دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Michael Ljungberg (editor)
سری:
ISBN (شابک) : 9781138593268, 1138593265
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 655
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 151 مگابایت
در صورت تبدیل فایل کتاب Handbook of Nuclear Medicine and Molecular Imaging for Physicists: Instrumentation and Imaging Procedures, Volume I (Series in Medical Physics and Biomedical Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای پزشکی هسته ای و تصویربرداری مولکولی برای فیزیکدانان: روش های ابزار دقیق و تصویربرداری، جلد اول (مجموعه فیزیک پزشکی و مهندسی زیست پزشکی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتابچه راهنمای پیشرفته، اولین کتاب از مجموعهای است که به فیزیکدانان پزشکی یک دید کلی در زمینه پزشکی هستهای ارائه میکند، به روشهای ابزار دقیق و تصویربرداری در پزشکی هستهای اختصاص دارد. این روش درمان کاملی را در مورد فناوریهای پیشرفتهای که در این زمینه مورد استفاده قرار میگیرند، علاوه بر لمس تاریخچه استفاده از آنها، توسعه آنها و نگاه به آینده به چشماندازهای آینده ارائه میکند.
این متن منبع ارزشمندی برای کتابخانهها، مؤسسات، و فیزیکدانان پزشکی بالینی و دانشگاهی خواهد بود که در جستجوی شرح کاملی از تعریف پزشکی هستهای هستند.
This state-of-the-art handbook, the first in a series that provides medical physicists with a comprehensive overview into the field of nuclear medicine, is dedicated to instrumentation and imaging procedures in nuclear medicine. It provides a thorough treatment on the cutting-edge technologies being used within the field, in addition to touching upon the history of their use, their development, and looking ahead to future prospects.
This text will be an invaluable resource for libraries, institutions, and clinical and academic medical physicists searching for a complete account of what defines nuclear medicine.
Cover Half Title Series Information Title Page Copyright Page Table of Contents Preface Editor Bio List of Contributors 1 The History of Nuclear Medicine 1.1 1890–1930: THE RANDOM DISCOVERIES AND SYSTEMATIC RESEARCH 1.2 1930–1950: DISCOVERY, PRODUCTION, AND DEVELOPMENT OF RADIONUCLIDES 1.3 1950–1970: FIRST IMAGING APPARATUS AND RADIOPHARMACEUTICALS 1.4 1970–1990: TOMOGRAPHIC TECHNIQUES, RADIOIMMUNOLOGY, AND DOSIMETRY 1.5 1990–2010: IMPROVED IMAGING BY MULTI-MODALITY SYSTEMS AND NOVEL MOLECULAR IMAGING References 2 Basic Atomic and Nuclear Physics 2.1 THE ATOM AND ITS NUCLEUS 2.1.1 Understanding Radioactivity 2.1.2 Nuclear Physical Symbols and Notations 2.1.3 Stable and Unstable Nuclides 2.1.4 Electron Energy Levels 2.1.5 Nuclear Energy Levels 2.2 RADIOACTIVE DECAY 2.2.1 Mass–energy Relationships 2.2.2 Nucleus Mass Defect and Bonding Energy 2.2.3 Different Types of Instability 2.2.4 Decay Scheme 2.2.5 α-Decay 2.2.6 β-Decay 2.2.7 β+-Decay 2.2.8 Decay By Electron Capture 2.3 INTERPRETATION OF DECAY SCHEMES 2.3.1 137Cesium 2.3.2 99mTechnetium 2.4 RADIOACTIVE DECAY TIME 2.5 DECAY CHAINS 2.5.1 Complex Decay Chains 2.6 RADIONUCLIDE DATA SOURCES References 3 Basics of Radiation Interactions in Matter 3.1 INTRODUCTION 3.2 IONIZING RADIATION 3.3 SOLID ANGLE 3.4 CROSS SECTION 3.5 PHOTON INTERACTIONS 3.5.1 Photon Absorption 3.5.2 Photon Scattering 3.5.2.1 Thomson Cross Section 3.5.2.2 Compton Scattering 3.5.2.3 Coherent Scattering 3.5.3 Pair Production 3.5.4 Photon