دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Bharat A. Bhanvase, Shirish Hari Sonawane, Vijay B. Pawade, Aniruddha B. Pandit سری: Micro & Nano Technologies Series ISBN (شابک) : 0128214961, 9780128214961 ناشر: Elsevier سال نشر: 2021 تعداد صفحات: 700 [1218] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 116 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای نانومواد برای تصفیه فاضلاب: مبانی و مقیاسبندی مسائل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هندبوک نانومواد برای تصفیه فاضلاب: مبانی و مسائل مربوط به مقیاس بندی، پوششی از نانومواد مورد استفاده برای تصفیه فاضلاب، پوشش مواد نانوکامپوزیت فوتوکاتالیستی، نانومواد مورد استفاده به عنوان جاذب، فرآیندهای اصلاح آب، و وضعیت فعلی و چالش های آنها را ارائه می دهد. این کتاب کاربردهای عمده نانومواد برای کاتالیز و جذب موثر را بررسی می کند، همچنین اطلاعات عمیقی در مورد خواص و کاربرد نانومواد پیشرفته جدید برای فرآیندهای تصفیه فاضلاب ارائه می دهد. این یک منبع مرجع مهم برای محققانی است که نیاز به حل مشکلات اساسی و پیشرفته مربوط به استفاده از نانومواد برای توسعه فرآیندها و فناوریهای تصفیه فاضلاب دارند. از آنجایی که نانوتکنولوژی پتانسیل بهبود قابل ملاحظه فرآیندهای تصفیه آب و فاضلاب را دارد، روشهای سنتز و خواص فیزیکوشیمیایی نانومواد و نانوذرات فلزات نجیب عملکرد و مکانیسمهای آنها را برای تصفیه آلایندههای مختلف کارآمد میسازد. خواص نانومواد رایج مورد استفاده برای تصفیه فاضلاب را توضیح میدهد. تکنیکهای اصلی سنتز و پردازش در مقیاس نانو را برای تصفیه فاضلاب شرح میدهد. چالشهای عمده برای استفاده از نانومواد در مقیاس انبوه برای تصفیه فاضلاب را ارزیابی میکند.
Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues provides coverage of the nanomaterials used for wastewater treatment, covering photocatalytic nanocomposite materials, nanomaterials used as adsorbents, water remediation processes, and their current status and challenges. The book explores the major applications of nanomaterials for effective catalysis and adsorption, also providing in-depth information on the properties and application of new advanced nanomaterials for wastewater treatment processes. This is an important reference source for researchers who need to solve basic and advanced problems relating to the use of nanomaterials for the development of wastewater treatment processes and technologies. As nanotechnology has the potential to substantially improve current water and wastewater treatment processes, the synthesis methods and physiochemical properties of nanomaterials and noble metal nanoparticles make their performance and mechanisms efficient for the treatment of various pollutants. Explains the properties of the most commonly used nanomaterials used for wastewater treatment Describes the major nanoscale synthesis and processing techniques for wastewater treatment Assesses the major challenges for using nanomaterials on a mass scale for wastewater treatment
Front Cover Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues Copyright Contents Contributors Preface Section I: Introduction to nanomaterials for wastewater treatment: Fundamentals Chapter 1: Introduction to nanomaterials for wastewater treatment 1.1. Introduction 1.1.1. Catalyst for organic component degradation: Nanocatalyst 1.1.2. Photocatalytic effect due to nanoscale: Bandgap 1.1.3. Disinfection using nanomaterials 1.1.4. Nanomaterials for sensing 1.2. Nanomaterials as adsorbents for wastewater treatment 1.2.1. Carbon nanotubes (CNTs) 1.2.2. Graphene nanomaterials 1.2.3. Metal and metal oxides 1.2.4. Magnetic nanoparticles 1.3. Metal oxide nanoparticles as photocatalyst 1.4. Nanocomposites for wastewater treatment 1.4.1. Bionanocomposites 1.4.2. Nanocomposites based on inorganic support 1.4.3. Nanocomposite hydrogels 1.5. Membrane-based technology 1.5.1. Nanocomposite membranes 1.6. Challenges and future direction References Chapter 2: Low-dimensional nanomaterials: Syntheses, physicochemical properties, and their role in wastewater treatment 2.1. Introduction 2.2. Classification of nanomaterials 2.2.1. Semiconducting nanomaterials 2.2.2. Metal oxide nanomaterials 2.2.3. Carbon-based nanomaterials 2.3. Synthesis of low-dimensional nanomaterials 2.3.1. Synthesis of 0D nanomaterials (II-VI and III-V quantum dots) 2.3.1.1. The method of controlled precipitation 2.3.1.2. Organometallic synthesis of II-VI and III-V semiconductor nanoparticles 2.3.2. Synthesis of 1D and 2D nanomaterials 2.3.3. Synthesis of carbon-based nanomaterials 2.3.4. Structure and morphology of II-VI and III-V semiconductor nanomaterials 2.4. Physicochemical properties 2.4.1. Optical properties of 0D of II-VI and III-V nanomaterials 2.4.1.1. Absorption spectra 2.4.1.2. Photoluminescent spectra 2.4.1.3. 