page 593
Gallium Doped Preforms......Page 594
Barium Doped Preforms......Page 595
Spectroscopic Characteristics of Thulium Doped Fibers (TDF)......Page 598
Absorption......Page 599
Lifetime......Page 600
Conclusions......Page 602
References......Page 603
14 Microfiber: Physics and Fabrication......Page 606
Wave Equation for Microfiber......Page 607
Adiabaticity Criterion......Page 613
Fabrications of Meso Taper......Page 616
The MT Shape and the Design of Fabrication System......Page 618
Fabrications of Short Taper......Page 623
Modified Flame-Brushing Technique......Page 624
Direct Drawing from Bulk Technique......Page 625
Fabrications of Long Taper......Page 626
Application in Structural Health Monitoring......Page 627
Microfiber-Based IMZI Sensor Packaging......Page 628
Microfiber-Based IMZI Sensor Deployment......Page 632
References......Page 637
15 Flat Fibers: Fabrication and Modal Characterization......Page 641
Introduction......Page 642
Flat Fiber Fabrication......Page 644
Flat Fiber Drawing Repeatability......Page 646
Multimode Propagation in Flat Fibers......Page 647
Single-Mode Propagation in Flat Fibers......Page 650
Conclusion......Page 653
References......Page 654
16 3D Silica Lithography for Future Optical Fiber Fabrication......Page 655
Introduction......Page 656
Conventional Silica fiber Fabrication......Page 658
3D Fabrication (3D Printing)......Page 659
3D silica lithography......Page 660
3D Silica fiber Fabrication......Page 661
Challenges for 3D Silica fibers......Page 662
Pathways for 3D Silica fibers......Page 663
Initial Results......Page 667
References......Page 668
Part IV Active Optical Fibers......Page 672
17 Rare-Earth-Doped Laser Fiber Fabrication Using Vapor Deposition Technique......Page 673
Preform Technologies......Page 674
MCVD Process Combined with Solution Doping for Rare-Earth and Aluminum Incorporation......Page 675
Refractive Index and Diffusion Properties of RE-Doped Fibers......Page 677
Background Losses in RE-Doped Fibers......Page 678
Absorption and Emission Properties of RE-Doped Fibers......Page 681
Photodarkening......Page 683
MCVD Process Combined with Gas Phase Doping for Rare-Earth and Aluminum Incorporation......Page 685
Refractive Index Behavior and Concentration Distribution......Page 688
Absorption and Emission Properties of the Preforms and Fibers......Page 689
Laser Behavior of the Fibers......Page 690
References......Page 691
18 Powder Process for Fabrication of Rare Earth-Doped Fibers for Lasers and Amplifiers......Page 694
Introduction......Page 695
Optical Glass and Fibers......Page 697
Modern Optical Fibers......Page 698
Chemical Vapor Deposition (CVD)......Page 699
Modified Chemical Vapor Deposition (MCVD)......Page 700
Production of Active Fibers by Rare Earth Activation......Page 701
Rediscovering Powder Techniques for Fiber Production......Page 702
Powder Technologies for Fiber Production......Page 703
Powder-in-Tube (PIT)......Page 704
Refractive Index Control by Simultaneous Addition of Al2O3 and P2O5......Page 706
Producing the Core Material Outside of the Preform......Page 707
Core Material Production by Suspension Doping of Fine Silica Powder: REPUSIL......Page 708
Powder-in-Tube (PIT) Technique......Page 709
Doping Concentration......Page 712
Powder Synthesis by Mixing Oxides......Page 715
Iterative Vitrification and Fine Milling......Page 716
Coarse Crushing and Sieving......Page 717
Powder Synthesis Using the Sol-Gel Process......Page 718
Fine Milling and Sintering......Page 722
Coarse Crushing and Sieving......Page 723
Solubility and Homogeneity of Rare Earth Elements......Page 725
Thermodynamic Properties of Rare Earth Ion-Doped Silica Powder (Tg, Tx, Tc)......Page 731
References......Page 735
19 Progress in Mid-infrared Fiber Source Development......Page 737
Introduction......Page 738
Carbon Dioxide and Monoxide Lasers......Page 739