Attenuation 3.5.4.1 Narrow-Beam Geometry 3.5.4.2 Mass-Attenuation Coefficient 3.6 NEUTRON INTERACTIONS 3.6.1 Interaction Processes 3.6.2 Neutron Attenuation 3.7 CHARGED-PARTICLE INTERACTIONS 3.7.1 Inelastic Collisions With Atomic Electrons 3.7.2 Inelastic Collisions With Atomic Nucleus 3.7.3 Elastic Collisions 3.7.4 Path Ranges and Range Relations 3.8 SOURCES FOR CROSS SECTIONS 3.8.1 Photons 3.8.2 Neutrons 3.8.3 Charged Particles References 4 Radionuclide Production 4.1 INTRODUCTION 4.2 INDUCED RADIOACTIVITY 4.3 NUCLIDE CHART AND LINE OF NUCLEAR STABILITY 4.3.1 Binding Energy, Q-Value, Reaction Threshold, and Nuclear Reaction Formalism 4.3.2 Types of Nuclear Reactions, Reaction Channels and Cross Section 4.3.3 Relation Between Cross Section and Yield of Radionuclides 4.4 REACTOR PRODUCTION 4.4.1 Principle of Operation and Neutron Spectrum 4.4.2 Thermal and Fast Neutron Reactions 4.4.3 Nuclear Fission and Fission Products 4.5 ACCELERATOR PRODUCTION 4.5.1 Cyclotron, Principle of Operation, Negative and Positive Ions 4.5.2 Commercial Production (Low and High Energy) 4.5.3 In-House Low-Energy Production (PET) 4.5.4 Targetry, Optimizing the Production, Yield Calculations 4.6 RADIONUCLIDE GENERATORS 4.6.1 Radiochemistry of Irradiated Targets 4.6.2 Carrier-Free and Carrier-Added Systems 4.6.3 Separation Methods 4.7 RADIATION PROTECTION CONSIDERATIONS References 5 Radiometry 5.1 RADIATION DETECTORS IN GENERAL 5.2 GAS-FILLED DETECTORS FOR IONIZING RADIATION 5.3 SCINTILLATION DETECTORS 5.3.1 Organic Scintillation Detectors 5.3.2 Inorganic Scintillation Detectors 5.3.3 Integrating Luminescent Detectors 5.3.4 Chemical Detectors 5.4 SPECIFIC FEATURES OF RADIATION DETECTORS 5.4.1 Time and Energy Resolution 5.4.2 Efficiency and Energy Dependence; Tissue Equivalence 5.4.3 Background and Radiation Quality 5.4.4 General Features 5.5 EXAMPLES OF DETECTOR CONFIGURATIONS 5.5.1 Neutron Detectors 5.5.2 Electronic Personal Dosimeters 5.5.3 Activity Calibrators (Dose Calibrators) 5.5.4 Whole-Body Counters References 6 Scintillation Detectors 6.1 INTRODUCTION 6.2 SCINTILLATION 6.3 CLASSIFICATIONS OF INORGANIC SCINTILLATORS 6.3.1 Tl-Doped Alkali-Halides 6.3.2 Self-Activated Oxides 6.3.3 Ce-Doped REE-Halides and Eu-Doped SrI2 6.3.4 Ce-Doped REE-Oxyorthosilicates 6.3.5 Ce-Doped REE Aluminium Perovskites 6.3.6 Ce-Doped REE Aluminium Garnets 6.3.7 Manufacturing 6.3.8 Co-Doping 6.4 ENERGY RESOLUTION 6.5 SCINTILLATION DETECTORS IN MEDICAL USE 6.6 TIME-OF-FLIGHT PET 6.7 PHOTOMULTIPLIER TUBES 6.8 PHOTODIODES References 7 Semiconductor Detectors 7.1 INTRODUCTION AND HISTORICAL BACKGROUND 7.2 SINGLE-ELEMENT SEMICONDUCTORS 7.3 COMPOUND SEMICONDUCTORS 7.3.1 CdTe- and CdZnTe-Detectors 7.3.1.1 Timing Properties of CZT-Detectors for PET Applications 7.3.2 Thallium Bromide (TlBr) 7.3.2.1 Timing Properties of TlBr-Detectors for PET Applications 7.4 SUMMARY References 8 Gamma Spectrometry 8.1 BASIC PHYSICAL FEATURES OF A GAMMA DETECTOR 8.1.1 Configuration of a Gamma Spectrometer 8.1.2 Common G-Spectrometers Used in Nuclear Medicine 8.1.3 Quality Parameters for a G-Spectrometer 8.1.3.1 Energy Resolution (FWHM) 8.1.3.2 Time Resolution 8.1.3.3 Energy Dependency in Detection Efficiency 8.1.3.4 Shielding and Background Suppression 8.1.3.5 Ageing 8.2 QUANTITATIVE ASSESSMENT OF