3D quantum confinement 2.4.2. Optical properties of 1D and 2D nanomaterials 2.5. Low-dimensional nanomaterials in wastewater treatment 2.6. Conclusion Acknowledgments References Chapter 3: Potential risk and safety concern of nanomaterials used for wastewater treatment 3.1. Introduction 3.2. Synthesis of nanoparticles, chemicals involved and their potential safety concern 3.2.1. Synthesis of zinc oxide nanoparticles 3.2.2. Synthesis of silver nanoparticles 3.2.3. Carbon nanotube synthesis 3.2.4. Iron oxide nanoparticle synthesis 3.2.5. Synthesis of TiO2 nanoparticles 3.2.6. Other materials and metal oxides 3.3. Potential safety concerns of nanomaterials to flora and fauna 3.3.1. Zinc oxide (ZnO) nanoparticles 3.3.2. Silver nanoparticles 3.3.3. Carbon nanotubes and carbon-based nanomaterials/nanoparticles 3.3.4. Iron oxide and magnetic nanoparticles 3.3.5. Titanium dioxide (TiO2) nanoparticles 3.4. Conclusion References Chapter 4: Advanced technologies for wastewater treatment: New trends 4.1. Introduction 4.2. Advanced oxidation processes 4.2.1. Hydrodynamic cavitation 4.2.2. Sonolysis/acoustic cavitation 4.2.3. Photocatalysis 4.2.4. Fenton process 4.3. Hybrid AOP's involving nanocatalyst 4.3.1. Heterogeneous Fenton process 4.3.2. Heterogeneous photo-Fenton process 4.3.3. Sono photocatalytic process 4.3.4. Sono-Fenton process 4.3.5. Sono-photo-Fenton process 4.3.6. Photocatalytic oxidation with hydrodynamic cavitation 4.4. Conclusions References Section II: Photocatalytic nanocomposite materials: Preparation and applications Chapter 5: Introduction, basic principles, mechanism, and challenges of photocatalysis 5.1. Introduction 5.2. Basic principles and mechanism of photocatalysis 5.3. Source of water pollution, water treatment methods, and role of nanomaterials in wastewater treatment 5.3.1. Sources of water pollution 5.3.2. Water treatment methods 5.3.3. Role of nanomaterials in water treatment by photocatalysis 5.4. Overview on photocatalytic materials and factors affecting photocatalysis 5.4.1. Photocatalytic materials 5.4.2. Factor affecting photocatalysis 5.5. Challenges of photocatalysis in wastewater treatment 5.6. Summary References Chapter 6: Doped-TiO2 and doped-mixed metal oxide-based nanocomposite for photocatalysis 6.1. Introduction 6.2. Mechanism of TiO2 photocatalysis 6.2.1. Generation of charge carrier species and their recombination 6.2.2. Adsorption of chemicals to TiO2 followed by their redox pathways 6.2.3. Radical attack on organics 6.3. Photoactivity of TiO2 polymorphs 6.4. Advancements in TiO2 photocatalysis for advanced oxidation technology 6.4.1. Surface modifications of TiO2 6.4.1.1. Metal deposition 6.4.1.2. Surface adsorbates 6.4.1.3. Surface charge modification 6.4.1.4. Dye anchoring 6.4.2. Photocatalyst modification and doping 6.4.3. Photocatalytic membranes 6.4.3.1. TiO2 polymer membranes 6.4.3.2. TiO2 ceramic membranes 6.4.3.3. Pure TiO2 membranes 6.4.4. Application of membranes 6.5. Photochemical reactors 6.5.1. Immersion well 6.5.2. Thin film 6.5.3. Annular 6.5.4. Multilamp 6.6. Combination/coupling with other (hybrid) treatment technologies 6.7. Challenges and issues for TiO2 photo-catalysis for water treatment 6.8. Conclusion and future prospectus References Chapter 7: New graphene-based nanocomposite for photocatalysis 7.1. Introduction 7.2. Graphene and its derivatives 7.2.1. Properties of graphene and its derivatives 7.2.2. Preparation methods of graphene and its derivatives 7.3. Graphene and its derivative-based photocatalyst 7.3.1. Synthesis of graphene and its derivatives based