ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues

دانلود کتاب کتاب راهنمای نانومواد برای تصفیه فاضلاب: مبانی و مقیاس‌بندی مسائل

Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues

مشخصات کتاب

Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues

ویرایش:  
نویسندگان: , , ,   
سری: Micro & Nano Technologies Series 
ISBN (شابک) : 0128214961, 9780128214961 
ناشر: Elsevier 
سال نشر: 2021 
تعداد صفحات: 700
[1218] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 116 Mb 

قیمت کتاب (تومان) : 52,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای نانومواد برای تصفیه فاضلاب: مبانی و مقیاس‌بندی مسائل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهنمای نانومواد برای تصفیه فاضلاب: مبانی و مقیاس‌بندی مسائل

هندبوک نانومواد برای تصفیه فاضلاب: مبانی و مسائل مربوط به مقیاس بندی، پوششی از نانومواد مورد استفاده برای تصفیه فاضلاب، پوشش مواد نانوکامپوزیت فوتوکاتالیستی، نانومواد مورد استفاده به عنوان جاذب، فرآیندهای اصلاح آب، و وضعیت فعلی و چالش های آنها را ارائه می دهد. این کتاب کاربردهای عمده نانومواد برای کاتالیز و جذب موثر را بررسی می کند، همچنین اطلاعات عمیقی در مورد خواص و کاربرد نانومواد پیشرفته جدید برای فرآیندهای تصفیه فاضلاب ارائه می دهد. این یک منبع مرجع مهم برای محققانی است که نیاز به حل مشکلات اساسی و پیشرفته مربوط به استفاده از نانومواد برای توسعه فرآیندها و فناوری‌های تصفیه فاضلاب دارند. از آنجایی که نانوتکنولوژی پتانسیل بهبود قابل ملاحظه فرآیندهای تصفیه آب و فاضلاب را دارد، روش‌های سنتز و خواص فیزیکوشیمیایی نانومواد و نانوذرات فلزات نجیب عملکرد و مکانیسم‌های آنها را برای تصفیه آلاینده‌های مختلف کارآمد می‌سازد. خواص نانومواد رایج مورد استفاده برای تصفیه فاضلاب را توضیح می‌دهد. تکنیک‌های اصلی سنتز و پردازش در مقیاس نانو را برای تصفیه فاضلاب شرح می‌دهد. چالش‌های عمده برای استفاده از نانومواد در مقیاس انبوه برای تصفیه فاضلاب را ارزیابی می‌کند.


توضیحاتی درمورد کتاب به خارجی

Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues provides coverage of the nanomaterials used for wastewater treatment, covering photocatalytic nanocomposite materials, nanomaterials used as adsorbents, water remediation processes, and their current status and challenges. The book explores the major applications of nanomaterials for effective catalysis and adsorption, also providing in-depth information on the properties and application of new advanced nanomaterials for wastewater treatment processes. This is an important reference source for researchers who need to solve basic and advanced problems relating to the use of nanomaterials for the development of wastewater treatment processes and technologies. As nanotechnology has the potential to substantially improve current water and wastewater treatment processes, the synthesis methods and physiochemical properties of nanomaterials and noble metal nanoparticles make their performance and mechanisms efficient for the treatment of various pollutants. Explains the properties of the most commonly used nanomaterials used for wastewater treatment Describes the major nanoscale synthesis and processing techniques for wastewater treatment Assesses the major challenges for using nanomaterials on a mass scale for wastewater treatment



فهرست مطالب

Front Cover
Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues
Copyright
Contents
Contributors
Preface
Section I: Introduction to nanomaterials for wastewater treatment: Fundamentals
	Chapter 1: Introduction to nanomaterials for wastewater treatment
		1.1. Introduction
			1.1.1. Catalyst for organic component degradation: Nanocatalyst
			1.1.2. Photocatalytic effect due to nanoscale: Bandgap
			1.1.3. Disinfection using nanomaterials
			1.1.4. Nanomaterials for sensing
		1.2. Nanomaterials as adsorbents for wastewater treatment
			1.2.1. Carbon nanotubes (CNTs)
			1.2.2. Graphene nanomaterials
			1.2.3. Metal and metal oxides
			1.2.4. Magnetic nanoparticles
		1.3. Metal oxide nanoparticles as photocatalyst
		1.4. Nanocomposites for wastewater treatment
			1.4.1. Bionanocomposites
			1.4.2. Nanocomposites based on inorganic support
			1.4.3. Nanocomposite hydrogels
		1.5. Membrane-based technology
			1.5.1. Nanocomposite membranes
		1.6. Challenges and future direction
		References
	Chapter 2: Low-dimensional nanomaterials: Syntheses, physicochemical properties, and their role in wastewater treatment
		2.1. Introduction
		2.2. Classification of nanomaterials
			2.2.1. Semiconducting nanomaterials
			2.2.2. Metal oxide nanomaterials
			2.2.3. Carbon-based nanomaterials
		2.3. Synthesis of low-dimensional nanomaterials
			2.3.1. Synthesis of 0D nanomaterials (II-VI and III-V quantum dots)
				2.3.1.1. The method of controlled precipitation
				2.3.1.2. Organometallic synthesis of II-VI and III-V semiconductor nanoparticles
			2.3.2. Synthesis of 1D and 2D nanomaterials
			2.3.3. Synthesis of carbon-based nanomaterials
			2.3.4. Structure and morphology of II-VI and III-V semiconductor nanomaterials
		2.4. Physicochemical properties
			2.4.1. Optical properties of 0D of II-VI and III-V nanomaterials
				2.4.1.1. Absorption spectra
				2.4.1.2. Photoluminescent spectra
				2.4.1.3. 3D quantum confinement
			2.4.2. Optical properties of 1D and 2D nanomaterials