GAMMA SPECTRA 8.2.1 Basic Definitions 8.2.2 Calibration of a G-Spectrometer 8.2.3 Energy Calibration 8.2.4 FWHM Calibration 8.2.5 Efficiency Calibration 8.2.6 Required Features of G-Spectrometry Software 8.2.7 The Composition of a G-Spectrum 8.3 FROM SPECTRUM ACQUISITION TO A FINAL REPORT 8.3.1 Gamma Spectrometry Assessment: General 8.3.2 The G-Spectrometry Report 8.3.3 Evaluation of Activity Concentration in the Examined Sample, Ax 8.3.4 Uncertainty of Examined Sample 8.3.5 Detection Limits 8.4 EXAMPLES OF EVALUATION OF ACTIVITY CONCENTRATION, UNCERTAINTY ASSESSMENT AND DETECTION LIMITS 8.4.1 Evaluation of Assessment of Activity Concentration and Its Uncertainty in an Examined Sample 8.4.2 Evaluation and Detection Limit and Minimum Detectable Activity Concentration 8.5 QUALITY ASSURANCE 8.5.1 Constancy Tests for Quality Control of G-Spectrometry 8.5.1.1 Test of Efficiency 8.5.1.2 Test of Energy Resolution, FWHM 8.5.1.3 Background Levels 8.5.1.4 Test of Energy Calibration 8.5.1.5 Test of Environmental Factors 8.5.2 Proficiency Tests 8.5.3 Quality Management Acknowledgement References Half Title Title Page 9 Properties of the Digital Image 9.1 Images for Communication of Medical Information 9.2 Formation of the Digital Image 9.3 Elements of the Digital Image 9.3.1 Sampling and Quantization 9.3.2 Image Coordinates and Spatial Scale 9.4 Representation of the Image Information 9.5 Image Information in the Frequency Domain 9.6 Factors That Affect Image Quality 9.6.1 Contrast 9.6.2 Spatial Resolution 9.6.3 Noise 9.6.4 Interaction Between Image Contrast and Spatial Resolution, the MTF 9.6.5 Interaction Between Image Contrast, Noise and Spatial Resolution 9.7 Summary 9.8 Appendix – Linear Systems Theory BIBLIOGRAPHY 10 Image Processing 10.1 INTRODUCTION 10.2 COLOUR-TABLE TRANSFORMATIONS 10.2.1 Grayscale Transformations 10.2.2 Windowing 10.2.3 Gamma Correction 10.2.4 Histogram Equalization 10.3 A MODEL OF THE IMAGE-FORMATION PROCESS 10.4 FILTERING 10.4.1 Filtering in the Spatial Domain 10.4.1.1 Discrete Convolution 10.4.1.2 Low-Pass Filtering 10.4.1.3 Edge Enhancement 10.4.2 Filtering in the Fourier Domain 10.4.2.1 Low-Pass Filtering 10.4.2.2 High-Pass Filtering 10.4.3 Filtering in the Spatial Domain and in the Fourier Domain 10.4.4 Non-Linear and Adaptive Filtering 10.4.5 Wiener Deconvolution 10.5 SPATIAL TRANSFORMATIONS AND INTERPOLATION 10.5.1 Forward and Backward Interpolation 10.5.2 Ideal Interpolation 10.5.3 Nearest-Neighbour Interpolation 10.5.4 Linear Interpolation 10.5.5 Cubic Interpolation 10.6 SEGMENTATION 10.6.1 Thresholding 10.6.1.1 Fixed Threshold 10.6.1.2 Thresholding Based On the Image Histogram 10.6.1.3 Iterative Thresholding 10.6.1.4 Region Growing 10.6.2 Contour-Based Methods 10.6.2.1 Active Models 10.6.3 Evaluation of Segmentation Methods 10.6.3.1 Evaluation Metrices 10.7 CONCLUDING REMARKS References 11 Machine Learning 11.1 SUPERVISED LEARNING 11.1.1 Least Squares Regression 11.1.2 Classification and Bayes Theorem 11.1.3 Classification and Logistic Regression 11.1.4 Classification Accuracy Versus Loss Function 11.2 ARTIFICIAL NEURAL NETWORKS 11.3 CONVOLUTIONAL NEURAL NETWORKS 11.4 THE BIAS–VARIANCE TRADE-OFF 11.5 IMAGE-TO-IMAGE ARCHITECTURES 11.6 ADVANCED NETWORK ARCHITECTURES 11.7 DIMENSIONALITY REDUCTION 11.8 SUMMARY