Optical Parametric Amplifiers and Oscillators......Page 740
Mid-IR Fiber Lasers: Overviews and Challenges......Page 741
Fibers and Glasses for the Mid-IR......Page 746
Fluorides......Page 747
Chalcogenides......Page 749
Spectroscopy of the Significant Rare-Earth Transitions Used for Mid-IR Fiber Lasers......Page 750
Spectroscopy and Lasing of Er3+ Ion......Page 751
Spectroscopy and Lasing of Ho3+ Ion......Page 754
Single-Longitudinal-Mode Systems......Page 755
High-Power cw Systems......Page 757
Tunable cw Systems......Page 758
Ultrafast Systems......Page 759
Supercontinuum Generated in Mid-IR Transparent Fibers......Page 760
Supercontinuum Generated via Optical Parametric Amplification Systems......Page 761
Supercontinuum Generation via Near-IR Fiber Laser Pumping......Page 762
Supercontinuum Generation via Mid-IR Fiber Laser Pumping......Page 764
References......Page 766
20 Crystalline Fibers for Fiber Lasers and Amplifiers......Page 771
Introduction......Page 772
Crystalline Fiber Core......Page 774
The LHPG Method......Page 775
The Growth Mechanism......Page 776
Crystal Fiber Host and Dopant Characterization......Page 780
Glass Cladding......Page 782
The Co-drawing LHPG Method......Page 783
The Residual Strain in Glass-Clad Crystalline Fiber......Page 786
Crystalline Core and Glass Clad Interface......Page 788
Light Transmission Characteristics......Page 793
Crystalline Fiber-Based Broadband Spontaneous Emission......Page 795
Ce:YAG as Crystalline Core......Page 796
Ti:sapphire as Crystalline Core......Page 805
Cr:YAG as Crystalline Core......Page 809
Crystalline Fiber Laser and Amplifier......Page 816
Wavelength Tuning by Pellicle Etalon......Page 817
Wavelength Tuning by Diffraction Grating......Page 818
Wavelength Tuning by Birefringent Filter......Page 819
Crystalline Fiber Amplifier......Page 822
Conclusion......Page 829
References......Page 830
21 Cladding-Pumped Multicore Fiber Amplifier for Space Division Multiplexing......Page 834
Introduction......Page 835
Multicore Fiber Amplifier......Page 836
Multicore Erbium-Doped Fiber......Page 837
Signal/Pump Coupler for MCFA......Page 839
Cross Talk Among the Spatial Channels......Page 842
Numerical Simulation......Page 843
Gain and NF of Cladding-Pumped MC-EDFA......Page 846
Effect of Enlarging the Core Size......Page 847
Cross-Gain Modulation Due to Gain Depletion......Page 848
Power Conversion Efficiency......Page 850
Experimental Demonstration of Cladding-Pumped Multicore Fiber Amplifiers......Page 851
Cladding-Pumped MC-EDFA Employing Side-Coupled Pumping......Page 852
Side-Coupled Pumping......Page 853
Comparison Between Core- and Cladding-Pumped Amplifiers......Page 855
Electrical Power Consumption......Page 856
Recent Advancements......Page 857
References......Page 859
22 Optical Amplifiers for Mode Division Multiplexing......Page 862
Introduction......Page 863
Current State of the Art in SDM Amplifiers......Page 864
Fiber-Optic Collimator Assembly......Page 866
Pump Coupler......Page 868
Mode-Field Diameter Adaptor......Page 869
Mode-Dependent Loss Equalizer......Page 871
The Importance of Differential Modal Gain (DMG) Control......Page 872
Controlling the Transverse Pump Field Distribution......Page 873
Tailoring the Radial Dopant Distribution of the Active Fiber......Page 876
Engineering the Signal Mode Profiles......Page 879
Other Approaches......Page 880
Core-Pumped 6-Mode EDFA......Page 881
Cladding-Pumped 6-Mode EDFA......Page 883
Conclusion......Page 884
References......Page 885
Part V Special Optical Fibers......Page 887
23 Optical Fibers for High-Power Lasers......Page 888
Active Fibers for High-Power Laser Beam Generation......Page 889
Double-Cladding Fibers......Page 891
Large Mode Area Photonic Crystal Fibers......Page 893
Large Pitch Fibers......Page 895
Leakage Channel Fibers......Page 896
Chirally Coupled Core Fibers......Page 898
Pixelated Bragg Fibers......Page 899
