دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: Gerald F. Marshall, Glenn E. Stutz سری: ISBN (شابک) : 0824755693, 9780824755690 ناشر: CRC Press سال نشر: 2004 تعداد صفحات: 784 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 56 مگابایت
در صورت تبدیل فایل کتاب Handbook of Optical and Laser Scanning (Optical Science and Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای اسکن نوری و لیزری (علوم و مهندسی نوری) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
dk1245fm......Page 1
Handbook of Optical and Laser Scanning......Page 5
Preface......Page 8
Acknowledgments......Page 10
Contents......Page 11
Contributors......Page 13
Table of Contents......Page 0
2 HISTORICAL DEVELOPMENT OF LASER BEAM CHARACTERIZATION......Page 15
3 ORGANIZATION OF THIS CHAPTER......Page 17
4.1 Pure Transverse Modes: The Hermite–Gaussian and Laguerre–Gaussian Functions......Page 18
4.2 Mixed Modes: The Incoherent Superposition of Pure Modes......Page 22
4.3 Properties of the Fundamental Mode Related to the Beam Diameter......Page 23
4.4 Propagation Properties of the Fundamental Mode Beam......Page 25
4.5 Propagation Properties of the Mixed Mode Beam: The Embedded Gaussian and The M2 Model......Page 27
5 TRANSFORMATION BY A LENS OF FUNDAMENTAL AND MIXED MODE BEAMS......Page 30
5.1 Application of the Beam-Lens Transform to the Measurement of Divergence......Page 32
5.2 Applications of the Beam-Lens Transform: The Limit of Tight Focusing......Page 33
6 BEAM DIAMETER DEFINITIONS FOR FUNDAMENTAL AND MIXED MODE BEAMS......Page 34
6.1 Determining Beam Diameters From Irradiance Profiles......Page 35
6.2 General Considerations in Obtaining Useable Beam Profiles......Page 37
6.2.1 How Commercial Profilers Work......Page 40
6.3.1 Dpin, Separation of 1/e2-Clip-Points of a Pinhole Profile......Page 41
6.3.5 D4sigma Four Times the Standard Deviation of the Pinhole Irradiance Profile......Page 42
6.3.6 Sensitivity of D4sigma to the Signal-to-Noise Ratio of the Pinhole Profile......Page 44
6.3.7 Reasons for D4sigma Being the ISO Choice of Standard Diameter......Page 45
6.4 Conversions Between Diameter Definitions......Page 46
6.4.2 Empirical Basis for the Conversion Rules......Page 47
6.4.3 Rules for Converting Diameters Between Different Definitions......Page 50
7 PRACTICAL ASPECTS OF BEAM QUALITY M2 MEASUREMENT: THE FOUR-CUTS METHOD......Page 51
7.1 The Logic of the Four-Cuts Method......Page 52
7.1.2 Accuracy of the Location Found for the Waist......Page 55
7.2 Graphical Analysis of the Data......Page 56
7.3 Discussion of Curve-Fit Analysis of the Data......Page 58
7.4 Commercial Instruments and Software Packages......Page 59
8.1 Common Types of Beam Asymmetry......Page 60
8.2 The Equivalent Cylindrical Beam Concept......Page 62
8.3 Other Beam Asymmetries: Twisted Beams, General Astigmatism......Page 66
9 APPLICATIONS OF THE M2 MODEL TO LASER BEAM SCANNERS......Page 67
9.2 Conversion to a Consistent Knife-Edge Currency......Page 68
9.4 How to Read the Laser Test Report......Page 70
9.6 Depth of Field and Spot Size Variation at the Scanned Surface......Page 71
9.7.1 Case A: 10% Waist Asymmetry......Page 73
9.7.3 Case C: 12% Out-of-Roundness Across the Scanned Surface Due to Astigmatism......Page 74
10 CONCLUSION: OVERVIEW OF THE M2 MODEL......Page 76
GLOSSARY......Page 77
REFERENCES......Page 82
2 LASER SCANNER CONFIGURATIONS......Page 85
2.2 Post-objective Scanning......Page 86
3 OPTICAL DESIGN AND OPTIMIZATION: OVERVIEW......Page 87
4 OPTICAL INVARIANTS......Page 89
4.1 The Diffraction Limit......Page 90
4.3 Truncation Ratio......Page 91