References 12 Image File Structures in Nuclear Medicine 12.1 INTRODUCTION 12.2 IMAGE FILES AND IMAGE DISPLAY 12.3 FUNDAMENTALS OF IMAGE ANALYSIS/DISPLAY SOFTWARE 12.3.1 General Data Structure 12.3.2 Number Representation 12.3.2.1 Integer Numbers 12.3.2.2 Real Numbers 12.3.3 Character Representation 12.3.4 Little/big Endian 12.4 NUCLEAR MEDICINE IMAGE FILE STRUCTURES 12.4.1 Interfile Structure 12.4.2 DICOM File Structure 12.4.2.1 The DICOM Dictionary 12.5 DATA TRANSFER BETWEEN SYSTEMS 12.6 FUTURE TRENDS 12.7 ACKNOWLEDGEMENT References 13 The Scintillation Camera 13.1 INTRODUCTION 13.2 GANTRY, HOUSING, AND IMAGING COUCH 13.3 THE SCINTILLATION CRYSTAL 13.4 THE PHOTOMULTIPLIER TUBE 13.5 THE COLLIMATOR 13.6 READ OUT AND PULSE ARITHMETIC 13.6.1 Energy Determination 13.6.2 Image Formation 13.6.3 Nonlinearity 13.6.4 System Sensitivity 13.6.5 Temporal Resolution 14 Collimators for Gamma Ray Imaging 14.1 INTRODUCTION 14.2 PARALLEL-HOLE COLLIMATORS 14.3 FANBEAM AND CONEBEAM COLLIMATORS 14.4 PINHOLE COLLIMATORS 14.4.1 Multi-Pinhole Collimators 14.4.2 Sampling Completeness 14.5 SLIT-SLAT COLLIMATORS 14.6 OPTIMAL CHOICE OF COLLIMATOR AND COLLIMATOR OPTIMIZATION 14.7 ROTATING SLAT COLLIMATORS References 15 Image Acquisition Protocols 15.1 BASIC ACQUISITION PARAMETERS 15.1.1 Flood Correction 15.1.2 Matrix Size 15.1.3 Field of View and Digital Zoom 15.1.4 Saturation Level and Behaviour 15.1.5 Collimator and Detector Distance 15.1.6 Acquisition Time 15.1.7 Spatial Resolution 15.1.8 Energy Window Selection 15.1.9 Multiple Energy Windows 15.1.9.1 Example 1: Parathyroid Imaging 15.1.9.2 Example 2: Sentinel Lymph Node Imaging 15.1.10 Geometric Mean (DMSA Example) 15.1.11 Quantitation (Thyroid Uptake Example) 15.2 WHOLE-BODY IMAGING 15.3 DYNAMIC IMAGING 15.3.1 Renogram Example 15.4 GATED IMAGING 15.4.1 MUGA Example 15.5 TOMOGRAPHIC ACQUISITIONS 15.5.1 DaTScan Example REFERENCES 16 Single Photon Emission Computed Tomography (SPECT) and SPECT/CT Hybrid Imaging 16.1 INTRODUCTION 16.2 SPECT 16.2.1 Image Reconstruction By Direct Back-Projection 16.2.2 Image Reconstruction By Filtered Back-Projection 16.2.3 Derivation of the FBP Algorithm 16.2.4 FBP With Regularization 16.2.5 Image Reconstruction By Iterative Methods 16.2.6 Non-Uniform Orbitals 16.2.7 The Centre-Of-Rotation 16.2.8 Non-Uniformities in the Camera 16.2.9 Multiple Bed-Position 16.3 SPECT/CT 16.3.1 Commercial SPECT/CT Systems 16.4 IMAGE RECONSTRUCTION AND QUANTIFICATION USING ANATOMICAL INFORMATION 16.4.1 Image Fusion 16.4.2 Attenuation Correction 16.4.3 Respiratory Motion 16.4.4 Scatter Correction 16.4.5 Outlining Volume-Of-Interest 16.4.6 Partial-Volume Correction 16.4.7 Couch Bending 16.5 SPECT/CT IN RADIONUCLIDE DOSIMETRY 16.5.1 CT for Creating 2D Maps for Attenuation Correction 16.5.2 CT for Creating 3D Maps for Dosimetry Calculations References 17 Dedicated Tomographic Single Photon Systems 17.1 DEDICATED CARDIAC SPECT 17.1.1 Commercial Systems With NaI(Tl) Or CsI(Tl) Detectors 17.1.1.1 IQ-SPECT 17.1.1.2 Digirad Cardius 17.1.2 Commercial Systems With Cadmium Zinc Telluride Detectors 17.1.2.1 D-SPECT 17.1.2.2 Discovery NM 530c/570c 17.1.3 Systems Under Research Development 17.2 DEDICATED BRAIN SPECT 17.2.1 Commercial Systems 17.2.1.1 MILabs G-SPECT 17.2.2 Systems Under Research Development 