Hollow-Core Fibers......Page 900
Conclusion......Page 903
References......Page 904
24 Multicore Fibers......Page 906
Classification of SDM......Page 907
Research Progress of SDM Based on MCF......Page 909
MCF Design and Fabrication......Page 912
Uncoupled-Core MCF......Page 913
Coupled-Core MCF......Page 914
FM-MCF......Page 918
Fan-In and Fan-Out......Page 919
Splicing Technology for MCF......Page 923
Core Pumped MC-EDFA......Page 928
Cladding-Pumped MC-EDFA......Page 929
MCF-Based Optical Access Network......Page 936
MCF-Based Front-Haul......Page 940
MCF-Based Short-Reach Interconnect......Page 944
MCF-Based Long-Haul Transmission......Page 947
Discrete MCF Sensing Technology......Page 961
Distributed MCF Sensing Technology......Page 963
References......Page 970
25 Polymer Optical Fibers......Page 978
Introduction......Page 979
Development of POF......Page 980
Materials for POF......Page 981
Types of POF......Page 985
SI-MM POF......Page 986
GI-MM POF......Page 987
EO POF......Page 988
Segmented Cladding POF......Page 989
Scintillating POF......Page 990
Dye-Doped POF......Page 991
Photorefractive POF......Page 993
Microstructured POF......Page 994
Extrusion of SI-POF......Page 996
Extrusion of SI-MPOF......Page 997
Extrusion of GI-POF......Page 998
Preform Method......Page 1000
GI-POF Preform Fabrication......Page 1001
3D Printing Method......Page 1003
POF for Data Transmission......Page 1005
POF for Sensing......Page 1006
Biomedical and Chemical Sensor......Page 1008
Cracking Detection......Page 1010
Dew-Point Sensor......Page 1013
Oxygen Sensor......Page 1014
Single-Mode POF Sensors and Applications......Page 1015
POF for Illumination......Page 1016
References......Page 1018
26 Optical Fibers in Terahertz Domain......Page 1029
Introduction......Page 1030
Constraints and Challenges for Developing THz Fibers......Page 1031
Solid-Core THz Fibers......Page 1033
Sub-wavelength Diameter Fibers......Page 1034
Porous Fibers......Page 1039
Solid-Core Photonic Crystal Fibers......Page 1046
Hollow-Core THz Fibers......Page 1049
Dielectric-/Metal-Coated Hollow-Core Fibers......Page 1050
Hollow-Core Bragg Fibers......Page 1056
Hollow-Core Pipe Fibers......Page 1061
Kagome Hollow-Core Photonic Crystal Fibers......Page 1067
Tube Lattice Hollow-Core Fibers......Page 1069
Conclusion......Page 1073
References......Page 1074
27 Optical Fibers for Biomedical Applications......Page 1078
Introduction......Page 1079
Light-Guiding Principles in Conventional Fibers......Page 1081
Ray Optics Concepts......Page 1084
Modal Concepts......Page 1086
Graded-Index Numerical Aperture......Page 1088
Performance Characteristics of Generic Optical Fibers......Page 1089
Mechanical Properties......Page 1090
Conventional Solid-Core Fibers......Page 1091
Specialty Solid-Core Fibers......Page 1092
Photosensitive Optical Fiber......Page 1093
Bend-Insensitive Fiber......Page 1094
Polarization-Maintaining Fibers......Page 1095
Double-Clad Fibers......Page 1096
Hard-Clad Silica Fibers......Page 1097
Coated Hollow-Core Fibers......Page 1098
Plastic Fibers......Page 1099
Side-Emitting or Glowing Fibers......Page 1100
Middle-Infrared Fibers......Page 1101
Optical Fiber Bundles......Page 1102
References......Page 1103
Part VI Optical Fiber Measurement......Page 1105
28 Basics of Optical Fiber Measurements......Page 1106
Basics of Optical Fiber......Page 1107
Acceptance Angle and Numerical Aperture......Page 1109
Attenuation Coefficient......Page 1110
Cut-Off Wavelength......Page 1112
Components and Handling Techniques......Page 1113
Light Source......Page 1114
Photodetector......Page 1115
Cables and Connectors......Page 1118
Splicer and Cleaver......Page 1120
Optical Power Meter......Page 1121
Optical Spectrum Analyzer......Page 1122
Spectral Attenuation Measurement......Page 1123
Optical Time Domain Reflectometer Loss Measurement......Page 1125
Cut-Off Wavelength Measurement......Page 1127
