ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Nuclear Medicine and Molecular Imaging for Physicists: Instrumentation and Imaging Procedures, Volume I (Series in Medical Physics and Biomedical Engineering)

دانلود کتاب کتاب راهنمای پزشکی هسته ای و تصویربرداری مولکولی برای فیزیکدانان: روش های ابزار دقیق و تصویربرداری، جلد اول (مجموعه فیزیک پزشکی و مهندسی زیست پزشکی)

Handbook of Nuclear Medicine and Molecular Imaging for Physicists: Instrumentation and Imaging Procedures, Volume I (Series in Medical Physics and Biomedical Engineering)

مشخصات کتاب

Handbook of Nuclear Medicine and Molecular Imaging for Physicists: Instrumentation and Imaging Procedures, Volume I (Series in Medical Physics and Biomedical Engineering)

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 9781138593268, 1138593265 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 655 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 151 مگابایت 

قیمت کتاب (تومان) : 38,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Handbook of Nuclear Medicine and Molecular Imaging for Physicists: Instrumentation and Imaging Procedures, Volume I (Series in Medical Physics and Biomedical Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای پزشکی هسته ای و تصویربرداری مولکولی برای فیزیکدانان: روش های ابزار دقیق و تصویربرداری، جلد اول (مجموعه فیزیک پزشکی و مهندسی زیست پزشکی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهنمای پزشکی هسته ای و تصویربرداری مولکولی برای فیزیکدانان: روش های ابزار دقیق و تصویربرداری، جلد اول (مجموعه فیزیک پزشکی و مهندسی زیست پزشکی)



این کتابچه راهنمای پیشرفته، اولین کتاب از مجموعه‌ای است که به فیزیکدانان پزشکی یک دید کلی در زمینه پزشکی هسته‌ای ارائه می‌کند، به روش‌های ابزار دقیق و تصویربرداری در پزشکی هسته‌ای اختصاص دارد. این روش درمان کاملی را در مورد فناوری‌های پیشرفته‌ای که در این زمینه مورد استفاده قرار می‌گیرند، علاوه بر لمس تاریخچه استفاده از آنها، توسعه آنها و نگاه به آینده به چشم‌اندازهای آینده ارائه می‌کند.

این متن منبع ارزشمندی برای کتابخانه‌ها، مؤسسات، و فیزیکدانان پزشکی بالینی و دانشگاهی خواهد بود که در جستجوی شرح کاملی از تعریف پزشکی هسته‌ای هستند.

  • جامع‌ترین مرجع موجود که نمای کلی پیشرفته‌ای از رشته پزشکی هسته‌ای را ارائه می‌دهد
  • ویرایش شده توسط یک رهبر در این زمینه، با مشارکت تیمی از فیزیکدانان با تجربه پزشکی
  • شامل آخرین تحقیقات عملی در این زمینه، علاوه بر توضیح نظریه بنیادی و تاریخچه میدان

توضیحاتی درمورد کتاب به خارجی

This state-of-the-art handbook, the first in a series that provides medical physicists with a comprehensive overview into the field of nuclear medicine, is dedicated to instrumentation and imaging procedures in nuclear medicine. It provides a thorough treatment on the cutting-edge technologies being used within the field, in addition to touching upon the history of their use, their development, and looking ahead to future prospects.

This text will be an invaluable resource for libraries, institutions, and clinical and academic medical physicists searching for a complete account of what defines nuclear medicine.

  • The most comprehensive reference available providing a state-of-the-art overview of the field of nuclear medicine
  • Edited by a leader in the field, with contributions from a team of experienced medical physicists
  • Includes the latest practical research in the field, in addition to explaining fundamental theory and the field's history