17.3 DEDICATED BREAST SPECT 17.3.1 Systems Under Research Development 17.4 VERITON MULTI-PURPOSE SPECT 17.5 SUMMARY References 18 PET Systems 18.1 INTRODUCTION 18.2 SCINTILLATORS FOR PET 18.3 DETECTORS FOR PET 18.4 GEOMETRY AND COLLIMATION OF PET SYSTEMS 18.5 PHYSICAL LIMITATIONS AND RELATED CORRECTIONS 18.6 ATTENUATION 18.7 TRUE, SCATTERED AND RANDOM COINCIDENCES 18.8 COUNT RATE References 19 Dead-Time Effects in Nuclear Medicine Imaging Studies 19.1 INTRODUCTION 19.2 DEAD-TIME EFFECT IN NUCLEAR MEDICINE IMAGING STUDIES 19.2.1 Sources of Dead Time 19.2.2 Models Used to Characterize Dead Time 19.2.3 Factors Influencing Dead Time 19.3 CLINICAL SITUATIONS IN WHICH DEAD-TIME CORRECTIONS MUST BE APPLIED 19.4 DEAD-TIME CORRECTION METHODS 19.4.1 Corrections for Single Photon Imaging (Planar Scintigraphy and SPECT) 19.4.2 Correction Methods Used in PET 19.5 CONCLUSION 19.6 GLOSSARY References 20 Principles of Iterative Reconstruction for Emission Tomography 20.1 INTRODUCTION 20.2 PARAMETERS TO ESTIMATE AND BASIS FUNCTIONS 20.3 MODELLING THE MEAN OF THE MEASURED DATA: THE SYSTEM MATRIX 20.4 POISSON NOISE 20.5 MAXIMUM LIKELIHOOD 20.6 EXPECTATION MAXIMIZATION 20.6.1 One Pixel and One Projection Bin 20.6.2 Many Pixels and Many Projection Bins 20.6.3 Complete Data 20.6.4 Expectation of the Complete Data 20.6.5 Kullback–Leibler Divergence 20.6.6 Ordered Subsets EM 20.7 MAXIMUM A POSTERIORI 20.8 CURRENT RESEARCH DIRECTIONS 20.8.1 4D Image Reconstruction 20.8.2 AI/Machine Learning Within Image Reconstruction 20.9 SUMMARY References 21 PET-CT Systems 21.1 INTRODUCTION 21.2 ATTENUATION CORRECTION 21.3 RESPIRATORY MOTION COMPENSATION References 22 Clinical Molecular PET/MRI Hybrid Imaging 22.1 THE HISTORY OF HYBRID PET/MRI TECHNOLOGY 22.2 TECHNICAL CHALLENGES WITH INTEGRATING PET AND MRI 22.2.1 Design and Integration of Combined PET/MRI Systems 22.2.2 Effects of MRI On the PET and Vice Versa 22.2.3 PET Detectors in a Magnetic Field 22.3 COMBINED PET/MRI SYSTEMS 22.3.1 Clinical PET/MRI Systems 22.3.1.1 Inserts Into Stand-Alone Standard MRI Systems 22.3.1.2 Sequential Whole-Body PET/MRI Systems 22.3.1.3 Simultaneous Whole-Body PET/MRI Systems 22.4 PET QUANTIFICATION IN HYBRID PET/MRI 22.4.1 Attenuation Correction of the PET – an Introduction 22.4.2 Approaches of Attenuation Correction for PET/MRI 22.4.2.1 MRI-Based Attenuation Correction 22.4.2.2 PET Data-Based Attenuation Correction 22.4.2.3 Attenuation Correction of Hardware Components 22.4.3 Image Reconstruction in PET/MRI 22.4.4 Standardization of PET/MRI Imaging 22.5 CLINICAL APPLICATIONS FOR PET/MRI 22.6 PRECLINICAL PET/MRI 22.7 SITING, STAFFING AND REGULATORY CONSIDERATIONS References 23 Quality Assurance of Nuclear Medicine Systems 23.1 INTRODUCTION 23.2 GAMMA CAMERA QUALITY ASSURANCE 23.2.1 Acceptance Testing 23.2.2 Quality Control Tests 23.2.2.1 Uniformity 23.2.2.2 Energy Resolution 23.2.2.3 Spatial Resolution and Spatial Linearity 23.2.2.4 Sensitivity 23.2.2.5 Others 23.2.3 CZT-Based Gamma Cameras 23.3 SPECT QUALITY ASSURANCE 23.3.1 Acceptance Testing 23.3.2 Quality Control Tests 23.3.2.1 Centre of Rotation/System Alignment/Multiple Head Spatial Registration 23.3.2.2 General SPECT Performance 23.3.2.3 Others 23.3.3 Novel SPECT Systems 23.4 PET QUALITY ASSURANCE 23.4.1 Acceptance Testing 23.4.2 