5.2 Image Quality......Page 94
5.4 Depth of Focus Considerations......Page 96
5.5 The F–Theta Condition......Page 98
6 FIRST- AND THIRD-ORDER CONSIDERATIONS......Page 99
6.1 Correction of First-Order Chromatic Aberrations......Page 102
6.2.2 Coma......Page 104
6.2.3 Astigmatism......Page 105
6.3 Third-Order Rules of Thumb......Page 106
6.4 Importance of the Petzval Radius......Page 107
7.2 Polygon Scanning......Page 108
7.2.3 Cross-Scan Errors......Page 109
7.3 Polygon Scan Efficiency......Page 113
7.4 Internal Drum Systems......Page 114
8 LENS DESIGN MODELS......Page 115
8.1 Anatomy of a Simple Scan Lens Design......Page 116
8.2 Multiconfiguration Using Tilted Surfaces......Page 122
8.4 Example Single-Pass Polygon Setup......Page 127
8.4.1 Multiconfiguration Code V Lens Prescription......Page 128
8.4.2 Lens Prescription Model......Page 129
8.5 Dual-Axis Scanning......Page 130
9.1 A 300 DPI Office Printer Lens (lambda = 633 nm)......Page 131
9.2 Wide-Angle Scan Lens (lambda = 633 nm)......Page 132
9.4 Moderate Field Angle Lens with Long Scan Line (lambda = 633 nm)......Page 133
9.5 Scan Lens for Light-Emitting Diode (lambda = 800 nm)......Page 134
9.7 High-Resolution Telecentric Scan Lens (lambda = 408 nm)......Page 135
10 SCAN LENS MANUFACTURING, QUALITY CONTROL, AND FINAL TESTING......Page 136
11 HOLOGRAPHIC LASER SCANNING SYSTEMS......Page 137
11.2 Line Bow and Scan Linearity......Page 138
11.3 Effect of Scan Disc Wobble......Page 140
12 NONCONTACT DIMENSIONAL MEASUREMENT SYSTEM USING HOLOGRAPHIC SCANNING......Page 142
12.1 Speed, Accuracy, and Reliability Issues......Page 143
12.2 Optical System Configuration......Page 144
12.3 Optical Performance......Page 147
13 HOLOGRAPHIC LASER PRINTING SYSTEMS......Page 148
14 CLOSING COMMENTS......Page 149
REFERENCES......Page 151
1.1 Imaging Science for Scanned Imaging Systems......Page 152
1.1.3 Types of Scanners......Page 153
1.2 The Context for Scanned Image Quality Evaluation......Page 154
2.1 Fundamental Principles of Digital Imaging......Page 157
2.1.1 Structure of Digital Images......Page 158
2.1.2 The Sampling Theorem and Spatial Relationships......Page 163
2.1.3 Gray Level Quantization: Some Limiting Effects......Page 166
2.2.1 Blur......Page 170
2.2.2 System Response......Page 171
2.2.3 Halftone System Response and Detail Rendition......Page 173
2.2.4 Noise......Page 178
Fundamentals......Page 179
Colorimetry and Chromaticity Diagrams......Page 182
3.1 Scan Frequency Effects......Page 186
3.2 Placement Errors or Motion Defects......Page 189
3.3 Other Nonuniformities......Page 192
3.3.1 Perception of Periodic Nonuniformities in Color Separation Images......Page 193
4 CHARACTERIZATION OF INPUT SCANNERS THAT GENERATE MULTILEVEL GRAY SIGNALS (INCLUDING DIGITAL CAMERAS)......Page 194
4.1 Tone Reproduction and Large Area Systems Response......Page 195
4.2 MTF and Related Blur Metrics......Page 198
4.2.1 MTF Approaches......Page 200
4.3 Noise Metrics......Page 207
5.1 Importance of Evaluating Binary Scanning......Page 211
5.2 General Principles of Threshold Imaging Tone Reproduction and Use of Gray Wedges......Page 212
5.2.2 Dithered (Halftone or Error Diffused) Tonal Response......Page 213
5.3.1 Detectability Metrics......Page 214
5.3.2 Line Fidelity Metrics......Page 215
5.3.3 Resolving Power......Page 217
5.3.4 Line Imaging Interactions......Page 220
5.4.1 Gray Wedge Noise......Page 222
5.4.2 Line Edge Noise Range Metric......Page 223
5.4.3 Noise in Halftoned or Screened Digital Images......Page 225
6 SUMMARY MEASURES OF IMAGING PERFORMANCE......Page 227