فهرست مطالب

Cover
Half Title
Series Information
Title Page
Copyright Page
Table of Contents
Preface
Editor Bio
List of Contributors
1 The History of Nuclear Medicine
	1.1 1890–1930: THE RANDOM DISCOVERIES AND SYSTEMATIC RESEARCH
	1.2 1930–1950: DISCOVERY, PRODUCTION, AND DEVELOPMENT OF RADIONUCLIDES
	1.3 1950–1970: FIRST IMAGING APPARATUS AND RADIOPHARMACEUTICALS
	1.4 1970–1990: TOMOGRAPHIC TECHNIQUES, RADIOIMMUNOLOGY, AND DOSIMETRY
	1.5 1990–2010: IMPROVED IMAGING BY MULTI-MODALITY SYSTEMS AND NOVEL MOLECULAR IMAGING
	References
2 Basic Atomic and Nuclear Physics
	2.1 THE ATOM AND ITS NUCLEUS
		2.1.1 Understanding Radioactivity
		2.1.2 Nuclear Physical Symbols and Notations
		2.1.3 Stable and Unstable Nuclides
		2.1.4 Electron Energy Levels
		2.1.5 Nuclear Energy Levels
	2.2 RADIOACTIVE DECAY
		2.2.1 Mass–energy Relationships
		2.2.2 Nucleus Mass Defect and Bonding Energy
		2.2.3 Different Types of Instability
		2.2.4 Decay Scheme
		2.2.5 α-Decay
		2.2.6 β-Decay
		2.2.7 β+-Decay
		2.2.8 Decay By Electron Capture
	2.3 INTERPRETATION OF DECAY SCHEMES
		2.3.1 137Cesium
		2.3.2 99mTechnetium
	2.4 RADIOACTIVE DECAY TIME
	2.5 DECAY CHAINS
		2.5.1 Complex Decay Chains
	2.6 RADIONUCLIDE DATA SOURCES
	References
3 Basics of Radiation Interactions in Matter
	3.1 INTRODUCTION
	3.2 IONIZING RADIATION
	3.3 SOLID ANGLE
	3.4 CROSS SECTION
	3.5 PHOTON INTERACTIONS
		3.5.1 Photon Absorption
		3.5.2 Photon Scattering
			3.5.2.1 Thomson Cross Section
			3.5.2.2 Compton Scattering
			3.5.2.3 Coherent Scattering
		3.5.3 Pair Production
		3.5.4 Photon Attenuation
			3.5.4.1 Narrow-Beam Geometry
			3.5.4.2 Mass-Attenuation Coefficient
	3.6 NEUTRON INTERACTIONS
		3.6.1 Interaction Processes
		3.6.2 Neutron Attenuation
	3.7 CHARGED-PARTICLE INTERACTIONS
		3.7.1 Inelastic Collisions With Atomic Electrons
		3.7.2 Inelastic Collisions With Atomic Nucleus
		3.7.3 Elastic Collisions
		3.7.4 Path Ranges and Range Relations
	3.8 SOURCES FOR CROSS SECTIONS
		3.8.1 Photons
		3.8.2 Neutrons
		3.8.3 Charged Particles
	References
4 Radionuclide Production
	4.1 INTRODUCTION
	4.2 INDUCED RADIOACTIVITY
	4.3 NUCLIDE CHART AND LINE OF NUCLEAR STABILITY
		4.3.1 Binding Energy, Q-Value, Reaction Threshold, and Nuclear Reaction Formalism
		4.3.2 Types of Nuclear Reactions, Reaction Channels and Cross Section
		4.3.3 Relation Between Cross Section and Yield of Radionuclides
	4.4 REACTOR PRODUCTION
		4.4.1 Principle of Operation and Neutron Spectrum
		4.4.2 Thermal and Fast Neutron Reactions
		4.4.3 Nuclear Fission and Fission Products
	4.5 ACCELERATOR PRODUCTION
		4.5.1 Cyclotron, Principle of Operation, Negative and Positive Ions
		4.5.2 Commercial Production (Low and High Energy)
		4.5.3 In-House Low-Energy Production (PET)
		4.5.4 Targetry, Optimizing the Production, Yield Calculations
	4.6 RADIONUCLIDE GENERATORS
		4.6.1 Radiochemistry of Irradiated Targets
		4.6.2 Carrier-Free and Carrier-Added Systems
		4.6.3 Separation Methods
	4.7 RADIATION PROTECTION CONSIDERATIONS
	References
5 Radiometry
	5.1 RADIATION DETECTORS IN GENERAL
	5.2 GAS-FILLED DETECTORS FOR IONIZING RADIATION
	5.3 SCINTILLATION DETECTORS
		5.3.1 Organic Scintillation Detectors
		5.3.2 Inorganic Scintillation Detectors
		5.3.3 Integrating Luminescent Detectors
		5.3.4 Chemical Detectors
	5.4 SPECIFIC FEATURES OF RADIATION DETECTORS
		5.4.1 Time and Energy Resolution
		5.4.2 Efficiency and Energy Dependence; Tissue Equivalence
		5.4.3 Background and Radiation Quality
		5.4.4 General Features
	5.5 EXAMPLES OF DETECTOR CONFIGURATIONS
		5.5.1 Neutron Detectors
		5.5.2 Electronic Personal Dosimeters
		5.5.3 Activity Calibrators (Dose Calibrators)
		5.5.4 Whole-Body Counters
	References