Quality Control Tests 23.4.2.1 Daily Tests 23.4.2.2 Weekly Tests 23.4.2.3 Quarterly Tests 23.4.2.5 Ancillary Equipment 23.5 HYBRID CT QUALITY ASSURANCE 23.5.1 Background 23.5.2 Acceptance Testing 23.5.3 Quality Control 23.5.3.1 Daily Tests 23.5.3.2 Monthly Checks 23.5.3.3 Six-Monthly Checks 23.5.3.4 Annual Checks 23.6 PET/MR QUALITY ASSURANCE 23.7 DOSE CALIBRATOR 23.7.1 Background 23.7.2 Acceptance Testing 23.7.2.1 Accuracy 23.7.2.2 Reproducibility 23.7.2.3 Linearity 23.7.2.4 Subsidiary Calibrations 23.7.3 Quality Control Tests 23.7.3.1 Physical Inspection 23.7.3.2 Background 23.7.3.3 Clock Accuracy 23.7.3.4 High Voltage 23.7.3.5 Display 23.7.3.6 Zero Adjust 23.7.3.7 Constancy 23.8 SUMMARY References 24 Calibration and Traceability 24.1 INTRODUCTION 24.2 TRACEABILITY AND QUALITY ASSURANCE 24.2.1 Metrology Hierarchy 24.2.2 Establishing and Maintaining Traceability 24.2.3 The Role of Standards and Traceability in Quality Assurance 24.2.4 Standards for Radioactivity 24.3 CALIBRATION METHODS IN NUCLEAR MEDICINE 24.3.1 Activity Meters 24.3.2 Gamma Well Counters References 25 Activity Quantification From Planar Images 25.1 INTRODUCTION 25.2 IMAGE ACQUISITION AND FORMATION 25.2.1 Photon Attenuation, Scatter, and Septal Penetration 25.3 ACTIVITY QUANTIFICATION 25.3.1 Calibration Factor 25.3.2 Activity Quantification From a Single Planar View 25.3.2.1 The Double-Energy Peak Method for Estimating the Source Depth 25.3.3 Activity Quantification From Conjugate Views 25.3.3.1 Attenuation Correction 25.3.3.2 Scatter Correction 25.3.4 Corrections for Activity in Overlapping Tissues 25.3.5 Hybrid Planar-SPECT-Based Estimation of the Time-Activity Curve References 26 Quantification in Emission Tomography 26.1 INTRODUCTION 26.2 SOURCES OF ERROR IN EMISSION TOMOGRAPHY 26.2.1 Detector Calibration 26.2.2 Image Reconstruction 26.2.3 Randoms 26.2.4 Attenuation and Scatter 26.2.5 Partial Volume Effects 26.2.6 Motion 26.2.7 Noise 26.3 ATTENUATION CORRECTION 26.3.1 Measuring Attenuation 26.3.2 Inclusion of Attenuation in the System Matrix 26.3.3 Sources of Error in Attenuation Correction 26.3.4 Attenuation Correction for PET/MRI 26.3.5 Estimating Attenuation From Emission Data 26.4 SCATTER CORRECTION 26.4.1 Multiple Energy Windows (SPECT) 26.4.2 Scatter Models for SPECT and PET 26.4.3 Inclusion in Reconstruction 26.4.4 Sources of Error in Scatter Correction 26.4.5 Current Research and Future Directions 26.5 PARTIAL VOLUME CORRECTION 26.5.1 Estimating Resolution 26.5.2 Standard Assumptions 26.5.3 Deconvolution 26.5.4 Resolution Modelling 26.5.5 Post-Reconstruction Methods 26.5.6 Other Factors 26.5.7 Sources of Error 26.6 MOTION CORRECTION 26.6.1 Motion Detection And/or Tracking 26.6.2 Motion Estimation Techniques 26.6.3 Motion Correction Techniques 26.7 QUANTIFICATION IN CLINICAL PRACTICE 26.8 VALIDATION 26.9 APPENDIX: CROSS-CALIBRATION References 27 Multicentre Studies: Hardware and Software Requirements 27.1 INTRODUCTION 27.1.1 Purpose of Multicentre Comparison 27.1.2 Organizing the Study 27.1.2.1 Financing 27.1.2.2 Executing the Study 27.1.2.3 Critical Points and Recommendations 27.2 EXAMPLES OF MULTICENTRE STUDIES 27.2.1 Multicentre Studies and Standardization Programs 27.2.1.1 Multicentre Studies and Standardization Programs in 18F-FDG PET/CT