		2.5. Low-dimensional nanomaterials in wastewater treatment
		2.6. Conclusion
		Acknowledgments
		References
	Chapter 3: Potential risk and safety concern of nanomaterials used for wastewater treatment
		3.1. Introduction
		3.2. Synthesis of nanoparticles, chemicals involved and their potential safety concern
			3.2.1. Synthesis of zinc oxide nanoparticles
			3.2.2. Synthesis of silver nanoparticles
			3.2.3. Carbon nanotube synthesis
			3.2.4. Iron oxide nanoparticle synthesis
			3.2.5. Synthesis of TiO2 nanoparticles
			3.2.6. Other materials and metal oxides
		3.3. Potential safety concerns of nanomaterials to flora and fauna
			3.3.1. Zinc oxide (ZnO) nanoparticles
			3.3.2. Silver nanoparticles
			3.3.3. Carbon nanotubes and carbon-based nanomaterials/nanoparticles
			3.3.4. Iron oxide and magnetic nanoparticles
			3.3.5. Titanium dioxide (TiO2) nanoparticles
		3.4. Conclusion
		References
	Chapter 4: Advanced technologies for wastewater treatment: New trends
		4.1. Introduction
		4.2. Advanced oxidation processes
			4.2.1. Hydrodynamic cavitation
			4.2.2. Sonolysis/acoustic cavitation
			4.2.3. Photocatalysis
			4.2.4. Fenton process
		4.3. Hybrid AOP's involving nanocatalyst
			4.3.1. Heterogeneous Fenton process
			4.3.2. Heterogeneous photo-Fenton process
			4.3.3. Sono photocatalytic process
			4.3.4. Sono-Fenton process
			4.3.5. Sono-photo-Fenton process
			4.3.6. Photocatalytic oxidation with hydrodynamic cavitation
		4.4. Conclusions
		References
Section II: Photocatalytic nanocomposite materials: Preparation and applications
	Chapter 5: Introduction, basic principles, mechanism, and challenges of photocatalysis
		5.1. Introduction
		5.2. Basic principles and mechanism of photocatalysis
		5.3. Source of water pollution, water treatment methods, and role of nanomaterials in wastewater treatment
			5.3.1. Sources of water pollution
			5.3.2. Water treatment methods
			5.3.3. Role of nanomaterials in water treatment by photocatalysis
		5.4. Overview on photocatalytic materials and factors affecting photocatalysis
			5.4.1. Photocatalytic materials
			5.4.2. Factor affecting photocatalysis
		5.5. Challenges of photocatalysis in wastewater treatment
		5.6. Summary
		References
	Chapter 6: Doped-TiO2 and doped-mixed metal oxide-based nanocomposite for photocatalysis
		6.1. Introduction
		6.2. Mechanism of TiO2 photocatalysis
			6.2.1. Generation of charge carrier species and their recombination
			6.2.2. Adsorption of chemicals to TiO2 followed by their redox pathways
			6.2.3. Radical attack on organics
		6.3. Photoactivity of TiO2 polymorphs
		6.4. Advancements in TiO2 photocatalysis for advanced oxidation technology
			6.4.1. Surface modifications of TiO2
				6.4.1.1. Metal deposition
				6.4.1.2. Surface adsorbates
				6.4.1.3. Surface charge modification
				6.4.1.4. Dye anchoring
			6.4.2. Photocatalyst modification and doping
			6.4.3. Photocatalytic membranes
				6.4.3.1. TiO2 polymer membranes
				6.4.3.2. TiO2 ceramic membranes
				6.4.3.3. Pure TiO2 membranes
			6.4.4. Application of membranes
		6.5. Photochemical reactors
			6.5.1. Immersion well
			6.5.2. Thin film
			6.5.3. Annular
			6.5.4. Multilamp
		6.6. Combination/coupling with other (hybrid) treatment technologies
		6.7. Challenges and issues for TiO2 photo-catalysis for water treatment
		6.8. Conclusion and future prospectus
		References
	Chapter 7: New graphene-based nanocomposite for photocatalysis
		7.1. Introduction
		7.2. Graphene and its derivatives
			7.2.1. Properties of graphene and its derivatives
			7.2.2. Preparation methods of graphene and its derivatives
		7.3. Graphene and its derivative-based photocatalyst
			7.3.1. Synthesis of graphene and its derivatives based binary nanocomposites
			7.3.2. Synthesis of graphene and its derivative-based ternary nanocomposites
		7.4. Characterization of graphene and its derivatives
		7.5. Photocatalytic applications
			7.5.1. Photocatalytic study of graphene and its derivatives-based binary nanocomposites
			7.5.2. Photocatalytic study of graphene and its derivatives-based ternary nanocomposites
		7.6. Mechanism of photocatalytic degradation
		7.7. Conclusion and future prospects
		References
	Chapter 8: Luminescence nanomaterials for photocatalysis
		8.1. Introduction-Basic principal of phosphor for photocatalysis
		8.2. Mechanism and challenges of luminescence materials in photocatalysis
		8.3. Rare-earth-doped inorganic phosphor materials for photocatalysis
			8.3.1. Downconversion phosphors
			8.3.2. Upconversion phosphors
			8.3.3. Long-lasting phosphors
		8.4. Nanophosphor for photocatalysis
			8.4.1. Oxide-based nanophosphors
				8.4.1.1. TiO2 nanophosphors
				8.4.1.2. Bismuth molybdate (Bi2MoO6)
				8.4.1.3. Zinc oxide (ZnO)
			8.4.2. Sulfide-based phosphors
			8.4.3. Plasmonic-metal nanoparticles
		8.5. Synthesis of nanophosphors
			8.5.1. Solid-sate reaction methods
			8.5.2. Combustion method
			8.5.3. Hydrothermal method
			8.5.4. Sol-gel method
			8.5.5. Co-precipitation method
			8.5.6. Ball milling method
		8.6. Application of photocatalysis in water purification
		8.7. Conclusion and future perspectives of luminescence phosphor-based photocatalyst