binary nanocomposites 7.3.2. Synthesis of graphene and its derivative-based ternary nanocomposites 7.4. Characterization of graphene and its derivatives 7.5. Photocatalytic applications 7.5.1. Photocatalytic study of graphene and its derivatives-based binary nanocomposites 7.5.2. Photocatalytic study of graphene and its derivatives-based ternary nanocomposites 7.6. Mechanism of photocatalytic degradation 7.7. Conclusion and future prospects References Chapter 8: Luminescence nanomaterials for photocatalysis 8.1. Introduction-Basic principal of phosphor for photocatalysis 8.2. Mechanism and challenges of luminescence materials in photocatalysis 8.3. Rare-earth-doped inorganic phosphor materials for photocatalysis 8.3.1. Downconversion phosphors 8.3.2. Upconversion phosphors 8.3.3. Long-lasting phosphors 8.4. Nanophosphor for photocatalysis 8.4.1. Oxide-based nanophosphors 8.4.1.1. TiO2 nanophosphors 8.4.1.2. Bismuth molybdate (Bi2MoO6) 8.4.1.3. Zinc oxide (ZnO) 8.4.2. Sulfide-based phosphors 8.4.3. Plasmonic-metal nanoparticles 8.5. Synthesis of nanophosphors 8.5.1. Solid-sate reaction methods 8.5.2. Combustion method 8.5.3. Hydrothermal method 8.5.4. Sol-gel method 8.5.5. Co-precipitation method 8.5.6. Ball milling method 8.6. Application of photocatalysis in water purification 8.7. Conclusion and future perspectives of luminescence phosphor-based photocatalyst 8.8. Challenges and issues References Chapter 9: Magnetic nanomaterials-based photocatalyst for wastewater treatment 9.1. Introduction 9.2. Source of water pollution and type of pollutants 9.2.1. Agricultural waste 9.2.2. Pharmaceutical waste 9.2.3. Industrial waste 9.2.4. Plastic waste 9.3. Types of water treatment techniques 9.3.1. Primary treatment 9.3.1.1. Screening, centrifugal separation, and filtration 9.3.1.2. Gravity separation and sedimentation 9.3.1.3. Coagulation and flocculation 9.3.2. Secondary treatment 9.3.2.1. Aerobic process 9.3.2.2. Anaerobic process 9.3.3. Tertiary treatment techniques 9.3.3.1. Evaporation, crystallization, and distillation 9.3.3.2. Membrane processing 9.3.3.3. Adsorption 9.3.3.4. Advance oxidation method 9.4. Case study of wastewater treatment using magnetic nanoparticles 9.4.1. Magnetic nanoparticles as adsorbents 9.4.2. Photocatalysis decontamination of water using magnetic nanoparticles 9.5. Limitations of magnetic nanomaterials 9.6. Future prospects and overview References Chapter 10: Nanomaterials for water splitting and hydrogen generation 10.1. Introduction 10.2. Developing photocatalysts for water splitting-Mechanistic aspects 10.3. Nanomaterials for water splitting 10.3.1. Metal oxides for water splitting 10.3.1.1. Titanium oxide (TiO2)-based nanomaterials for water splitting 10.3.1.2. Zinc oxide (ZnO)-based nanomaterials for water splitting 10.3.1.3. Layered Perovskite-based nanomaterials for water splitting 10.3.2. Metal sulfides for water splitting 10.3.2.1. Zinc sulfide (ZnS) and cadmium sulfide (CdS)-based nanomaterials for water splitting 10.3.2.2. Molybdenum sulfide (MoS2) and Tungsten sulfide (WS2)-based nanomaterials for water splitting 10.3.3. Metal organic frameworks for water splitting 10.3.4. Carbon-based nanomaterials for water splitting 10.3.4.1. Graphene-based nanomaterials for water splitting 10.3.4.2. Graphitic carbon nitride (g-C3N4)-based nanomaterials for water splitting 10.4. Sn3O4-ZnO nanoflowers for hydrogen generation under visible light-Case study 10.4.1. Preparation, characterization, and photoactivity of Sn3O4-ZnO nanoflowers 10.4.2. Results and discussion 10.5. Conclusions References Chapter 11: Nanomaterials for treatment of air pollutants 11.1. Introduction 11.2. Role of nanotechnology in various pollution treatment methods 11.3. Air pollutants 11.4. Nanotechnology in the treatment of air pollution 11.4.1. Treatment methods 11.4.1.1. Adsorption 11.4.1.2. Photocatalysis 11.4.1.3. Nanofiltration 11.4.2. Treatment of air pollutants 11.4.2.1. CO2 11.4.2.2. NOx 11.4.2.3. SOx 11.4.2.4. Volatile organic compounds 11.5. Pilot-scale studies 11.6. Challenges for the usage of nanomaterials for air pollution treatment 