6.1 Basic Signal-to-Noise Ratio......Page 229
6.2 Detective Quantum Efficiency and Noise Equivalent Quanta......Page 230
6.5 Area Under the MTF Cure (MTFA) and Square Root Integral (SQRI)......Page 232
6.6 Measures of Subjective Quality......Page 234
6.7 Information Content and Information Capacity......Page 238
7.1 Lossy Compression......Page 242
7.2 Nonlinear Enhancement and Restoration of Digital Images......Page 244
7.3 Color Management......Page 246
8.1 Relationships Between Psychophysics, Customer Research, and Psychometric Scaling......Page 247
8.2 Psychometric Methods......Page 248
8.3.4 Graphical Rating......Page 250
8.3.9 Semantic Differential......Page 253
8.4 Practical Experimental Matters Including Statistics......Page 254
9 REFERENCE DATA AND CHARTS......Page 256
REFERENCES......Page 268
1 INTRODUCTION......Page 277
2.1 Prismatic Polygonal Scanning Mirrors......Page 278
2.2 Pyramidal Polygonal Scanning Mirrors......Page 279
2.4 Irregular Polygonal Scanning Mirrors......Page 280
3 MATERIALS......Page 282
4.1 Conventional Polishing......Page 283
4.2 Single Point Diamond Turning......Page 284
5 POLYGON SPECIFICATIONS......Page 285
5.2 Pyramidal Error......Page 286
5.4 Facet Radius......Page 287
5.6 Surface Quality and Scatter......Page 288
6 THIN FILM COATINGS......Page 289
7.1 Pneumatic Drives......Page 292
7.3 Brushless DC Motors......Page 293
8 SCANNER SPECIFICATIONS......Page 294
8.1 Dynamic Track......Page 295
8.2 Jitter and Speed Stability......Page 296
8.3 Balance......Page 297
9 SCANNER COST DRIVERS......Page 298
10 SYSTEM DESIGN CONSIDERATIONS......Page 299
11 POLYGON SIZE CALCULATION......Page 302
12.1 Banding......Page 304
12.3 Scatter and Ghost Images......Page 306
12.5 Distortion......Page 307
REFERENCES......Page 308
1 INTRODUCTION......Page 310
2.1 Polygon Configurations......Page 311
2.2 Polygon Rotation and Scan Angle Relationship......Page 313
2.3 Polygon Speed Considerations......Page 314
3 CASE STUDY: A FILM RECORDING SYSTEM......Page 317
3.1 System Performance Requirements......Page 319
3.3 Scanner Specification Tolerances......Page 320
3.4 High-Performance, Defined......Page 321
4.2 Hysteresis Synchronous Motor......Page 322
4.3.1 Torque and Winding Characteristics......Page 329
4.3.2 Brushless Motor Circuit Model......Page 330
4.3.3 Winding Configurations......Page 332
4.3.4 Commutation Sensor Timing and Alignment......Page 334
4.3.5 Rotor Configurations......Page 336
5 CONTROL SYSTEM DESIGN......Page 337
5.2 DC Brushless Motor Control......Page 339
6 APPLICATION EXAMPLES......Page 343
6.1 Military Vehicle Thermal Imager Scanner......Page 344
6.2 Battery-Powered Thermal Imager Scanner......Page 345
6.3 High-Speed Single-Faceted Scanner......Page 348
6.4 Versatile Single Board Controller and Driver......Page 349
7 CONCLUSIONS......Page 352
REFERENCES......Page 354
2 BEARING TYPES FOR ROTARY SCANNERS......Page 355
3 BEARING SELECTION......Page 356
4.1 Background......Page 358
4.2.1 Low Heat Generation......Page 360
4.3 Aerostatic Bearings......Page 362
Load Capacity......Page 363
Heat Generation......Page 365
Bearing Gas Flow......Page 366
4.3.2 Aerostatic Thrust Bearing......Page 367
Load Capacity......Page 368
Axial Stiffness......Page 370
4.4 Aerodynamic Bearings......Page 371
4.4.1 Spiral Groove Bearings......Page 374
4.4.2 Lobed Bearings/Shaft......Page 375
4.4.3 Spindle Construction......Page 376
4.5 Hybrid Gas Bearings......Page 378
4.6.1 Synchronous Whirls......Page 379
4.7.1 Optics and Holders......Page 381
Monogons......Page 382
4.7.2 Motors......Page 385
4.7.3 Encoders......Page 386