Investigations 27.2.1.2 Multicentre Studies and Standardization Programs in DaTSCAN SPECT 27.2.2 The International Atomic Energy Agency (IAEA) Barium Intercomparison Project 27.2.3 Equalis National External Quality Assessment Programme in Sweden 27.2.3.1 Example 1: Renal Scintigraphy 27.2.3.2 Example 2: Myocardial Perfusion 27.2.3.3 Example 3: Bone Scintigraphy 27.2.3.4 Experiences From Different Surveys References 28 Preclinical Molecular Imaging Systems 28.1 INTRODUCTION 28.2 DETECTOR TECHNOLOGY 28.3 PET SYSTEM DESIGN 28.3.1 Photon Non-Collinearity 28.3.2 Positron Range 28.3.3 Detector Dimensions 28.3.4 Detector Parallax 28.3.5 Detector Configurations 28.3.6 Segmented Detectors 28.3.7 Monolithic Detectors 28.3.8 Scintillator Material 28.3.9 Photodetectors 28.3.10 Depth-Of-Interaction – DOI 28.3.11 Cadmium Zinc Telluride CZT 28.4 SENSITIVITY CONCERNS 28.5 SPECT SYSTEM DESIGNS 28.5.1 Detector Design and Scintillation Materials 28.5.2 Photodetectors 28.5.3 Collimation 28.6 MULTIMODALITY IMAGING 28.7 ANIMAL HANDLING 28.8 PERFORMANCE EVALUATION AND QC 28.9 SUMMARY AND FUTURE DIRECTIONS References 29 Monte Carlo Simulation of Nuclear Medicine Imaging Systems 29.1 INTRODUCTION 29.2 PSEUDO-RANDOM NUMBER GENERATOR 29.3 SAMPLING TECHNIQUES 29.3.1 Distribution Function Method 29.3.2 ‘Rejection’ Method 29.3.3 ‘Mixed’ Method 29.4 SAMPLING OF PHOTON INTERACTIONS 29.4.1 Cross-Section Data 29.4.2 Photon Path Length 29.4.3 Selecting Type of Photon Interaction 29.4.3.1 Photo-Absorption 29.4.3.2 Incoherent Photon Scattering 29.4.3.3 Coherent Photon Scattering 29.4.3.4 Pair Production 29.4.4 Photon Transport Calculation Scheme 29.5 SAMPLING OF ELECTRON INTERACTIONS 29.6 SIMIND MONTE CARLO PROGRAM 29.6.1 General Components: Geometry, Physics, Source 29.6.1.1 Source Simulations 29.6.1.2 Interactions in the Phantom 29.6.1.3 Collimator Simulation 29.6.2 User Interface 29.6.3 Documentation 29.7 GATE MONTE CARLO PROGRAM 29.7.1 General Components: Geometry, Physics, Source, Actors 29.7.2 Patient/Phantom 29.8 EXAMPLES 29.8.1 Sources 29.8.2 Detector Modelling 29.8.3 Documentation 29.9 ACCELERATING METHODS 29.9.1 Photon Splitting 29.9.2 Russian Roulette 29.9.3 ARF – Angular Response Function 29.9.4 Fixed Forced Detection 29.9.5 MPI – Message Passing Interface 29.9.6 GPU Coding 29.10 APPLICATIONS OF MONTE CARLO IN NUCLEAR MEDICINE IMAGING 29.10.1 Components of an Image 29.10.2 Collimator Penetration 29.10.3 Tracking Particles for a Full SPECT Simulation: Some Numbers 29.10.4 Pinhole SPECT 29.10.5 Motion Artefacts 29.10.6 Reconstruction and Segmentation Algorithms 29.10.7 Simulation for Small-Animal Imaging Systems 29.10.8 SiPM PET Simulation 29.10.9 Machine Learning and Monte Carlo 29.10.10 Compton Camera References 30 Beta and Alpha Particle Autoradiography 30.1 INTRODUCTION 30.2 AUTORADIOGRAPHY 30.2.1 Applications of Autoradiography 30.2.2 Advanced Applications 30.3 FILM-BASED AUTORADIOGRAPHY 30.3.1 Film Autoradiography 30.3.2 Film Emulsion Autoradiography 30.4 PHOSPHOR STORAGE PLATE IMAGING 30.4.1 Applications 30.5 SCINTILLATION-BASED AUTORADIOGRAPHY DETECTORS 30.5.1 Application of Scintillation-Based Imaging Systems 30.6 GASEOUS DETECTOR-BASED AUTORADIOGRAPHY DETECTORS 30.6.1 Applications of Gaseous Detector-Based Imaging Systems 30.7 SEMICONDUCTOR-BASED AUTORADIOGRAPHY DETECTORS 30.7.1 Applications of Semiconductor-Based Imaging Systems 30.8 ALPHA PARTICLE AUTORADIOGRAPHY 30.8.1 Dedicated Alpha Particle Autoradiography Detectors 30.8.1.1 The Alpha Camera 30.8.1.2 Other .