11.7. Summary and conclusion References Section III: Adsorbent nanomaterials: Preparation and applications Chapter 12: Nanomaterials for adsorption of pollutants and heavy metals: Introduction, mechanism, and challenges 12.1. Introduction 12.2. Major industry effluents 12.3. Parameters affecting adsorption 12.3.1. Contact time 12.3.2. Adsorbent dosage 12.3.3. Initial concentration 12.3.4. pH 12.3.5. Temperature 12.3.6. Ionic strength 12.3.7. Dissolved organic matters 12.4. Adsorbent characterization 12.4.1. Scanning electron microscopy (SEM) 12.4.2. Energy dispersive X-ray spectroscopy (EDS) 12.4.3. Transmission electron microscopy image 12.4.4. Fourier-transform infrared spectroscopy 12.4.5. Brunauer-Emmett-Teller (BET) surface area 12.4.6. X-ray powder diffraction 12.4.7. Thermogravimetric analysis 12.5. Adsorption mechanism 12.5.1. π-π interaction 12.5.2. Electrostatic interaction 12.5.3. Hydrophobic interaction 12.5.4. Hydrogen bonding 12.6. Challenges in adsorption 12.7. Conclusion and future prospective References Chapter 13: New graphene nanocomposites-based adsorbents 13.1. Introduction 13.2. Graphene 13.3. Graphene oxide 13.4. Reduced graphene oxide 13.5. Functionalization 13.5.1. Covalent interaction 13.5.2. Noncovalent interaction 13.6. Kinetic of adsorption 13.7. Graphene-based inorganic nanocomposites 13.7.1. Metal and metal-oxides graphene-based nanocomposites 13.7.2. Magnetic graphene-based nanocomposites 13.8. Graphene-based organic nanocomposites 13.8.1. Graphene-based organic polymer nanocomposites 13.8.1.1. Graphene/alginate nanocomposites 13.8.1.2. Graphene/chitosan nanocomposites 13.8.1.3. Graphene/cellulose nanocomposites 13.8.2. Graphene-based nanocomposites with multidentate organic chelating ligands and complexion agents 13.9. Challenges and future prospective References Chapter 14: Role of zeolite adsorbent in water treatment 14.1. Introduction 14.2. The nature of the zeolite 14.2.1. Composition and structure 14.2.2. Characterization of zeolites 14.3. Sorption of metal cations on zeolites and ion exchange 14.3.1. Possible sorption and ion-exchange mechanisms 14.3.1.1. Types of adsorption isotherms 14.3.1.2. Adsorption kinetics 14.3.1.3. Thermodynamics of adsorption processes 14.3.2. Factors affecting the sorption process 14.3.3. Principles of ion exchange on zeolites 14.3.4. Organic cation sorption on zeolites 14.4. Essential characteristics of zeolites and modification processes 14.4.1. Physicochemical properties of zeolites 14.4.2. Procedures for the modification of zeolites 14.4.2.1. Activation by chemical means 14.4.2.2. Thermal activation 14.4.2.3. Modification of surface-active substances 14.4.2.4. Modification by iron oxides 14.5. Application of zeolites in water treatment 14.5.1. Removal of metal ions from different wastewaters 14.5.2. Removal of the ammonium ion from water 14.5.3. Removal of radioactive elements from wastewater from nuclear power plants 14.6. Regulation of water hardness 14.7. Zeolite regeneration 14.8. Discussion 14.8.1. Sorption of metal cations on natural and synthetic zeolites 14.8.2. Sorption of metal cations on natural and modified zeolites 14.8.3. Sorption of ammonium and other ions on natural and modified zeolites 14.9. Conclusions and future perspectives Acknowledgments References Chapter 15: Metal-organic framework nanocomposite based adsorbents 15.1. Introduction 15.2. Properties of MOF 15.3. Types of MOF 15.4. Synthesis methods 15.5. Nanocomposite-based MOFs 15.6. Applications of nanocomposite-based MOFs 15.6.1. Application of nanocomposite-based MOFs in adsorption 15.6.1.1. Adsorption of gases 15.6.1.2. Adsorption of dyes 15.6.1.3. General adsorption 15.6.2. Applications of nanocomposite-based MOFs in industry 15.7. Challenges for MOFs 15.7.1. Challenges and issues for MOF as adsorbent for treatment of wastewater 15.8. Conclusion References Chapter 16: Advanced nanocomposite ion exchange materials for water purification 16.1. Introduction 16.2. Types of nanocomposite IEX material 16.3. Preparation of nanocomposite IEX material 16.3.1. Background 16.3.2. Nanomaterials used in