6 Scintillation Detectors
	6.1 INTRODUCTION
	6.2 SCINTILLATION
	6.3 CLASSIFICATIONS OF INORGANIC SCINTILLATORS
		6.3.1 Tl-Doped Alkali-Halides
		6.3.2 Self-Activated Oxides
		6.3.3 Ce-Doped REE-Halides and Eu-Doped SrI2
		6.3.4 Ce-Doped REE-Oxyorthosilicates
		6.3.5 Ce-Doped REE Aluminium Perovskites
		6.3.6 Ce-Doped REE Aluminium Garnets
		6.3.7 Manufacturing
		6.3.8 Co-Doping
	6.4 ENERGY RESOLUTION
	6.5 SCINTILLATION DETECTORS IN MEDICAL USE
	6.6 TIME-OF-FLIGHT PET
	6.7 PHOTOMULTIPLIER TUBES
	6.8 PHOTODIODES
	References
7 Semiconductor Detectors
	7.1 INTRODUCTION AND HISTORICAL BACKGROUND
	7.2 SINGLE-ELEMENT SEMICONDUCTORS
	7.3 COMPOUND SEMICONDUCTORS
		7.3.1 CdTe- and CdZnTe-Detectors
			7.3.1.1 Timing Properties of CZT-Detectors for PET Applications
		7.3.2 Thallium Bromide (TlBr)
			7.3.2.1 Timing Properties of TlBr-Detectors for PET Applications
	7.4 SUMMARY
	References
8 Gamma Spectrometry
	8.1 BASIC PHYSICAL FEATURES OF A GAMMA DETECTOR
		8.1.1 Configuration of a Gamma Spectrometer
		8.1.2 Common G-Spectrometers Used in Nuclear Medicine
		8.1.3 Quality Parameters for a G-Spectrometer
			8.1.3.1 Energy Resolution (FWHM)
			8.1.3.2 Time Resolution
			8.1.3.3 Energy Dependency in Detection Efficiency
			8.1.3.4 Shielding and Background Suppression
			8.1.3.5 Ageing
	8.2 QUANTITATIVE ASSESSMENT OF GAMMA SPECTRA
		8.2.1 Basic Definitions
		8.2.2 Calibration of a G-Spectrometer
		8.2.3 Energy Calibration
		8.2.4 FWHM Calibration
		8.2.5 Efficiency Calibration
		8.2.6 Required Features of G-Spectrometry Software
		8.2.7 The Composition of a G-Spectrum
	8.3 FROM SPECTRUM ACQUISITION TO A FINAL REPORT
		8.3.1 Gamma Spectrometry Assessment: General
		8.3.2 The G-Spectrometry Report
		8.3.3 Evaluation of Activity Concentration in the Examined Sample, Ax
		8.3.4 Uncertainty of Examined Sample
		8.3.5 Detection Limits
	8.4 EXAMPLES OF EVALUATION OF ACTIVITY CONCENTRATION, UNCERTAINTY ASSESSMENT AND DETECTION LIMITS
		8.4.1 Evaluation of Assessment of Activity Concentration and Its Uncertainty in an Examined Sample
		8.4.2 Evaluation and Detection Limit and Minimum Detectable Activity Concentration
	8.5 QUALITY ASSURANCE
		8.5.1 Constancy Tests for Quality Control of G-Spectrometry
			8.5.1.1 Test of Efficiency
			8.5.1.2 Test of Energy Resolution, FWHM
			8.5.1.3 Background Levels
			8.5.1.4 Test of Energy Calibration
			8.5.1.5 Test of Environmental Factors
		8.5.2 Proficiency Tests
		8.5.3 Quality Management
	Acknowledgement
	References
Half Title
Title Page
9 Properties of the Digital Image
	9.1 Images for Communication of Medical Information
	9.2 Formation of the Digital Image
	9.3 Elements of the Digital Image
		9.3.1 Sampling and Quantization
		9.3.2 Image Coordinates and Spatial Scale
	9.4 Representation of the Image Information
	9.5 Image Information in the Frequency Domain
	9.6 Factors That Affect Image Quality
		9.6.1 Contrast
		9.6.2 Spatial Resolution
		9.6.3 Noise
		9.6.4 Interaction Between Image Contrast and Spatial Resolution, the MTF
		9.6.5 Interaction Between Image Contrast, Noise and Spatial Resolution
	9.7 Summary
	9.8 Appendix – Linear Systems Theory
	BIBLIOGRAPHY
10 Image Processing
	10.1 INTRODUCTION
	10.2 COLOUR-TABLE TRANSFORMATIONS
		10.2.1 Grayscale Transformations
		10.2.2 Windowing
		10.2.3 Gamma Correction
		10.2.4 Histogram Equalization
	10.3 A MODEL OF THE IMAGE-FORMATION PROCESS
	10.4 FILTERING
		10.4.1 Filtering in the Spatial Domain
			10.4.1.1 Discrete Convolution
			10.4.1.2 Low-Pass Filtering
			10.4.1.3 Edge Enhancement
		10.4.2 Filtering in the Fourier Domain
			10.4.2.1 Low-Pass Filtering
			10.4.2.2 High-Pass Filtering
		10.4.3 Filtering in the Spatial Domain and in the Fourier Domain