Spot Size Measurement......Page 1131
Geometry......Page 1132
Interference Microscopy Method......Page 1138
Digital Holographic Microscopy Method......Page 1139
References......Page 1143
29 Measurement of Active Optical Fibers......Page 1145
Introduction......Page 1146
Einstein Relation......Page 1147
Light Absorption and Gain......Page 1150
The Absorption and the Emission Cross Sections......Page 1151
Lifetime......Page 1153
Typical Active Ions and Properties......Page 1155
Energy Level System of Er3+......Page 1157
Ion-Ion Interactions......Page 1158
Up-conversion Emission......Page 1159
Measurement of Absorption......Page 1160
Ground State Absorption......Page 1163
Measurement......Page 1164
Definitions......Page 1165
Measurement......Page 1166
Measurement of Spectral Emission......Page 1167
Forward Emission......Page 1168
Axial Emission by Side Pumping......Page 1170
Combined Excitation-Emission Spectroscopy......Page 1171
Time Domain......Page 1172
Frequency Domain......Page 1175
Principle of Gain Measurement......Page 1177
Gain Measurement......Page 1178
References......Page 1181
30 Characterization of Specialty Fibers......Page 1183
Introduction......Page 1184
Dispersion Characteristics......Page 1188
Material Dispersion......Page 1190
Waveguide Dispersion......Page 1191
Intermodal Dispersion......Page 1192
Phase Shift Method......Page 1194
AM Response Method......Page 1195
Time Domain Measurement......Page 1197
Frequency Domain Measurement......Page 1198
State of Polarization (SOP)......Page 1199
Birefringence and Beat Length......Page 1200
Polarization Mode Dispersion (PMD)......Page 1201
Pulse Delay Method......Page 1203
Interferometric Method......Page 1204
Poincare Arc Method......Page 1205
Jones Matrix Method......Page 1209
Mueller Matrix Method......Page 1210
Polarization-Dependent Loss (PDL)......Page 1212
Physical Analysis of Active Fiber......Page 1214
Chemical Analysis of Active Fiber......Page 1216
Absorption Spectrum Measurement Based......Page 1223
Absorption and Emission Spectra Measurement Based on Side Pumping Method......Page 1225
References......Page 1230
31 Characterization of Distributed Birefringencein Optical Fibers......Page 1233
Introduction......Page 1234
Principle of Generation and Detection of BDG......Page 1238
Phase Matching Condition......Page 1240
Coupled Wave Equations of the Brillouin-Enhanced FWM Process......Page 1241
Characteristics of the BDG Reflection Spectrum......Page 1243
Numerical Calculations of the Birefringence......Page 1245
Experimental Measurement for Different PMFs......Page 1247
Extension of the Measurement Range......Page 1249
Sensing Applications......Page 1253
Distributed Temperature and Strain Measurement......Page 1254
Distributed Transverse Pressure Measurement......Page 1256
Distributed Hydrostatic Pressure Measurement......Page 1259
References......Page 1262
32 Characterization of Distributed Polarization-Mode Coupling for Fiber Coils......Page 1264
Introduction......Page 1265
Optical Coherence Domain Polarimetry System......Page 1267
Jones Matrix Method......Page 1268
Optical Path Tracking Method......Page 1269
Stable Unit and Recursion Formula......Page 1270
Classifications and General Formulas......Page 1271
Principle of Operation......Page 1273
Device, Implementation, and Performance......Page 1277
Temperature Instability σB......Page 1281
The Measurement Accuracy σC of the Scanning Stage......Page 1282
Distributed Polarization Crosstalk Measurement with Loss Coefficient......Page 1283
Differential Delay Line Structure......Page 1287
Measurement with Differential Structure Delay Line......Page 1291
Iterative Dispersion Compensation Method......Page 1295
High-Resolution Measurement Cancelling Dispersion......Page 1298
Analysis Method of PMF Coil Data......Page 1299
Periodicity of PMF Coil......Page 1300
Diagnosis Results at Different Temperatures......Page 1301
Con