		8.8. Challenges and issues
		References
	Chapter 9: Magnetic nanomaterials-based photocatalyst for wastewater treatment
		9.1. Introduction
		9.2. Source of water pollution and type of pollutants
			9.2.1. Agricultural waste
			9.2.2. Pharmaceutical waste
			9.2.3. Industrial waste
			9.2.4. Plastic waste
		9.3. Types of water treatment techniques
			9.3.1. Primary treatment
				9.3.1.1. Screening, centrifugal separation, and filtration
				9.3.1.2. Gravity separation and sedimentation
				9.3.1.3. Coagulation and flocculation
			9.3.2. Secondary treatment
				9.3.2.1. Aerobic process
				9.3.2.2. Anaerobic process
			9.3.3. Tertiary treatment techniques
				9.3.3.1. Evaporation, crystallization, and distillation
				9.3.3.2. Membrane processing
				9.3.3.3. Adsorption
				9.3.3.4. Advance oxidation method
		9.4. Case study of wastewater treatment using magnetic nanoparticles
			9.4.1. Magnetic nanoparticles as adsorbents
			9.4.2. Photocatalysis decontamination of water using magnetic nanoparticles
		9.5. Limitations of magnetic nanomaterials
		9.6. Future prospects and overview
		References
	Chapter 10: Nanomaterials for water splitting and hydrogen generation
		10.1. Introduction
		10.2. Developing photocatalysts for water splitting-Mechanistic aspects
		10.3. Nanomaterials for water splitting
			10.3.1. Metal oxides for water splitting
				10.3.1.1. Titanium oxide (TiO2)-based nanomaterials for water splitting
				10.3.1.2. Zinc oxide (ZnO)-based nanomaterials for water splitting
				10.3.1.3. Layered Perovskite-based nanomaterials for water splitting
			10.3.2. Metal sulfides for water splitting
				10.3.2.1. Zinc sulfide (ZnS) and cadmium sulfide (CdS)-based nanomaterials for water splitting
				10.3.2.2. Molybdenum sulfide (MoS2) and Tungsten sulfide (WS2)-based nanomaterials for water splitting
			10.3.3. Metal organic frameworks for water splitting
			10.3.4. Carbon-based nanomaterials for water splitting
				10.3.4.1. Graphene-based nanomaterials for water splitting
				10.3.4.2. Graphitic carbon nitride (g-C3N4)-based nanomaterials for water splitting
		10.4. Sn3O4-ZnO nanoflowers for hydrogen generation under visible light-Case study
			10.4.1. Preparation, characterization, and photoactivity of Sn3O4-ZnO nanoflowers
			10.4.2. Results and discussion
		10.5. Conclusions
		References
	Chapter 11: Nanomaterials for treatment of air pollutants
		11.1. Introduction
		11.2. Role of nanotechnology in various pollution treatment methods
		11.3. Air pollutants
		11.4. Nanotechnology in the treatment of air pollution
			11.4.1. Treatment methods
				11.4.1.1. Adsorption
				11.4.1.2. Photocatalysis
				11.4.1.3. Nanofiltration
			11.4.2. Treatment of air pollutants
				11.4.2.1. CO2
				11.4.2.2. NOx
				11.4.2.3. SOx
				11.4.2.4. Volatile organic compounds
		11.5. Pilot-scale studies
		11.6. Challenges for the usage of nanomaterials for air pollution treatment
		11.7. Summary and conclusion
		References
Section III: Adsorbent nanomaterials: Preparation and applications
	Chapter 12: Nanomaterials for adsorption of pollutants and heavy metals: Introduction, mechanism, and challenges
		12.1. Introduction
		12.2. Major industry effluents
		12.3. Parameters affecting adsorption
			12.3.1. Contact time
			12.3.2. Adsorbent dosage
			12.3.3. Initial concentration
			12.3.4. pH
			12.3.5. Temperature
			12.3.6. Ionic strength
			12.3.7. Dissolved organic matters
		12.4. Adsorbent characterization
			12.4.1. Scanning electron microscopy (SEM)
			12.4.2. Energy dispersive X-ray spectroscopy (EDS)
			12.4.3. Transmission electron microscopy image
			12.4.4. Fourier-transform infrared spectroscopy
			12.4.5. Brunauer-Emmett-Teller (BET) surface area
			12.4.6. X-ray powder diffraction
			12.4.7. Thermogravimetric analysis
		12.5. Adsorption mechanism
			12.5.1. π-π interaction
			12.5.2. Electrostatic interaction
			12.5.3. Hydrophobic interaction
			12.5.4. Hydrogen bonding
		12.6. Challenges in adsorption
		12.7. Conclusion and future prospective
		References
	Chapter 13: New graphene nanocomposites-based adsorbents
		13.1. Introduction
		13.2. Graphene
		13.3. Graphene oxide
		13.4. Reduced graphene oxide
		13.5. Functionalization
			13.5.1. Covalent interaction
			13.5.2. Noncovalent interaction
		13.6. Kinetic of adsorption
		13.7. Graphene-based inorganic nanocomposites
			13.7.1. Metal and metal-oxides graphene-based nanocomposites
			13.7.2. Magnetic graphene-based nanocomposites
		13.8. Graphene-based organic nanocomposites
			13.8.1. Graphene-based organic polymer nanocomposites
				13.8.1.1. Graphene/alginate nanocomposites
				13.8.1.2. Graphene/chitosan nanocomposites
				13.8.1.3. Graphene/cellulose nanocomposites
			13.8.2. Graphene-based nanocomposites with multidentate organic chelating ligands and complexion agents
		13.9. Challenges and future prospective
		References
	Chapter 14: Role of zeolite adsorbent in water treatment
		14.1. Introduction
		14.2. The nature of the zeolite
			14.2.1. Composition and structure
			14.2.2. Characterization of zeolites
		14.3. Sorption of metal cations on zeolites and ion exchange