		10.4.4 Non-Linear and Adaptive Filtering
		10.4.5 Wiener Deconvolution
	10.5 SPATIAL TRANSFORMATIONS AND INTERPOLATION
		10.5.1 Forward and Backward Interpolation
		10.5.2 Ideal Interpolation
		10.5.3 Nearest-Neighbour Interpolation
		10.5.4 Linear Interpolation
		10.5.5 Cubic Interpolation
	10.6 SEGMENTATION
		10.6.1 Thresholding
			10.6.1.1 Fixed Threshold
			10.6.1.2 Thresholding Based On the Image Histogram
			10.6.1.3 Iterative Thresholding
			10.6.1.4 Region Growing
		10.6.2 Contour-Based Methods
			10.6.2.1 Active Models
		10.6.3 Evaluation of Segmentation Methods
			10.6.3.1 Evaluation Metrices
	10.7 CONCLUDING REMARKS
	References
11 Machine Learning
	11.1 SUPERVISED LEARNING
		11.1.1 Least Squares Regression
		11.1.2 Classification and Bayes Theorem
		11.1.3 Classification and Logistic Regression
		11.1.4 Classification Accuracy Versus Loss Function
	11.2 ARTIFICIAL NEURAL NETWORKS
	11.3 CONVOLUTIONAL NEURAL NETWORKS
	11.4 THE BIAS–VARIANCE TRADE-OFF
	11.5 IMAGE-TO-IMAGE ARCHITECTURES
	11.6 ADVANCED NETWORK ARCHITECTURES
	11.7 DIMENSIONALITY REDUCTION
	11.8 SUMMARY
	References
12 Image File Structures in Nuclear Medicine
	12.1 INTRODUCTION
	12.2 IMAGE FILES AND IMAGE DISPLAY
	12.3 FUNDAMENTALS OF IMAGE ANALYSIS/DISPLAY SOFTWARE
		12.3.1 General Data Structure
		12.3.2 Number Representation
			12.3.2.1 Integer Numbers
			12.3.2.2 Real Numbers
			12.3.3 Character Representation
		12.3.4 Little/big Endian
	12.4 NUCLEAR MEDICINE IMAGE FILE STRUCTURES
		12.4.1 Interfile Structure
		12.4.2 DICOM File Structure
			12.4.2.1 The DICOM Dictionary
	12.5 DATA TRANSFER BETWEEN SYSTEMS
	12.6 FUTURE TRENDS
	12.7 ACKNOWLEDGEMENT
	References
13 The Scintillation Camera
	13.1 INTRODUCTION
	13.2 GANTRY, HOUSING, AND IMAGING COUCH
	13.3 THE SCINTILLATION CRYSTAL
	13.4 THE PHOTOMULTIPLIER TUBE
	13.5 THE COLLIMATOR
	13.6 READ OUT AND PULSE ARITHMETIC
		13.6.1 Energy Determination
		13.6.2 Image Formation
		13.6.3 Nonlinearity
		13.6.4 System Sensitivity
		13.6.5 Temporal Resolution
14 Collimators for Gamma Ray Imaging
	14.1 INTRODUCTION
	14.2 PARALLEL-HOLE COLLIMATORS
	14.3 FANBEAM AND CONEBEAM COLLIMATORS
	14.4 PINHOLE COLLIMATORS
		14.4.1 Multi-Pinhole Collimators
		14.4.2 Sampling Completeness
	14.5 SLIT-SLAT COLLIMATORS
	14.6 OPTIMAL CHOICE OF COLLIMATOR AND COLLIMATOR OPTIMIZATION
	14.7 ROTATING SLAT COLLIMATORS
	References
15 Image Acquisition Protocols
	15.1 BASIC ACQUISITION PARAMETERS
		15.1.1 Flood Correction
		15.1.2 Matrix Size
		15.1.3 Field of View and Digital Zoom
		15.1.4 Saturation Level and Behaviour
		15.1.5 Collimator and Detector Distance
		15.1.6 Acquisition Time
		15.1.7 Spatial Resolution
		15.1.8 Energy Window Selection
		15.1.9 Multiple Energy Windows
			15.1.9.1 Example 1: Parathyroid Imaging
			15.1.9.2 Example 2: Sentinel Lymph Node Imaging
		15.1.10 Geometric Mean (DMSA Example)
		15.1.11 Quantitation (Thyroid Uptake Example)
	15.2 WHOLE-BODY IMAGING
	15.3 DYNAMIC IMAGING
		15.3.1 Renogram Example
	15.4 GATED IMAGING
		15.4.1 MUGA Example
	15.5 TOMOGRAPHIC ACQUISITIONS
		15.5.1 DaTScan Example
	REFERENCES
16 Single Photon Emission Computed Tomography (SPECT) and SPECT/CT Hybrid Imaging
	16.1 INTRODUCTION
	16.2 SPECT
		16.2.1 Image Reconstruction By Direct Back-Projection
		16.2.2 Image Reconstruction By Filtered Back-Projection
		16.2.3 Derivation of the FBP Algorithm
		16.2.4 FBP With Regularization
		16.2.5 Image Reconstruction By Iterative Methods
		16.2.6 Non-Uniform Orbitals
		16.2.7 The Centre-Of-Rotation
		16.2.8 Non-Uniformities in the Camera
		16.2.9 Multiple Bed-Position
	16.3 SPECT/CT
		16.3.1 Commercial SPECT/CT Systems
	16.4 IMAGE RECONSTRUCTION AND QUANTIFICATION USING ANATOMICAL INFORMATION