IEX materials 16.3.2.1. Low-dimension carbon 16.3.2.2. Metal oxide 16.3.2.3. Silica 16.3.3. Processing methods 16.3.3.1. Graft copolymerization/crosslinking 16.3.3.2. Suspension polymerization 16.3.3.3. In situ polymerization 16.3.3.4. Blending 16.3.3.5. Sol-gel 16.4. Characterization 16.4.1. Fourier transform infrared spectroscopy 16.4.2. X-ray diffraction 16.4.3. Thermogravimetric analysis 16.4.4. Scanning electron microscope 16.5. Application of nanocomposite IEX materials for water purification 16.6. Scale-up conundrum 16.7. Conclusions References Section IV: Nanomaterials for membrane synthesis: Preparation and applications Chapter 17: Nanomaterials for membrane synthesis: Introduction, mechanism, and challenges for wastewater treatment 17.1. Introduction 17.2. Conventional membranes 17.2.1. Ceramic membranes 17.2.2. Polymeric membranes 17.3. Nanomaterial-based membranes 17.3.1. Inorganic nanoparticle-based membranes 17.3.2. Nanofiber-based membranes 17.3.3. Carbon-based membranes 17.4. Nanomaterial-based membrane synthesis techniques 17.4.1. Phase inversion method 17.4.1.1. Nonsolvent-induced phase separation technique (NIPS) 17.4.1.2. Self-assembled and nonsolvent-induced phase separation (SNIPS) 17.4.1.3. Thermally induced phase separation (TIPS) 17.4.2. Interfacial polymerization (IP) 17.4.3. Layer-by-layer (LBL) assembly 17.4.4. Stretching and sintering 17.4.5. Track etching and electrospinning 17.4.6. Three-dimensional printing (3D printing) 17.5. Challenges for wastewater treatment 17.5.1. Antifouling challenges 17.5.2. Antibacterial challenges 17.5.2.1. Silver nanoparticles 17.5.2.2. Titanium dioxide nanoparticles 17.5.2.3. Copper nanoparticles 17.5.2.4. Metal oxide-based nanoparticles 17.5.2.5. Carbon-based nanoparticles 17.5.3. Toxicity potential 17.5.3.1. Silver and silica nanoparticles 17.5.3.2. Carbon-based nanomaterials 17.5.3.3. Copper nanoparticles 17.6. Conclusions References Chapter 18: Carbon-based nanocomposite membranes for water purification 18.1. Introduction to nanomaterials 18.2. Carbon-based nanocomposite materials (CNCMs) (polymer/hybrid) 18.3. Development and synthesis of carbon-based nanocomposite material 18.3.1. Solution mixing 18.3.2. Chemical vapor deposition 18.3.3. In situ colloidal precipitation 18.3.4. Polymer grafting 18.3.5. In situ polymerization 18.3.6. Phase inversion 18.3.7. Spray-assisted layer-by-layer 18.4. Fabrications techniques and types of carbon-based nanocomposite membrane 18.4.1. Carbon nanotube (CNT) membranes 18.4.2. CNT-polymer composite (CNT mixed-matrix membranes) 18.5. Applications of carbon-based nanocomposite membrane for water purification 18.5.1. Removal of organic/inorganic pollutants 18.6. Conclusion References Chapter 19: Nanocomposite membranes for heavy metal removal 19.1. Introduction 19.2. Need of heavy metals removal 19.3. Role of nanomaterials in wastewater treatment 19.4. Role of nanomaterials in nanocomposite membranes 19.5. Nanomaterials used for heavy metals removal 19.6. Synthesis of nanocomposite membranes 19.6.1. Phase inversion method 19.6.2. Interfacial polymerization method 19.7. Membranes for removal of different heavy metals from wastewater 19.7.1. Lead 19.7.2. Cadmium 19.7.3. Chromium 19.7.4. Copper 19.7.5. Nickel 19.7.6. Arsenic 19.8. Comparison of nanocomposite membranes with conventional processes for heavy metal removal 19.9. Challenges in industries 19.10. Summary References Chapter 20: Polymer nanocomposite membranes for wastewater treatment 20.1. Introduction 20.1.1. Water scarcity 20.1.2. Wastewater and its contaminants 20.1.3. Membranes in wastewater treatment 20.2. Polymeric membranes 20.2.1. Polymers for membrane synthesis 20.2.2. Issue with polymeric membranes 20.2.2.1. Flux rejection trade-off 20.2.2.2. Fouling 20.2.3. Use of nanocomposite membranes as a solution 20.3. Mixed-matrix membranes 20.3.1. Hydrophilic and amphiphilic polymer (HP)-incorporated in mixed-matrix membrane 20.3.2. Inorganic nanomaterials (iNPs)-incorporated in mixed-matrix membrane 20.3.3. Metal-organic frameworks-incorporated mixed-matrix membrane 20.3.4. Carbon