5.1 Bearing Design......Page 387
6 MAGNETIC BEARINGS......Page 389
6.2 Scanner Construction......Page 391
7.2 Optic-Related Errors......Page 392
7.3.2 Monogons......Page 393
REFERENCES......Page 394
1.1 Equations and Coordinates of a Polygonal Scanning System......Page 395
2.3 Mirror Facet Angle A......Page 396
2.5 Beam Width (Diameter) D......Page 397
2.6 Scan Duty Cycle (Scan Efficiency)......Page 398
2.7 Sag Dimensions......Page 399
2.8 Coordinates of G......Page 400
2.10 Optical Axis of the Objective Lens......Page 401
2.11.1 Scan Axis PU......Page 402
2.12 Insights from an Alternative Analytical Approach......Page 403
2.13 Features of Fig. 4......Page 404
3 INSTANTANEOUS CENTER-OF-SCAN......Page 405
3.2 Origin of the Instantaneous Centers-of-Scan Locus......Page 406
3.3 Midposition and Scan Axis......Page 407
3.5 Solutions......Page 408
3.7 Instantaneous Center-of-Scan......Page 410
3.9 Offset Angle Limits......Page 413
3.12 Conclusion......Page 414
4.4 Facet-to-Facet Tangential Angle......Page 415
4.9 Rotation Axis Offset Distance......Page 416
4.11 Ghost Beams gh and Images GH......Page 417
4.14 Image Format Scan Duty Cycle etaomega......Page 418
4.15 Incident Beam Offset Angle 27°......Page 419
4.16 Incident Beam Offset Angle 52°......Page 420
4.18 Incident Beam Offset Angle 124°......Page 421
4.21 Number of Facets......Page 423
4.23 Commentary......Page 424
REFERENCES......Page 426
1 INTRODUCTION......Page 427
1.1 Historical Developments......Page 428
2.1 Galvanometric Scanners......Page 429
Moving Magnet Torque Motor......Page 431
Heat Dissipation......Page 436
Gain and Pointing Stability Considerations......Page 437
Transducer Drift......Page 438
Optical Transducers......Page 439
Ball Bearings......Page 441
Cross-Flexure Bearings......Page 442
2.1.4 Mirrors......Page 445
Mirror Construction and Mounting......Page 446
Cosine Fourth Law......Page 450
Air Dynamics......Page 451
Beam Path Distortions......Page 452
Dynamic Imbalance......Page 454
Mechanical Resonances......Page 456
Drive Signals......Page 457
2.1.7 Evaluation Parameters......Page 462
2.2 Resonant Scanners......Page 463
2.2.2 Suspension......Page 464
3 SCANNING SYSTEMS......Page 465
3.1.2 Preobjective Scanning......Page 467
3.2.2 Relay Lens TABS......Page 468
3.2.3 Classic Two-Mirror Construction......Page 469
3.2.4 Paddle Scanner Two-Mirror Configuration......Page 471
3.2.5 Golf Club Two-Mirror Configuration......Page 473
3.2.6 TABS with Three Moving Optical Elements......Page 476
5.1 Material Processing......Page 477
5.2 Microscopy......Page 478
5.2.3 Flying Objective Scanning Microscope......Page 479
5.2.4 Rectilinear Flying Objective Microscope......Page 480
5.2.5 Rotary Flying Objective Microscope......Page 481
GLOSSARY......Page 482
REFERENCES......Page 485
1 INTRODUCTION......Page 487
1.1 Introduction to Macro-Scale Flexure Pivots......Page 488
2 FLEXURE DESIGN......Page 491
2.1 Useful Formulas......Page 492
2.2 Flexure Materials......Page 493
2.3 Stress Risers......Page 495
2.4 Corrosion......Page 496
3.1 Manufacturing the Material......Page 498
3.3 Corrosion Protection......Page 500
4 FLEXURE MOUNTING......Page 501
5.1 General Introduction......Page 503
5.2 The Bendix Pivot......Page 504
5.3 GSI Lumonics Design Example......Page 506
6 MICROELECTROMECHANICAL FLEXURE SCANNERS......Page 508
6.1 MEMS Design......Page 509
6.4 Material Properties......Page 512
6.5.2 Linearity......Page 515
6.7.1 When and When Not to Use MEMS......Page 516
7 CONCLUSION......Page 517
REFERENCES......Page 518
1 INTRODUCTION......Page 519
1.1 The UPC Code......Page 520