		16.4.1 Image Fusion
		16.4.2 Attenuation Correction
		16.4.3 Respiratory Motion
		16.4.4 Scatter Correction
		16.4.5 Outlining Volume-Of-Interest
		16.4.6 Partial-Volume Correction
		16.4.7 Couch Bending
	16.5 SPECT/CT IN RADIONUCLIDE DOSIMETRY
		16.5.1 CT for Creating 2D Maps for Attenuation Correction
		16.5.2 CT for Creating 3D Maps for Dosimetry Calculations
	References
17 Dedicated Tomographic Single Photon Systems
	17.1 DEDICATED CARDIAC SPECT
		17.1.1 Commercial Systems With NaI(Tl) Or CsI(Tl) Detectors
			17.1.1.1 IQ-SPECT
			17.1.1.2 Digirad Cardius
		17.1.2 Commercial Systems With Cadmium Zinc Telluride Detectors
			17.1.2.1 D-SPECT
			17.1.2.2 Discovery NM 530c/570c
		17.1.3 Systems Under Research Development
	17.2 DEDICATED BRAIN SPECT
		17.2.1 Commercial Systems
			17.2.1.1 MILabs G-SPECT
		17.2.2 Systems Under Research Development
	17.3 DEDICATED BREAST SPECT
		17.3.1 Systems Under Research Development
	17.4 VERITON MULTI-PURPOSE SPECT
	17.5 SUMMARY
	References
18 PET Systems
	18.1 INTRODUCTION
	18.2 SCINTILLATORS FOR PET
	18.3 DETECTORS FOR PET
	18.4 GEOMETRY AND COLLIMATION OF PET SYSTEMS
	18.5 PHYSICAL LIMITATIONS AND RELATED CORRECTIONS
	18.6 ATTENUATION
	18.7 TRUE, SCATTERED AND RANDOM COINCIDENCES
	18.8 COUNT RATE
	References
19 Dead-Time Effects in Nuclear Medicine Imaging Studies
	19.1 INTRODUCTION
	19.2 DEAD-TIME EFFECT IN NUCLEAR MEDICINE IMAGING STUDIES
		19.2.1 Sources of Dead Time
		19.2.2 Models Used to Characterize Dead Time
		19.2.3 Factors Influencing Dead Time
	19.3 CLINICAL SITUATIONS IN WHICH DEAD-TIME CORRECTIONS MUST BE APPLIED
	19.4 DEAD-TIME CORRECTION METHODS
		19.4.1 Corrections for Single Photon Imaging (Planar Scintigraphy and SPECT)
		19.4.2 Correction Methods Used in PET
	19.5 CONCLUSION
	19.6 GLOSSARY
	References
20 Principles of Iterative Reconstruction for Emission Tomography
	20.1 INTRODUCTION
	20.2 PARAMETERS TO ESTIMATE AND BASIS FUNCTIONS
	20.3 MODELLING THE MEAN OF THE MEASURED DATA: THE SYSTEM MATRIX
	20.4 POISSON NOISE
	20.5 MAXIMUM LIKELIHOOD
	20.6 EXPECTATION MAXIMIZATION
		20.6.1 One Pixel and One Projection Bin
		20.6.2 Many Pixels and Many Projection Bins
		20.6.3 Complete Data
		20.6.4 Expectation of the Complete Data
		20.6.5 Kullback–Leibler Divergence
		20.6.6 Ordered Subsets EM
	20.7 MAXIMUM A POSTERIORI
	20.8 CURRENT RESEARCH DIRECTIONS
		20.8.1 4D Image Reconstruction
		20.8.2 AI/Machine Learning Within Image Reconstruction
	20.9 SUMMARY
	References
21 PET-CT Systems
	21.1 INTRODUCTION
	21.2 ATTENUATION CORRECTION
	21.3 RESPIRATORY MOTION COMPENSATION
	References
22 Clinical Molecular PET/MRI Hybrid Imaging
	22.1 THE HISTORY OF HYBRID PET/MRI TECHNOLOGY
	22.2 TECHNICAL CHALLENGES WITH INTEGRATING PET AND MRI
		22.2.1 Design and Integration of Combined PET/MRI Systems
		22.2.2 Effects of MRI On the PET and Vice Versa
		22.2.3 PET Detectors in a Magnetic Field
	22.3 COMBINED PET/MRI SYSTEMS
		22.3.1 Clinical PET/MRI Systems
			22.3.1.1 Inserts Into Stand-Alone Standard MRI Systems
			22.3.1.2 Sequential Whole-Body PET/MRI Systems
			22.3.1.3 Simultaneous Whole-Body PET/MRI Systems
	22.4 PET QUANTIFICATION IN HYBRID PET/MRI
		22.4.1 Attenuation Correction of the PET – an Introduction
		22.4.2 Approaches of Attenuation Correction for PET/MRI
			22.4.2.1 MRI-Based Attenuation Correction
			22.4.2.2 PET Data-Based Attenuation Correction
			22.4.2.3 Attenuation Correction of Hardware Components
		22.4.3 Image Reconstruction in PET/MRI
		22.4.4 Standardization of PET/MRI Imaging
	22.5 CLINICAL APPLICATIONS FOR PET/MRI
	22.6 PRECLINICAL PET/MRI
	22.7 SITING, STAFFING AND REGULATORY CONSIDERATIONS
	References
23 Quality Assurance of Nuclear Medicine Systems