			14.3.1. Possible sorption and ion-exchange mechanisms
				14.3.1.1. Types of adsorption isotherms
				14.3.1.2. Adsorption kinetics
				14.3.1.3. Thermodynamics of adsorption processes
			14.3.2. Factors affecting the sorption process
			14.3.3. Principles of ion exchange on zeolites
			14.3.4. Organic cation sorption on zeolites
		14.4. Essential characteristics of zeolites and modification processes
			14.4.1. Physicochemical properties of zeolites
			14.4.2. Procedures for the modification of zeolites
				14.4.2.1. Activation by chemical means
				14.4.2.2. Thermal activation
				14.4.2.3. Modification of surface-active substances
				14.4.2.4. Modification by iron oxides
		14.5. Application of zeolites in water treatment
			14.5.1. Removal of metal ions from different wastewaters
			14.5.2. Removal of the ammonium ion from water
			14.5.3. Removal of radioactive elements from wastewater from nuclear power plants
		14.6. Regulation of water hardness
		14.7. Zeolite regeneration
		14.8. Discussion
			14.8.1. Sorption of metal cations on natural and synthetic zeolites
			14.8.2. Sorption of metal cations on natural and modified zeolites
			14.8.3. Sorption of ammonium and other ions on natural and modified zeolites
		14.9. Conclusions and future perspectives
		Acknowledgments
		References
	Chapter 15: Metal-organic framework nanocomposite based adsorbents
		15.1. Introduction
		15.2. Properties of MOF
		15.3. Types of MOF
		15.4. Synthesis methods
		15.5. Nanocomposite-based MOFs
		15.6. Applications of nanocomposite-based MOFs
			15.6.1. Application of nanocomposite-based MOFs in adsorption
				15.6.1.1. Adsorption of gases
				15.6.1.2. Adsorption of dyes
				15.6.1.3. General adsorption
			15.6.2. Applications of nanocomposite-based MOFs in industry
		15.7. Challenges for MOFs
			15.7.1. Challenges and issues for MOF as adsorbent for treatment of wastewater
		15.8. Conclusion
		References
	Chapter 16: Advanced nanocomposite ion exchange materials for water purification
		16.1. Introduction
		16.2. Types of nanocomposite IEX material
		16.3. Preparation of nanocomposite IEX material
			16.3.1. Background
			16.3.2. Nanomaterials used in IEX materials
				16.3.2.1. Low-dimension carbon
				16.3.2.2. Metal oxide
				16.3.2.3. Silica
			16.3.3. Processing methods
				16.3.3.1. Graft copolymerization/crosslinking
				16.3.3.2. Suspension polymerization
				16.3.3.3. In situ polymerization
				16.3.3.4. Blending
				16.3.3.5. Sol-gel
		16.4. Characterization
			16.4.1. Fourier transform infrared spectroscopy
			16.4.2. X-ray diffraction
			16.4.3. Thermogravimetric analysis
			16.4.4. Scanning electron microscope
		16.5. Application of nanocomposite IEX materials for water purification
		16.6. Scale-up conundrum
		16.7. Conclusions
		References
	Section IV: Nanomaterials for membrane synthesis: Preparation and applications
	Chapter 17: Nanomaterials for membrane synthesis: Introduction, mechanism, and challenges for wastewater treatment
		17.1. Introduction
		17.2. Conventional membranes
			17.2.1. Ceramic membranes
			17.2.2. Polymeric membranes
		17.3. Nanomaterial-based membranes
			17.3.1. Inorganic nanoparticle-based membranes
			17.3.2. Nanofiber-based membranes
			17.3.3. Carbon-based membranes
		17.4. Nanomaterial-based membrane synthesis techniques
			17.4.1. Phase inversion method
				17.4.1.1. Nonsolvent-induced phase separation technique (NIPS)
				17.4.1.2. Self-assembled and nonsolvent-induced phase separation (SNIPS)
				17.4.1.3. Thermally induced phase separation (TIPS)
			17.4.2. Interfacial polymerization (IP)
			17.4.3. Layer-by-layer (LBL) assembly
			17.4.4. Stretching and sintering
			17.4.5. Track etching and electrospinning
			17.4.6. Three-dimensional printing (3D printing)
		17.5. Challenges for wastewater treatment
			17.5.1. Antifouling challenges
			17.5.2. Antibacterial challenges
				17.5.2.1. Silver nanoparticles
				17.5.2.2. Titanium dioxide nanoparticles
				17.5.2.3. Copper nanoparticles
				17.5.2.4. Metal oxide-based nanoparticles
				17.5.2.5. Carbon-based nanoparticles
			17.5.3. Toxicity potential
				17.5.3.1. Silver and silica nanoparticles
				17.5.3.2. Carbon-based nanomaterials
				17.5.3.3. Copper nanoparticles
		17.6. Conclusions
		References
	Chapter 18: Carbon-based nanocomposite membranes for water purification
		18.1. Introduction to nanomaterials
		18.2. Carbon-based nanocomposite materials (CNCMs) (polymer/hybrid)
		18.3. Development and synthesis of carbon-based nanocomposite material
			18.3.1. Solution mixing
			18.3.2. Chemical vapor deposition
			18.3.3. In situ colloidal precipitation
			18.3.4. Polymer grafting
			18.3.5. In situ polymerization
			18.3.6. Phase inversion
			18.3.7. Spray-assisted layer-by-layer
		18.4. Fabrications techniques and types of carbon-based nanocomposite membrane
			18.4.1. Carbon nanotube (CNT) membranes
			18.4.2. CNT-polymer composite (CNT mixed-matrix membranes)
		18.5. Applications of carbon-based nanocomposite membrane for water purification
			18.5.1. Removal of organic/inorganic pollutants
		18.6. Conclusion
		References