-Particle Imaging Systems 30.8.2 Alpha and Beta Particle Autoradiography Detectors 30.8.3 Applications of .-Particle Autoradiography 30.8.3.1 Targeted Alpha Therapy 30.8.3.2 High-Resolution .-Particle Scintigraphy 30.8.3.3 Radio-TLC 30.8.3.4 Geological Studies 30.8.3.5 Radio Toxicology 30.9 SUMMARY References 31 Principles Behind Computed Tomography (CT) 31.1 INTRODUCTION 31.2 BASIC PRINCIPLES OF X-RAY AND CT 31.2.1 Image Reconstruction 31.2.2 Hounsfield Units 31.3 TECHNICAL CONCEPTS 31.3.1 Scanner Configuration 31.3.2 Scan Modes and Scan Parameters 31.3.3 Dual Energy 31.4 IMAGE QUALITY 31.5 CT DOSIMETRY 31.5.1 CT Dose Index 31.5.2 Dose Length Product 31.5.3 Possibilities for Reducing the Dose 31.6 ARTEFACTS Bibliography 32 Principles Behind Magnetic Resonance Imaging (MRI) 32.1 INTRODUCTION AND HISTORICAL BACKGROUND 32.2 BASIC PHYSICS OF MAGNETIC RESONANCE IMAGING 32.2.1 Nuclear Magnetic Resonance and Signal Generation 32.2.2 Relaxation 32.2.2.1 Longitudinal Relaxation (T1 Relaxation, Spin-Lattice Relaxation) 32.2.2.2 Transverse Relaxation (T2 and T2* Relaxation, Spin-Spin Relaxation) 32.2.3 Introduction to Conventional Pulse Sequences 32.2.3.1 Spin Echo 32.2.3.2 Inversion Recovery 32.2.3.3 Gradient Echo 32.2.4 The Bloch Equation and the Concept of MR Signal Equations 32.2.5 Principles of Spatial Encoding 32.2.5.1 Slice Selection 32.2.5.2 In-Plane Spatial Encoding: The Frequency-Encoding Principle 32.2.5.3 In-Plane Spatial Encoding: The Phase-Encoding Principle 32.2.6 Conventional Pulse Sequences Revisited: The Complete Scheme 32.2.6.1 Refocusing of Spins – Balancing of the Pulse Sequence 32.2.6.2 The Spin-Echo Pulse Sequence Scheme 32.2.6.3 The Gradient-Echo Pulse Sequence Scheme 32.2.7 Signal Reception and Image Reconstruction 32.2.7.1 Signal Receiver System and Mathematical Signal Representation 32.2.7.2 Image Reconstruction: Introduction of Spatial Frequency K and Use of the Fourier Transform Relationship 32.2.7.3 Signal Matrix Organization and Introduction to K-Space 32.3 IMAGE ACQUISITION TECHNIQUES IN CLINICAL MRI 32.3.1 Fast Spin Echo 32.3.2 Gradient-Echo Variants 32.3.3 Echo-Planar Imaging 32.4 IMAGE CONTRAST AND IMAGE QUALITY 32.4.1 Image Contrast 32.4.1.1 Spin-Echo Contrast 32.4.1.2 Gradient-Echo Contrast 32.4.1.3 Magnetization Preparation 32.4.1.4 Dixon Methods for Fat Suppression 32.4.2 Contrast Agents 32.4.3 Signal-To-Noise Ratio Issues 32.4.4 Common Image Artefacts 32.4.4.1 Metal Artefact 32.4.4.2 Susceptibility Artefact 32.4.4.3 Motion Artefact 32.4.4.4 Aliasing, Wrap-Around Artefact 32.4.4.5 Gibbs Ringing, Truncation Artefact 32.4.4.6 Chemical Shift Artefact 32.5 ADVANCED MRI TECHNIQUES: FUNCTION, PHYSIOLOGY, AND MICROSTRUCTURE 32.5.1 Cine MRI: Imaging of Moving Structures 32.5.2 Flow and Motion, MR Angiography 32.5.3 Perfusion and Permeability 32.5.4 Diffusion 32.5.5 Visualization of Cortical Activation (BOLD-FMRI) 32.5.6 Magnetic Resonance Spectroscopy (MRS) 32.6 MRI HARDWARE AND SAFETY 32.6.1 MRI Hardware and Technology 32.6.2 Biological Effects and MRI Safety 32.7 CONCLUDING REMARKS Bibliography Note