1.2 Other Barcodes......Page 523
1.3 Barcode Properties......Page 524
2 NONHOLOGRAPHIC UPC SCANNERS......Page 525
2.2 Scan Pattern Wrap-Around......Page 527
2.3 Depth of Field......Page 529
3.1 What is a Holographic Deflector?......Page 530
3.3 Depth of Field for a Conventional Optics Barcode Scanner......Page 533
3.4 Depth of Field for a Holographic Barcode Scanner......Page 536
4.1 Overlapping Focal Zones......Page 537
4.2 Variable Light-Collection Aperture......Page 539
4.3 Facet Identification and Scan Tracking......Page 540
4.4 Scan-Angle Multiplication......Page 541
5 HOLOGRAPHIC DEFLECTOR MEDIA FOR HOLOGRAPHIC BARCODE SCANNERS......Page 543
5.1 Surface Relief Phase Media......Page 544
5.2 Volume Phase Media......Page 546
6.1 The DCG Holographic Disc......Page 548
6.2 The Mechanically Replicated Surface-Relief Holographic Disc......Page 551
7.1 The Penta Scan Pattern......Page 553
7.2 The Penta Scanning Mechanism......Page 556
REFERENCES......Page 558
1.1 Progress in Optical Disk Technology......Page 560
1.3 Principles of Optical Read/Write......Page 561
2.1 Read-Only Optical Disk Systems......Page 563
2.2 Write-Once Disk Systems......Page 564
2.3 Erasable Optical Disk Systems......Page 565
2.3.1 PCR Disk......Page 566
2.3.2 MO Disk......Page 567
3.1.1 Optical Layout......Page 569
3.2 Wave Aberrations......Page 571
3.2.1 Aberration Derived from Disk Substrate......Page 573
3.2.3 Aberration Due to the Semiconductor Laser......Page 574
3.2.5 Allowable Wave Aberration......Page 576
3.3.1 Optical Pick-Up Construction......Page 577
3.3.2 Actuator......Page 578
4.1.1 Operating Principles of an Al-Ga-As Double Hetero-Junction Laser......Page 580
4.2 Astigmatism of the Laser......Page 583
4.3 Laser Noise......Page 585
5.1 Focusing Servo System and Method of Error Signal Detection......Page 587
5.1.3 Beam Position Detection Method......Page 589
5.1.4 Beam Phase Difference Detection......Page 591
5.2.1 Detection Methods......Page 592
5.2.3 Wobbling Method......Page 593
5.2.5 Push–Pull Track Error Signal Detection Method......Page 594
5.2.6 Slit Detection Method......Page 595
5.2.7 Sampled Tracking Method......Page 596
6.1 Fast Random Access......Page 600
6.2 Optical Drive System......Page 601
ACKNOWLEDGMENTS......Page 602
Appendix B......Page 603
Appendix C......Page 605
REFERENCES......Page 606
1 INTRODUCTION......Page 608
2.1 The Photoelastic Effect......Page 609
2.2 Isotropic AO Interaction......Page 610
2.3 Anisotropic Diffraction......Page 618
3.1 Resolution and Bandwidth Considerations......Page 626
3.2 Interaction Bandwidth......Page 628
3.4 Modulator Design Procedure......Page 632
4.1 Acoustic Traveling Wave Lens......Page 634
4.1.1 Design Considerations......Page 635
4.2 Chirp Lens......Page 636
4.3 Multichannel Acousto-Optic Modulator......Page 637
5.2 Theoretical Guidelines......Page 639
5.3 Selected Materials for Acousto-Optic Scanners......Page 641
6.1 Transducer Characteristics......Page 646
6.2 Transducer Materials......Page 650
6.3 Array Transducers......Page 652
7.1 Cell Fabrication......Page 659
7.2 Transducer Bonding......Page 660
8.1 Multichannel Acousto-Optic Modulator for Polygonal Scanner......Page 664
8.2 Infrared Laser Scanning......Page 666
8.3.1 Scanner Optics......Page 668
8.3.2 Driver......Page 670
REFERENCES......Page 671
1 INTRODUCTION......Page 673
2.1 The Electro-Optic Effect......Page 675
2.3 The Quadratic Electro-Optic Effect......Page 676
3.2 Terminology for Describing Electro-Optic Scanners......Page 677
3.2.2 Pivot Point......Page 678
3.2.3 Resolvable Spots......Page 679