nanomaterials (CNs)-incorporated in mixed-matrix membrane 20.3.4.1. Graphene oxide-based membranes 20.3.4.2. GO-incorporated mixed-matrix membrane 20.3.4.3. Carbon nanotubes, fullerenes, and amorphous carbon-incorporated mixed-matrix membranes 20.4. Thin-film nanocomposite membrane 20.4.1. Inorganic nanomaterials (iNPs)-incorporated thin-film composite membrane 20.4.2. Bioinspired materials-incorporated thin film composite membrane 20.4.3. Metal-organic frameworks-incorporated thin-film composite membrane 20.4.4. Carbon nanomaterials-incorporated thin-film composite membrane 20.4.5. Thin-film nanocomposite membrane with nanoparticles in substrate 20.4.6. Chlorine stability of polyamide thin-film nanocomposite membrane 20.5. Surface-located nanoparticle membranes 20.5.1. Nanoporous graphene sheets 20.5.2. Graphene oxide surface-located membrane 20.5.3. Inorganic nanomaterials (iNPs) surface-located membranes 20.5.4. Metal-organic frameworks/covalent organic frameworks surface-located membrane 20.6. Perspective 20.7. Conclusion References Chapter 21: Responsive membranes for wastewater treatment 21.1. Introduction 21.2. Types of membranes 21.2.1. Isotropic (symmetric) membranes 21.2.2. Asymmetric (anisotropic) membranes 21.3. Membrane materials 21.4. Design and fabrication of responsive membrane 21.4.1. Preparation and processing of responsive materials 21.4.2. Functionalization by incubation in liquid 21.4.3. Functionalization by incorporation of responsive groups in base membrane 21.4.4. Functionalization by surface modification 21.4.4.1. Grafting-to 21.4.4.2. Grafting-from: Surface-initiated modification 21.5. Classification of stimulation approach and application in water treatment 21.5.1. Thermoresponsive membrane 21.5.2. pH/chemical-responsive membranes 21.5.3. Ionic strength/electrolyte/salt responsiveness 21.5.4. Electroresponsive membranes 21.5.5. Magnetoresponsive membranes 21.5.6. Photoresponsive membranes 21.6. Characteristics of stimuli-responsive membrane 21.6.1. Flexibility 21.6.2. Surface modification 21.7. Industrial applications 21.8. Conclusion References Chapter 22: Nanomaterial-based photocatalytic membrane for organic pollutants removal 22.1. Introduction 22.2. Photocatalytic membrane materials 22.2.1. Hybrid photocatalytic membrane 22.2.2. Porous photocatalytic membranes 22.2.3. Polymer-based photocatalytic membrane 22.2.4. Graphene-based photocatalytic membrane 22.2.5. Graphitic carbon nitride-based photocatalytic membrane 22.2.6. CNT-based photocatalytic membrane 22.3. Photocatalytic membrane fabrication 22.3.1. Sol-gel dip-coating 22.3.2. Vacuum filtration 22.3.3. Ultrasonication 22.3.4. Chemical vapor deposition and plasma-enhanced chemical vapor deposition 22.3.5. Phase inversion method 22.3.6. Immersion method 22.3.7. Spinning/electrospinning method 22.3.8. Solvent casting method 22.4. Applications of photocatalytic membrane for removal of organic pollutant 22.5. Types of photocatalytic membrane reactors and their configurations 22.6. Treatment of organic pollutants by photocatalytic membrane 22.7. Challenges of photocatalytic membrane-based processes 22.8. Scale-up of photocatalytic membrane-based processes 22.9. Conclusions and future perspectives References Section V: Industrial water remediation processes: Current trends and scale-up challenges Chapter 23: Introduction of water remediation processes 23.1. Introduction 23.2. Physical methods of wastewater remediation 23.2.1. Screens 23.2.2. Grit chambers 23.2.3. Aeration 23.2.4. Sedimentation (clarification) 23.2.5. Filtration 23.2.5.1. Sand filtration 23.2.5.2. Multimedia filtration 23.2.6. Distillation 23.3. Physicochemical water treatment processes 23.3.1. Precipitation and coagulation 23.3.2. Adsorption 23.4. Chemical remediation 23.4.1. Chemical disinfection 23.4.1.1. Chlorination 23.4.1.2. Iodination 23.4.1.3. Ozonation 23.4.1.4. Hydrogen peroxide 23.4.2. Neutralization 23.4.3. Ion exchange 23.5. Biological remediation/treatment 23.5.1. Suspended growth process 23.5.1.1. Activated sludge process 23.5.2. Attached growth (biofilm) processes 23.5.2.1. Rotating