	Chapter 19: Nanocomposite membranes for heavy metal removal
		19.1. Introduction
		19.2. Need of heavy metals removal
		19.3. Role of nanomaterials in wastewater treatment
		19.4. Role of nanomaterials in nanocomposite membranes
		19.5. Nanomaterials used for heavy metals removal
		19.6. Synthesis of nanocomposite membranes
			19.6.1. Phase inversion method
			19.6.2. Interfacial polymerization method
		19.7. Membranes for removal of different heavy metals from wastewater
			19.7.1. Lead
			19.7.2. Cadmium
			19.7.3. Chromium
			19.7.4. Copper
			19.7.5. Nickel
			19.7.6. Arsenic
		19.8. Comparison of nanocomposite membranes with conventional processes for heavy metal removal
		19.9. Challenges in industries
		19.10. Summary
		References
	Chapter 20: Polymer nanocomposite membranes for wastewater treatment
		20.1. Introduction
			20.1.1. Water scarcity
			20.1.2. Wastewater and its contaminants
			20.1.3. Membranes in wastewater treatment
		20.2. Polymeric membranes
			20.2.1. Polymers for membrane synthesis
			20.2.2. Issue with polymeric membranes
				20.2.2.1. Flux rejection trade-off
				20.2.2.2. Fouling
			20.2.3. Use of nanocomposite membranes as a solution
		20.3. Mixed-matrix membranes
			20.3.1. Hydrophilic and amphiphilic polymer (HP)-incorporated in mixed-matrix membrane
			20.3.2. Inorganic nanomaterials (iNPs)-incorporated in mixed-matrix membrane
			20.3.3. Metal-organic frameworks-incorporated mixed-matrix membrane
			20.3.4. Carbon nanomaterials (CNs)-incorporated in mixed-matrix membrane
				20.3.4.1. Graphene oxide-based membranes
				20.3.4.2. GO-incorporated mixed-matrix membrane
				20.3.4.3. Carbon nanotubes, fullerenes, and amorphous carbon-incorporated mixed-matrix membranes
		20.4. Thin-film nanocomposite membrane
			20.4.1. Inorganic nanomaterials (iNPs)-incorporated thin-film composite membrane
			20.4.2. Bioinspired materials-incorporated thin film composite membrane
			20.4.3. Metal-organic frameworks-incorporated thin-film composite membrane
			20.4.4. Carbon nanomaterials-incorporated thin-film composite membrane
			20.4.5. Thin-film nanocomposite membrane with nanoparticles in substrate
			20.4.6. Chlorine stability of polyamide thin-film nanocomposite membrane
		20.5. Surface-located nanoparticle membranes
			20.5.1. Nanoporous graphene sheets
			20.5.2. Graphene oxide surface-located membrane
			20.5.3. Inorganic nanomaterials (iNPs) surface-located membranes
			20.5.4. Metal-organic frameworks/covalent organic frameworks surface-located membrane
		20.6. Perspective
		20.7. Conclusion
		References
	Chapter 21: Responsive membranes for wastewater treatment
		21.1. Introduction
		21.2. Types of membranes
			21.2.1. Isotropic (symmetric) membranes
			21.2.2. Asymmetric (anisotropic) membranes
		21.3. Membrane materials
		21.4. Design and fabrication of responsive membrane
			21.4.1. Preparation and processing of responsive materials
			21.4.2. Functionalization by incubation in liquid
			21.4.3. Functionalization by incorporation of responsive groups in base membrane
			21.4.4. Functionalization by surface modification
				21.4.4.1. Grafting-to
				21.4.4.2. Grafting-from: Surface-initiated modification
		21.5. Classification of stimulation approach and application in water treatment
			21.5.1. Thermoresponsive membrane
			21.5.2. pH/chemical-responsive membranes
			21.5.3. Ionic strength/electrolyte/salt responsiveness
			21.5.4. Electroresponsive membranes
			21.5.5. Magnetoresponsive membranes
			21.5.6. Photoresponsive membranes
		21.6. Characteristics of stimuli-responsive membrane
			21.6.1. Flexibility
			21.6.2. Surface modification
		21.7. Industrial applications
		21.8. Conclusion
		References
	Chapter 22: Nanomaterial-based photocatalytic membrane for organic pollutants removal
		22.1. Introduction
		22.2. Photocatalytic membrane materials
			22.2.1. Hybrid photocatalytic membrane
			22.2.2. Porous photocatalytic membranes
			22.2.3. Polymer-based photocatalytic membrane
			22.2.4. Graphene-based photocatalytic membrane
			22.2.5. Graphitic carbon nitride-based photocatalytic membrane
			22.2.6. CNT-based photocatalytic membrane
		22.3. Photocatalytic membrane fabrication
			22.3.1. Sol-gel dip-coating
			22.3.2. Vacuum filtration
			22.3.3. Ultrasonication
			22.3.4. Chemical vapor deposition and plasma-enhanced chemical vapor deposition
			22.3.5. Phase inversion method
			22.3.6. Immersion method
			22.3.7. Spinning/electrospinning method
			22.3.8. Solvent casting method
		22.4. Applications of photocatalytic membrane for removal of organic pollutant
		22.5. Types of photocatalytic membrane reactors and their configurations
		22.6. Treatment of organic pollutants by photocatalytic membrane
		22.7. Challenges of photocatalytic membrane-based processes
		22.8. Scale-up of photocatalytic membrane-based processes
		22.9. Conclusions and future perspectives
		References
Section V: Industrial water remediation processes: Current trends and scale-up challenges
	Chapter 23: Introduction of water remediation processes
		23.1. Introduction
		23.2. Physical methods of wastewater remediation
			23.2.1. Screens
			23.2.2. Grit chambers