3.3 Single Elements and Assemblies of Single Elements......Page 681
3.4.1 Graded Index with Uniform Applied Voltage......Page 682
3.5 Poled Structures......Page 684
3.5.1 Prismatic Poled Structures......Page 687
3.5.2 Rectangular Scanners......Page 688
Optimum Number of Triangles in Rectangular Scanners......Page 689
Deflection Sensitivity for Rectangular Scanners......Page 690
Deflection Sensitivity of Trapezoidal Scanners......Page 692
Comparison of Trapezoidal and Rectangular Scanners......Page 693
3.5.4 Horn-Shaped Scanners......Page 694
Deflection Sensitivity of Horn-Shaped Scanners......Page 696
3.5.5 Domain Inverted Total Internal Reflection Deflectors......Page 697
3.5.6 Domain Inverted Grating Structures......Page 699
4.1 Overview......Page 700
4.2.2 Flyback Converters......Page 702
4.3.1 Simple Totem Pole Circuits......Page 704
4.3.2 Adiabatic Drivers......Page 705
4.4 Analog Drivers......Page 708
5.1 General......Page 709
5.2 ADP, KDP, and Related Isomorphs......Page 710
5.3 Lithium Niobate and Related Materials......Page 711
5.5.3 Electro-Optic Ceramics in the (Pb, La)(Zr, Ti)O3 System......Page 712
5.6 Material Selection......Page 713
6 ELECTRO-OPTIC DEFLECTION SYSTEM DESIGN PROCESS......Page 714
REFERENCES......Page 715
1 INTRODUCTION......Page 718
2 PHYSICS OF CONTINUOUS-TONE LASER-THERMAL TRANSFER......Page 719
2.1 Exposure Deposited by a Scanning Laser Beam......Page 720
2.2 Static Approximation for Uniform Heating Throughout the Dye Layer of the Donor......Page 723
2.3 Additive Density by the Model of Exposure in Excess of Threshold......Page 726
2.4 Optical Density Transfer Predicted by Model of Exposure in Excess of Threshold......Page 727
2.5 Model of Exposure in Excess of Threshold Compared with Experimental Data......Page 730
2.6 Dynamic Temperature Profile Produced by Absorption of a Scanning Gaussian Beam......Page 731
2.8 Temperature Uniformity Throughout Dye-Layer Thickness and etaconfine......Page 733
2.10 Warm-Up Transient of the Donor......Page 735
2.11 Depth of Focus......Page 736
3.1 Exposure Profile of a Swath by a Multichannel Printhead......Page 738
3.2 Tilted Printhead......Page 740
3.3 Nearest-Neighbor Interaction......Page 742
3.5 Interleaving......Page 743
4.1 Tonescale by Halftone Dots......Page 746
4.2 Optical Fiber Array for Conveying Light from Lasers......Page 748
4.4 Tracks in Donor Produced by Fiber-Coupled Laser Channels......Page 750
4.6 Area-Averaged Exposure Calculated from Printer Properties......Page 752
4.8 Spot Overlap, Optical Crosstalk, and Their Effects......Page 754
4.9 Analysis of Balancing in the Presence of Channel-to-Channel Crosstalk......Page 758
4.10 Balance Requirements......Page 759
5.1 Optical Configuration of Monolithic Multichannel Printhead......Page 760
5.2 Along-Array Numerical Aperture of Beam Combiner......Page 761
5.5 Cooling the Monolithic Diode-Laser Array......Page 762
5.6 Flexures Between the Monolithic Diode-Laser Array and the Optics Tube......Page 764
5.8 Lifetime of the Monolitihic Multiple-Diode-Laser Printhead......Page 766
6.2 Laser Bar Sources, and Collimating and Combining Optics......Page 767
6.4 Gen III Laser Thermal Printheads in CTP Platesetters......Page 769
ACKNOWLEDGMENTS......Page 770
REFERENCES......Page 771
Back EMF......Page 775
Damping, Mechanical......Page 776
Facet errors......Page 777
Mechanical null position......Page 778
Pixel clock......Page 779
Resonance, Torsional......Page 780
Settling time......Page 781
Torque constant nonlinearity......Page 782
ACKNOWLEDGMENTS......Page 783
REFERENCES......Page 784