	23.1 INTRODUCTION
	23.2 GAMMA CAMERA QUALITY ASSURANCE
		23.2.1 Acceptance Testing
		23.2.2 Quality Control Tests
			23.2.2.1 Uniformity
			23.2.2.2 Energy Resolution
			23.2.2.3 Spatial Resolution and Spatial Linearity
			23.2.2.4 Sensitivity
			23.2.2.5 Others
		23.2.3 CZT-Based Gamma Cameras
	23.3 SPECT QUALITY ASSURANCE
		23.3.1 Acceptance Testing
		23.3.2 Quality Control Tests
			23.3.2.1 Centre of Rotation/System Alignment/Multiple Head Spatial Registration
			23.3.2.2 General SPECT Performance
			23.3.2.3 Others
		23.3.3 Novel SPECT Systems
	23.4 PET QUALITY ASSURANCE
		23.4.1 Acceptance Testing
		23.4.2 Quality Control Tests
			23.4.2.1 Daily Tests
			23.4.2.2 Weekly Tests
			23.4.2.3 Quarterly Tests
			23.4.2.5 Ancillary Equipment
	23.5 HYBRID CT QUALITY ASSURANCE
		23.5.1 Background
		23.5.2 Acceptance Testing
		23.5.3 Quality Control
			23.5.3.1 Daily Tests
			23.5.3.2 Monthly Checks
			23.5.3.3 Six-Monthly Checks
			23.5.3.4 Annual Checks
	23.6 PET/MR QUALITY ASSURANCE
	23.7 DOSE CALIBRATOR
		23.7.1 Background
		23.7.2 Acceptance Testing
			23.7.2.1 Accuracy
			23.7.2.2 Reproducibility
			23.7.2.3 Linearity
			23.7.2.4 Subsidiary Calibrations
		23.7.3 Quality Control Tests
			23.7.3.1 Physical Inspection
			23.7.3.2 Background
			23.7.3.3 Clock Accuracy
			23.7.3.4 High Voltage
			23.7.3.5 Display
			23.7.3.6 Zero Adjust
			23.7.3.7 Constancy
	23.8 SUMMARY
	References
24 Calibration and Traceability
	24.1 INTRODUCTION
	24.2 TRACEABILITY AND QUALITY ASSURANCE
		24.2.1 Metrology Hierarchy
		24.2.2 Establishing and Maintaining Traceability
		24.2.3 The Role of Standards and Traceability in Quality Assurance
		24.2.4 Standards for Radioactivity
	24.3 CALIBRATION METHODS IN NUCLEAR MEDICINE
		24.3.1 Activity Meters
		24.3.2 Gamma Well Counters
	References
25 Activity Quantification From Planar Images
	25.1 INTRODUCTION
	25.2 IMAGE ACQUISITION AND FORMATION
		25.2.1 Photon Attenuation, Scatter, and Septal Penetration
	25.3 ACTIVITY QUANTIFICATION
		25.3.1 Calibration Factor
		25.3.2 Activity Quantification From a Single Planar View
			25.3.2.1 The Double-Energy Peak Method for Estimating the Source Depth
		25.3.3 Activity Quantification From Conjugate Views
			25.3.3.1 Attenuation Correction
			25.3.3.2 Scatter Correction
		25.3.4 Corrections for Activity in Overlapping Tissues
		25.3.5 Hybrid Planar-SPECT-Based Estimation of the Time-Activity Curve
	References
26 Quantification in Emission Tomography
	26.1 INTRODUCTION
	26.2 SOURCES OF ERROR IN EMISSION TOMOGRAPHY
		26.2.1 Detector Calibration
		26.2.2 Image Reconstruction
		26.2.3 Randoms
		26.2.4 Attenuation and Scatter
		26.2.5 Partial Volume Effects
		26.2.6 Motion
		26.2.7 Noise
	26.3 ATTENUATION CORRECTION
		26.3.1 Measuring Attenuation
		26.3.2 Inclusion of Attenuation in the System Matrix
		26.3.3 Sources of Error in Attenuation Correction
		26.3.4 Attenuation Correction for PET/MRI
		26.3.5 Estimating Attenuation From Emission Data
	26.4 SCATTER CORRECTION
		26.4.1 Multiple Energy Windows (SPECT)
		26.4.2 Scatter Models for SPECT and PET
		26.4.3 Inclusion in Reconstruction
		26.4.4 Sources of Error in Scatter Correction
		26.4.5 Current Research and Future Directions
	26.5 PARTIAL VOLUME CORRECTION
		26.5.1 Estimating Resolution
		26.5.2 Standard Assumptions
		26.5.3 Deconvolution
		26.5.4 Resolution Modelling
		26.5.5 Post-Reconstruction Methods
		26.5.6 Other Factors
		26.5.7 Sources of Error
	26.6 MOTION CORRECTION
		26.6.1 Motion Detection And/or Tracking
		26.6.2 Motion Estimation Techniques
		26.6.3 Motion Correction Techniques
	26.7 QUANTIFICATION IN CLINICAL PRACTICE
	26.8 VALIDATION
	26.9 APPENDIX: CROSS-CALIBRATION
	References