			23.2.3. Aeration
			23.2.4. Sedimentation (clarification)
			23.2.5. Filtration
				23.2.5.1. Sand filtration
				23.2.5.2. Multimedia filtration
			23.2.6. Distillation
		23.3. Physicochemical water treatment processes
			23.3.1. Precipitation and coagulation
			23.3.2. Adsorption
		23.4. Chemical remediation
			23.4.1. Chemical disinfection
				23.4.1.1. Chlorination
				23.4.1.2. Iodination
				23.4.1.3. Ozonation
				23.4.1.4. Hydrogen peroxide
			23.4.2. Neutralization
			23.4.3. Ion exchange
		23.5. Biological remediation/treatment
			23.5.1. Suspended growth process
				23.5.1.1. Activated sludge process
			23.5.2. Attached growth (biofilm) processes
				23.5.2.1. Rotating bioreactor contactor
			23.5.3. Combined processes
		23.6. Advanced/novel water remediation processes
			23.6.1. Membrane technology
			23.6.2. Electrodialysis
			23.6.3. Electrocoagulation
		23.7. Advanced oxidation processes
			23.7.1. Chemical AOPs
				23.7.1.1. Fenton processes
				23.7.1.2. O3/H2O2 treatment (peroxonation)
			23.7.2. Photochemical advanced oxidation processes
				23.7.2.1. H2O2 photolysis (H2O2/UV)
				23.7.2.2. O3 photolysis (O3/UV)
				23.7.2.3. Photo-Fenton reaction (H2O2/Fe2+/UV)
				23.7.2.4. Photocatalysis
			23.7.3. Sonochemical advanced oxidation processes
			23.7.4. Electrochemical advanced oxidation processes
		23.8. Nanomaterial for wastewater remediation
			23.8.1. Biogenic metal nanoparticles
		23.9. Path forward
		23.10. Conclusion
		References
	Chapter 24: Nanocomposite photocatalysts-based wastewater treatment
		24.1. Introduction
		24.2. Types of nanocomposites and their synthesis
		24.3. Advanced oxidation processes for wastewater treatment
		24.4. Governing mechanism of photocatalysis
		24.5. Different nanocomposites used as photocatalysts for wastewater treatment
			24.5.1. Metal-doped nanocomposites
			24.5.2. Nonmetal-doped nanocomposites
			24.5.3. Binary metal oxides
			24.5.4. Metal sulfides
			24.5.5. Polymer-based nanocomposites
			24.5.6. Graphene-based nanocomposites
			24.5.7. Clay-based nanocomposites
		24.6. Factors affecting the wastewater treatment using photocatalysis
			24.6.1. Synthesis of photocatalysts
			24.6.2. Catalyst loading
			24.6.3. pH of the solution
			24.6.4. Characteristics of the nanocomposite photocatalysts
			24.6.5. Reaction temperature
			24.6.6. Concentration of pollutants
			24.6.7. Effect of type of light and intensity
			24.6.8. Irradiation time
		24.7. Recent trends in types of photocatalytic reactors
			24.7.1. Photocatalytic membrane reactors
			24.7.2. Microreactors and microfluidic reactors
			24.7.3. Hybrid photoreactors
		24.8. Challenges
		24.9. Conclusions
		References
	Chapter 25: Nanomaterial-based advanced oxidation processes for degradation of waste pollutants
		25.1. Introduction
		25.2. Advanced oxidation processes
			25.2.1. Supercritical water oxidation
			25.2.2. Photocatalysis
				25.2.2.1. Mechanism of photocatalysis
				25.2.2.2. Modification of TiO2
			25.2.3. Metal oxide-containing nanoparticles
			25.2.4. Carbon-based nanoparticles
			25.2.5. Ceramics-based nanoparticles
			25.2.6. Polymer nanoparticles
		25.3. Individual AOPs involving nanomaterials
			25.3.1. Degradation of organic pollutants using different nanomaterials as photocatalysts
		25.4. Hybrid AOPs
			25.4.1. Ultrasound-assisted photocatalytic degradation of organic pollutants
		25.5. Nonphotochemical AOPs
			25.5.1. Sonolysis
			25.5.2. Ozonation
			25.5.3. Fenton process
			25.5.4. Persulfate oxidation process
		25.6. Factors affecting on AOP performance
		25.7. Conclusions, challenges, and future directions
		References
	Chapter 26: Electro-photocatalytic degradation processes for dye/colored wastewater treatment
		26.1. Introduction
		26.2. Mechanisms of electro-photocatalysis
		26.3. Experimental assembly in electro-photocatalysis
		26.4. Effect of reaction conditions
			26.4.1. Effect of applied cell voltage
			26.4.2. Effect of photoanodic materials
			26.4.3. Effect of photon source and light intensity
		26.5. Scope for future work
		References
	Chapter 27: Fenton with zero-valent iron nanoparticles (nZVI) processes: Role of nanomaterials
		27.1. Introduction
		27.2. Synthesis methods for zero-valent iron nanoparticles
			27.2.1. Synthesis of nZVI using chemical methods
			27.2.2. Sonochemical synthesis of nZVI
			27.2.3. Biological synthesis of nZVI
		27.3. Influences of process parameters on synthesis of nZVI
			27.3.1. Effect of initial Fe3+ concentration for the ZVI particle size
			27.3.2. Effect of chemical reducing agent on the ZVI particle size
			27.3.3. Effect of stabilizer concentration on the ZVI particle size
			27.3.4. Effect of temperature for controlling the particle size of nZVI
			27.3.5. Influence of reaction pH on formation of nZVI and particle size
		27.4. Reaction mechanism and catalytic activity of nZVI for treatment of wastewater
		27.5. Catalytic activity of nZVI for wastewater treatment
		27.6. Future perspective and new directions
		References
	Chapter 28: Nanocomposite adsorbent-based wastewater treatment processes: Special emphasis on surface-engineered iron oxi ...