bioreactor contactor 23.5.3. Combined processes 23.6. Advanced/novel water remediation processes 23.6.1. Membrane technology 23.6.2. Electrodialysis 23.6.3. Electrocoagulation 23.7. Advanced oxidation processes 23.7.1. Chemical AOPs 23.7.1.1. Fenton processes 23.7.1.2. O3/H2O2 treatment (peroxonation) 23.7.2. Photochemical advanced oxidation processes 23.7.2.1. H2O2 photolysis (H2O2/UV) 23.7.2.2. O3 photolysis (O3/UV) 23.7.2.3. Photo-Fenton reaction (H2O2/Fe2+/UV) 23.7.2.4. Photocatalysis 23.7.3. Sonochemical advanced oxidation processes 23.7.4. Electrochemical advanced oxidation processes 23.8. Nanomaterial for wastewater remediation 23.8.1. Biogenic metal nanoparticles 23.9. Path forward 23.10. Conclusion References Chapter 24: Nanocomposite photocatalysts-based wastewater treatment 24.1. Introduction 24.2. Types of nanocomposites and their synthesis 24.3. Advanced oxidation processes for wastewater treatment 24.4. Governing mechanism of photocatalysis 24.5. Different nanocomposites used as photocatalysts for wastewater treatment 24.5.1. Metal-doped nanocomposites 24.5.2. Nonmetal-doped nanocomposites 24.5.3. Binary metal oxides 24.5.4. Metal sulfides 24.5.5. Polymer-based nanocomposites 24.5.6. Graphene-based nanocomposites 24.5.7. Clay-based nanocomposites 24.6. Factors affecting the wastewater treatment using photocatalysis 24.6.1. Synthesis of photocatalysts 24.6.2. Catalyst loading 24.6.3. pH of the solution 24.6.4. Characteristics of the nanocomposite photocatalysts 24.6.5. Reaction temperature 24.6.6. Concentration of pollutants 24.6.7. Effect of type of light and intensity 24.6.8. Irradiation time 24.7. Recent trends in types of photocatalytic reactors 24.7.1. Photocatalytic membrane reactors 24.7.2. Microreactors and microfluidic reactors 24.7.3. Hybrid photoreactors 24.8. Challenges 24.9. Conclusions References Chapter 25: Nanomaterial-based advanced oxidation processes for degradation of waste pollutants 25.1. Introduction 25.2. Advanced oxidation processes 25.2.1. Supercritical water oxidation 25.2.2. Photocatalysis 25.2.2.1. Mechanism of photocatalysis 25.2.2.2. Modification of TiO2 25.2.3. Metal oxide-containing nanoparticles 25.2.4. Carbon-based nanoparticles 25.2.5. Ceramics-based nanoparticles 25.2.6. Polymer nanoparticles 25.3. Individual AOPs involving nanomaterials 25.3.1. Degradation of organic pollutants using different nanomaterials as photocatalysts 25.4. Hybrid AOPs 25.4.1. Ultrasound-assisted photocatalytic degradation of organic pollutants 25.5. Nonphotochemical AOPs 25.5.1. Sonolysis 25.5.2. Ozonation 25.5.3. Fenton process 25.5.4. Persulfate oxidation process 25.6. Factors affecting on AOP performance 25.7. Conclusions, challenges, and future directions References Chapter 26: Electro-photocatalytic degradation processes for dye/colored wastewater treatment 26.1. Introduction 26.2. Mechanisms of electro-photocatalysis 26.3. Experimental assembly in electro-photocatalysis 26.4. Effect of reaction conditions 26.4.1. Effect of applied cell voltage 26.4.2. Effect of photoanodic materials 26.4.3. Effect of photon source and light intensity 26.5. Scope for future work References Chapter 27: Fenton with zero-valent iron nanoparticles (nZVI) processes: Role of nanomaterials 27.1. Introduction 27.2. Synthesis methods for zero-valent iron nanoparticles 27.2.1. Synthesis of nZVI using chemical methods 27.2.2. Sonochemical synthesis of nZVI 27.2.3. Biological synthesis of nZVI 27.3. Influences of process parameters on synthesis of nZVI 27.3.1. Effect of initial Fe3+ concentration for the ZVI particle size 27.3.2. Effect of chemical reducing agent on the ZVI particle size 27.3.3. Effect of stabilizer concentration on the ZVI particle size 27.3.4. Effect of temperature for controlling the particle size of nZVI 27.3.5. Influence of reaction pH on formation of nZVI and particle size 27.4. Reaction mechanism and catalytic activity of nZVI for treatment of wastewater 27.5. Catalytic activity of nZVI for wastewater treatment 27.6. Future perspective and new directions References Chapter 28: Nanocomposite adsorbent-based wastewater treatment processes: Special emphasis on surface-engineered iron oxi ... 