27 Multicentre Studies:  Hardware and Software Requirements
	27.1 INTRODUCTION
		27.1.1 Purpose of Multicentre Comparison
		27.1.2 Organizing the Study
			27.1.2.1 Financing
			27.1.2.2 Executing the Study
			27.1.2.3 Critical Points and Recommendations
	27.2 EXAMPLES OF MULTICENTRE STUDIES
		27.2.1 Multicentre Studies and Standardization Programs
			27.2.1.1 Multicentre Studies and Standardization Programs in 18F-FDG PET/CT Investigations
			27.2.1.2 Multicentre Studies and Standardization Programs in DaTSCAN SPECT
		27.2.2 The International Atomic Energy Agency (IAEA) Barium Intercomparison Project
		27.2.3 Equalis National External Quality Assessment Programme in Sweden
			27.2.3.1 Example 1: Renal Scintigraphy
			27.2.3.2 Example 2: Myocardial Perfusion
			27.2.3.3 Example 3: Bone Scintigraphy
			27.2.3.4 Experiences From Different Surveys
	References
28 Preclinical Molecular Imaging Systems
	28.1 INTRODUCTION
	28.2 DETECTOR TECHNOLOGY
	28.3 PET SYSTEM DESIGN
		28.3.1 Photon Non-Collinearity
		28.3.2 Positron Range
		28.3.3 Detector Dimensions
		28.3.4 Detector Parallax
		28.3.5 Detector Configurations
		28.3.6 Segmented Detectors
		28.3.7 Monolithic Detectors
		28.3.8 Scintillator Material
		28.3.9 Photodetectors
		28.3.10 Depth-Of-Interaction – DOI
		28.3.11 Cadmium Zinc Telluride CZT
	28.4 SENSITIVITY CONCERNS
	28.5 SPECT SYSTEM DESIGNS
		28.5.1 Detector Design and Scintillation Materials
		28.5.2 Photodetectors
		28.5.3 Collimation
	28.6 MULTIMODALITY IMAGING
	28.7 ANIMAL HANDLING
	28.8 PERFORMANCE EVALUATION AND QC
	28.9 SUMMARY AND FUTURE DIRECTIONS
	References
29 Monte Carlo Simulation of Nuclear Medicine Imaging Systems
	29.1 INTRODUCTION
	29.2 PSEUDO-RANDOM NUMBER GENERATOR
	29.3 SAMPLING TECHNIQUES
		29.3.1 Distribution Function Method
		29.3.2 ‘Rejection’ Method
		29.3.3 ‘Mixed’ Method
	29.4 SAMPLING OF PHOTON INTERACTIONS
		29.4.1 Cross-Section Data
		29.4.2 Photon Path Length
		29.4.3 Selecting Type of Photon Interaction
			29.4.3.1 Photo-Absorption
			29.4.3.2 Incoherent Photon Scattering
			29.4.3.3 Coherent Photon Scattering
			29.4.3.4 Pair Production
		29.4.4 Photon Transport Calculation Scheme
	29.5 SAMPLING OF ELECTRON INTERACTIONS
	29.6 SIMIND MONTE CARLO PROGRAM
		29.6.1 General Components: Geometry, Physics, Source
			29.6.1.1 Source Simulations
			29.6.1.2 Interactions in the Phantom
			29.6.1.3 Collimator Simulation
		29.6.2 User Interface
		29.6.3 Documentation
	29.7 GATE MONTE CARLO PROGRAM
		29.7.1 General Components: Geometry, Physics, Source, Actors
		29.7.2 Patient/Phantom
	29.8 EXAMPLES
		29.8.1 Sources
		29.8.2 Detector Modelling
		29.8.3 Documentation
	29.9 ACCELERATING METHODS
		29.9.1 Photon Splitting
		29.9.2 Russian Roulette
		29.9.3 ARF – Angular Response Function
		29.9.4 Fixed Forced Detection
		29.9.5 MPI – Message Passing Interface
		29.9.6 GPU Coding
	29.10 APPLICATIONS OF MONTE CARLO IN NUCLEAR MEDICINE IMAGING
		29.10.1 Components of an Image
		29.10.2 Collimator Penetration
		29.10.3 Tracking Particles for a Full SPECT Simulation: Some Numbers
		29.10.4 Pinhole SPECT
		29.10.5 Motion Artefacts
		29.10.6 Reconstruction and Segmentation Algorithms
		29.10.7 Simulation for Small-Animal Imaging Systems
		29.10.8 SiPM PET Simulation
		29.10.9 Machine Learning and Monte Carlo
		29.10.10 Compton Camera
	References
30 Beta and Alpha Particle Autoradiography
	30.1 INTRODUCTION
	30.2 AUTORADIOGRAPHY
		30.2.1 Applications of Autoradiography
		30.2.2 Advanced Applications
	30.3 FILM-BASED AUTORADIOGRAPHY
		30.3.1 Film Autoradiography
		30.3.2 Film Emulsion Autoradiography
	30.4 PHOSPHOR STORAGE PLATE IMAGING
		30.4.1 Applications
	30.5 SCINTILLATION-BASED AUTORADIOGRAPHY DETECTORS