		28.1. Introduction
		28.2. Different strategies for synthesis of iron oxide hybrid adsorbents
		28.3. Surface-engineered magnetic nanohybrids
			28.3.1. Iron oxide functional groups for heavy metal removal
			28.3.2. Iron-bimetal oxide NPs for heavy metal removal
			28.3.3. Iron oxide-metal oxide nanoparticles for heavy metal removal
			28.3.4. Iron oxide-polymer for heavy metal removal
			28.3.5. Iron oxide-carbon nanotubes for heavy metal removal
			28.3.6. Iron oxide-graphene for heavy metal removal
			28.3.7. Iron oxide-biomaterial-based nanoparticles for heavy metal removal
		28.4. Current trends and scale-up challenges
		28.5. Conclusions
		References
	Chapter 29: Preparation of novel adsorbent (marble hydroxyapatite) from waste marble slurry for ground water treatment to ...
		29.1. Introduction
		29.2. Materials and methods
			29.2.1. Materials
			29.2.2. Preparation of calcium nitrate using MWP
			29.2.3. Synthesis of MA-Hap
				29.2.3.1. Synthesis of MA-Hap using CM
				29.2.3.2. Synthesis of MA-Hap using USM
			29.2.4. Reaction scheme
			29.2.5. Characterization of MA-Hap
			29.2.6. Adsorption experiments
		29.3. Results and discussion
			29.3.1. Synthesis reaction and yield
			29.3.2. Characterization of MA-Hap
				29.3.2.1. XRD analysis of unreacted MWP
				29.3.2.2. FTIR analysis of MA-Hap
				29.3.2.3. XRD analysis of MA-Hap CM
				29.3.2.4. XRD analysis of MA-Hap 650 USM
				29.3.2.5. Comparative XRD analysis of MA-Hap 650 CM and MA-Hap 650 USM
				29.3.2.6. SEM analysis
				29.3.2.7. TEM/EDS analysis
				29.3.2.8. TGA/DTA analysis
				29.3.2.9. Brunauer-Emmett-Teller surface area analysis
			29.3.3. Batch defluoridation studies
				29.3.3.1. Effect of adsorbent dosage
				29.3.3.2. Effect of contact time
				29.3.3.3. Effect of varying pH
				29.3.3.4. Effect of other co-ions
			29.3.4. Adsorption equilibrium isotherms
			29.3.5. Kinetics of adsorption
			29.3.6. Water quality parameters and regeneration
			29.3.7. Energy efficacy of the MA-Hap synthesis methods
			29.3.8. Column studies using MA-Hap pellets
		29.4. Conclusions
		Appendix
		References
	Chapter 30: Nanocomposite/nanoparticle in membrane-based separation for water remediation: Case study
		30.1. Introduction
		30.2. Nanostructures
			30.2.1. Carbon nanomaterials
				30.2.1.1. Graphene oxide
				30.2.1.2. Carbon nanotube
			30.2.2. Metal organic frameworks
				30.2.2.1. ZIFs
				30.2.2.2. UiO-66
				30.2.2.3. MIL
				30.2.2.4. Other MOFs
			30.2.3. Zeolites
			30.2.4. Metal oxides nanoparticles
		30.3. Challenges and future prospects
		References
	Chapter 31: The process for the removal of micropollutants using nanomaterials
		31.1. Introduction
		31.2. Types of MPs
		31.3. Various methods applied for the treatment of MPs
			31.3.1. Conventional methods
			31.3.2. Advanced methods using nanomaterials
		31.4. Photocatalytic process using nanomaterials
			31.4.1. Nanomaterials applied as a photocatalyst
				31.4.1.1. Titanium dioxide based nanophotocatalyst
				31.4.1.2. Graphene-supported nanophotocatalyst
				31.4.1.3. Zinc oxides-based nanophotocatalyst
				31.4.1.4. Cerium oxide-based nanophotocatalyst
				31.4.1.5. Silver-based nanophotocatalysts
			31.4.2. Factors influencing the photocatalysis process
				31.4.2.1. Loading of the nanophotocatalyst
				31.4.2.2. pH of the solution
				31.4.2.3. Irradiation source
				31.4.2.4. Reaction temperature
				31.4.2.5. Initial concentration of micropollutant
		31.5. Adsorption process using nanomaterials
			31.5.1. Nanomaterials applied as an adsorbent
				31.5.1.1. Metal oxide-based nanoadsorbent
				31.5.1.2. Carbon-based nanoadsorbents
			31.5.2. Factors affecting on adsorption
				31.5.2.1. pH of solution
				31.5.2.2. Ionic strength
				31.5.2.3. Agitation time and dosage of adsorbents
				31.5.2.4. Initial concentration of micropollutant
				31.5.2.5. Temperature of the solution
			31.5.3. Adsorption kinetics
			31.5.4. Adsorption isotherm or adsorption equilibrium
		31.6. Membrane separation process using nanomaterials
			31.6.1. Nanofibrous membranes
			31.6.2. Nanocomposite membranes
				31.6.2.1. Metal- and metal oxide-based nanocomposite membranes
					Iron-based nanocomposite membranes
					Titanium-based nanocomposites membrane
					Silica-based nanocomposites membrane
					Alumina-based nanocomposites membrane
					Zinc oxide-based nanocomposites membrane
				31.6.2.2. Carbon material-based nanocomposite membranes
					Graphene-based nanocomposites membrane
					CNT-based nanocomposites membrane
		31.7. Reactors applied for the treatment of MP using nanomaterials
			31.7.1. The annular reactor
			31.7.2. Spinning disc reactor
			31.7.3. Optical fiber photo reactor
			31.7.4. Ultraviolet light emitting diode-based reactor
			31.7.5. Membrane photoreactor/photocatalytic membrane reactors
			31.7.6. Microreactors
		31.8. Nanomaterials applied at large-scale operation and associated challenges
		31.9. Conclusion and a way forward
		References
	Chapter 32: Antimicrobial activities of nanomaterials in wastewater treatment: A case study of graphene-based nanomaterials
		32.1. The structure and properties of graphene-based nanomaterials
		32.2. Mechanisms of antibacterial action of graphene nanomaterials
			32.2.1. Physical/mechanical destruction
			32.2.2. Oxidative stress
			32.2.3. Photothermal effect
			32.2.4. Other antibacterial effects
		32.3. Water treatment with graphene-based nanomaterials
			32.3.1. Filtration
			32.3.2. Adsorption
			32.3.3. Photocatalysis and electrode deposition/degradation
		32.4. Antimicrobial action of graphene-based nanomaterials in wastewater treatment, synthesis, efficiency, and perspectiv ...