		30.5.1 Application of Scintillation-Based Imaging Systems
	30.6 GASEOUS DETECTOR-BASED AUTORADIOGRAPHY DETECTORS
		30.6.1 Applications of Gaseous Detector-Based Imaging Systems
	30.7 SEMICONDUCTOR-BASED AUTORADIOGRAPHY DETECTORS
		30.7.1 Applications of Semiconductor-Based Imaging Systems
	30.8 ALPHA PARTICLE AUTORADIOGRAPHY
		30.8.1 Dedicated Alpha Particle Autoradiography Detectors
			30.8.1.1 The Alpha Camera
			30.8.1.2 Other .-Particle Imaging Systems
		30.8.2 Alpha and Beta Particle Autoradiography Detectors
		30.8.3 Applications of .-Particle Autoradiography
			30.8.3.1 Targeted Alpha Therapy
			30.8.3.2 High-Resolution .-Particle Scintigraphy
			30.8.3.3 Radio-TLC
			30.8.3.4 Geological Studies
			30.8.3.5 Radio Toxicology
	30.9 SUMMARY
	References
31 Principles Behind Computed Tomography (CT)
	31.1 INTRODUCTION
	31.2 BASIC PRINCIPLES OF X-RAY AND CT
		31.2.1 Image Reconstruction
		31.2.2 Hounsfield Units
	31.3 TECHNICAL CONCEPTS
		31.3.1 Scanner Configuration
		31.3.2 Scan Modes and Scan Parameters
		31.3.3 Dual Energy
	31.4 IMAGE QUALITY
	31.5 CT DOSIMETRY
		31.5.1 CT Dose Index
		31.5.2 Dose Length Product
		31.5.3 Possibilities for Reducing the Dose
	31.6 ARTEFACTS
	Bibliography
32 Principles Behind Magnetic Resonance Imaging (MRI)
	32.1 INTRODUCTION AND HISTORICAL BACKGROUND
	32.2 BASIC PHYSICS OF MAGNETIC RESONANCE IMAGING
		32.2.1 Nuclear Magnetic Resonance and Signal Generation
		32.2.2 Relaxation
			32.2.2.1 Longitudinal Relaxation (T1 Relaxation, Spin-Lattice Relaxation)
			32.2.2.2 Transverse Relaxation (T2 and T2* Relaxation, Spin-Spin Relaxation)
		32.2.3 Introduction to Conventional Pulse Sequences
			32.2.3.1 Spin Echo
			32.2.3.2 Inversion Recovery
			32.2.3.3 Gradient Echo
		32.2.4 The Bloch Equation and the Concept of MR Signal Equations
		32.2.5 Principles of Spatial Encoding
			32.2.5.1 Slice Selection
			32.2.5.2 In-Plane Spatial Encoding: The Frequency-Encoding Principle
			32.2.5.3 In-Plane Spatial Encoding: The Phase-Encoding Principle
		32.2.6 Conventional Pulse Sequences Revisited: The Complete Scheme
			32.2.6.1 Refocusing of Spins – Balancing of the Pulse Sequence
			32.2.6.2 The Spin-Echo Pulse Sequence Scheme
			32.2.6.3 The Gradient-Echo Pulse Sequence Scheme
		32.2.7 Signal Reception and Image Reconstruction
			32.2.7.1 Signal Receiver System and Mathematical Signal Representation
			32.2.7.2 Image Reconstruction: Introduction of Spatial Frequency K and Use of the Fourier Transform Relationship
			32.2.7.3 Signal Matrix Organization and Introduction to K-Space
	32.3 IMAGE ACQUISITION TECHNIQUES IN CLINICAL MRI
		32.3.1 Fast Spin Echo
		32.3.2 Gradient-Echo Variants
		32.3.3 Echo-Planar Imaging
	32.4 IMAGE CONTRAST AND IMAGE QUALITY
		32.4.1 Image Contrast
			32.4.1.1 Spin-Echo Contrast
			32.4.1.2 Gradient-Echo Contrast
			32.4.1.3 Magnetization Preparation
			32.4.1.4 Dixon Methods for Fat Suppression
		32.4.2 Contrast Agents
		32.4.3 Signal-To-Noise Ratio Issues
		32.4.4 Common Image Artefacts
			32.4.4.1 Metal Artefact
			32.4.4.2 Susceptibility Artefact
			32.4.4.3 Motion Artefact
			32.4.4.4 Aliasing, Wrap-Around Artefact
			32.4.4.5 Gibbs Ringing, Truncation Artefact
			32.4.4.6 Chemical Shift Artefact
	32.5 ADVANCED MRI TECHNIQUES: FUNCTION, PHYSIOLOGY, AND MICROSTRUCTURE
		32.5.1 Cine MRI: Imaging of Moving Structures
		32.5.2 Flow and Motion, MR Angiography
		32.5.3 Perfusion and Permeability
		32.5.4 Diffusion
		32.5.5 Visualization of Cortical Activation (BOLD-FMRI)
		32.5.6 Magnetic Resonance Spectroscopy (MRS)
	32.6 MRI HARDWARE AND SAFETY
		32.6.1 MRI Hardware and Technology
		32.6.2 Biological Effects and MRI Safety
	32.7 CONCLUDING REMARKS
	Bibliography
	Note




نظرات کاربران