			32.4.1. Cost analysis
		32.5. Conclusions
		Acknowledgment
		Dedication
		References
	Chapter 33: Potential of nano biosurfactants as an ecofriendly green technology for bioremediation
		33.1. Introduction
		33.2. Use of biosurfactants as potential bioremediators
			33.2.1. Biosurfactants as the molecule for present and future applications
			33.2.2. Microorganisms producing biosurfactants
			33.2.3. Diverse habitats of biosurfactants
			33.2.4. Mechanism of action of the biosurfactant
		33.3. Recent trends for using nanoscale material as agents for bioremediation
		33.4. Nano biosurfactants as source of bioremediation
		33.5. Conclusions and future perspective
		References
	Chapter 34: Potential risk and safety concerns of industrial nanomaterials in environmental management
		34.1. Introduction
		34.2. Health risk
			34.2.1. Ingestion
			34.2.2. Dermal
			34.2.3. Inhalation
		34.3. Toxicological impact
			34.3.1. Chemical composition
			34.3.2. Particle size
			34.3.3. Surface area and reactivity
			34.3.4. Surface treatments on particles, particularly for engineered nanoparticulates
			34.3.5. Degree of agglomeration
			34.3.6. Particle shape and/or electrostatic attraction potential
		34.4. Environmental impact
			34.4.1. Release during manufacturing
			34.4.2. Release in use
			34.4.3. Release in disposal
		34.5. Risk and safety associated for using INMs
			34.5.1. Associated risks
			34.5.2. Food industry
			34.5.3. Agri-food industry
			34.5.4. Automobile industry
			34.5.5. Aerospace industry
		34.6. Design of an ideal nanomaterial
		34.7. Conclusion
		References
	Chapter 35: A novel SnO2/polypyrrole/SnO2 nanocomposite modified anode with improved performance in benthic microbial fue ...
		35.1. Introduction
		35.2. Experimental work
			35.2.1. Acid-treatment of the electrode surface
			35.2.2. SnO2 nanoparticles synthesis
			35.2.3. Preparation of nanocomposites of SnO2/PPy
			35.2.4. Preparation of modified anodes
			35.2.5. Construction of BMFC reactors
			35.2.6. Physical and electrochemical characterization
		35.3. Results and discussion
			35.3.1. Surface characterization of modified anode
				35.3.1.1. Scanning electron microscopy
				35.3.1.2. Fourier-transform infrared spectroscopy
				35.3.1.3. Wettability of modified anode
			35.3.2. Electrochemical analyses of the composite anode
				35.3.2.1. Cyclic voltammogram
				35.3.2.2. Kinetics of the composite anode
				35.3.2.3. Electrochemical impedance spectroscopy
			35.3.3. Working of reactors containing different anodes
				35.3.3.1. Physicochemical properties
				35.3.3.2. Open circuit potential
				35.3.3.3. Power density and polarization curves
		35.4. Conclusion
		Acknowledgments
		Declarations of interest
		References
	Chapter 36: Visible light photocatalysis: Case study (process)
		36.1. Introduction
		36.2. Visible light photocatalytic processes for wastewater treatment
			36.2.1. Heterogeneous photocatalysis
			36.2.2. Homogenous photocatalysis
			36.2.3. Hybrid processes
				36.2.3.1. Case-1: Photo-Fenton process
				36.2.3.2. Case-2: Sonophotocatalysis
				36.2.3.3. Case-3: Photocatalytic membrane filtration
				36.2.3.4. Case-4: Photocatalytic ozonation process
		36.3. Current trends and scale-up challenges
		36.4. Conclusions
		Acknowledgments
		References
	Chapter 37: Nanomaterials for wastewater treatment: Concluding remarks
		37.1. Introduction
		37.2. Nanomaterials and their properties for wastewater treatment
			37.2.1. Zero-valent nanomaterials
			37.2.2. Metal oxide nanomaterials
			37.2.3. Luminescent and Ln3+-doped oxide nanomaterials
			37.2.4. Nanozeolites
			37.2.5. Carbon/graphene-supported nanocomposites
			37.2.6. Metal organic frameworks nanocomposites
			37.2.7. Nanocomposite membranes/nanocomposite photocatalytic membranes
		37.3. Current status and challenges of use of nanomaterial-based processes
			37.3.1. Photocatalytic nanomaterials-based processes
			37.3.2. Adsorbent nanomaterials-based processes
			37.3.3. Nanocomposite membranes-based processes
			37.3.4. Nanomaterial-based photocatalytic membrane-based processes
			37.3.5. Nanomaterials-based advanced oxidation processes
			37.3.6. Nanomaterial-based electro-oxidation processes
			37.3.7. Nanomaterials-based processes for removal for micropollutants
		37.4. Challenges for nanomaterial-based processes, potential risk, and safety concerns
		37.5. Concluding remarks
		References
Index
Back Cover




نظرات کاربران