28.1. Introduction 28.2. Different strategies for synthesis of iron oxide hybrid adsorbents 28.3. Surface-engineered magnetic nanohybrids 28.3.1. Iron oxide functional groups for heavy metal removal 28.3.2. Iron-bimetal oxide NPs for heavy metal removal 28.3.3. Iron oxide-metal oxide nanoparticles for heavy metal removal 28.3.4. Iron oxide-polymer for heavy metal removal 28.3.5. Iron oxide-carbon nanotubes for heavy metal removal 28.3.6. Iron oxide-graphene for heavy metal removal 28.3.7. Iron oxide-biomaterial-based nanoparticles for heavy metal removal 28.4. Current trends and scale-up challenges 28.5. Conclusions References Chapter 29: Preparation of novel adsorbent (marble hydroxyapatite) from waste marble slurry for ground water treatment to ... 29.1. Introduction 29.2. Materials and methods 29.2.1. Materials 29.2.2. Preparation of calcium nitrate using MWP 29.2.3. Synthesis of MA-Hap 29.2.3.1. Synthesis of MA-Hap using CM 29.2.3.2. Synthesis of MA-Hap using USM 29.2.4. Reaction scheme 29.2.5. Characterization of MA-Hap 29.2.6. Adsorption experiments 29.3. Results and discussion 29.3.1. Synthesis reaction and yield 29.3.2. Characterization of MA-Hap 29.3.2.1. XRD analysis of unreacted MWP 29.3.2.2. FTIR analysis of MA-Hap 29.3.2.3. XRD analysis of MA-Hap CM 29.3.2.4. XRD analysis of MA-Hap 650 USM 29.3.2.5. Comparative XRD analysis of MA-Hap 650 CM and MA-Hap 650 USM 29.3.2.6. SEM analysis 29.3.2.7. TEM/EDS analysis 29.3.2.8. TGA/DTA analysis 29.3.2.9. Brunauer-Emmett-Teller surface area analysis 29.3.3. Batch defluoridation studies 29.3.3.1. Effect of adsorbent dosage 29.3.3.2. Effect of contact time 29.3.3.3. Effect of varying pH 29.3.3.4. Effect of other co-ions 29.3.4. Adsorption equilibrium isotherms 29.3.5. Kinetics of adsorption 29.3.6. Water quality parameters and regeneration 29.3.7. Energy efficacy of the MA-Hap synthesis methods 29.3.8. Column studies using MA-Hap pellets 29.4. Conclusions Appendix References Chapter 30: Nanocomposite/nanoparticle in membrane-based separation for water remediation: Case study 30.1. Introduction 30.2. Nanostructures 30.2.1. Carbon nanomaterials 30.2.1.1. Graphene oxide 30.2.1.2. Carbon nanotube 30.2.2. Metal organic frameworks 30.2.2.1. ZIFs 30.2.2.2. UiO-66 30.2.2.3. MIL 30.2.2.4. Other MOFs 30.2.3. Zeolites 30.2.4. Metal oxides nanoparticles 30.3. Challenges and future prospects References Chapter 31: The process for the removal of micropollutants using nanomaterials 31.1. Introduction 31.2. Types of MPs 31.3. Various methods applied for the treatment of MPs 31.3.1. Conventional methods 31.3.2. Advanced methods using nanomaterials 31.4. Photocatalytic process using nanomaterials 31.4.1. Nanomaterials applied as a photocatalyst 31.4.1.1. Titanium dioxide based nanophotocatalyst 31.4.1.2. Graphene-supported nanophotocatalyst 31.4.1.3. Zinc oxides-based nanophotocatalyst 31.4.1.4. Cerium oxide-based nanophotocatalyst 31.4.1.5. Silver-based nanophotocatalysts 31.4.2. Factors influencing the photocatalysis process 31.4.2.1. Loading of the nanophotocatalyst 31.4.2.2. pH of the solution 31.4.2.3. Irradiation source 31.4.2.4. Reaction temperature 31.4.2.5. Initial concentration of micropollutant 31.5. Adsorption process using nanomaterials 31.5.1. Nanomaterials applied as an adsorbent 31.5.1.1. Metal oxide-based nanoadsorbent 31.5.1.2. Carbon-based nanoadsorbents 31.5.2. Factors affecting on adsorption 31.5.2.1. pH of solution 31.5.2.2. Ionic strength 31.5.2.3. Agitation time and dosage of adsorbents 31.5.2.4. Initial concentration of micropollutant 31.5.2.5. Temperature of the solution 31.5.3. Adsorption kinetics 31.5.4. Adsorption isotherm or adsorption equilibrium 31.6. Membrane separation process using nanomaterials 31.6.1. Nanofibrous membranes 31.6.2. Nanocomposite membranes 31.6.2.1. Metal- and metal oxide-based nanocomposite membranes Iron-based nanocomposite membranes Titanium-based nanocomposites membrane Silica-based nanocomposites membrane Alumina-based nanocomposites membrane Zinc oxide-based nanocomposites membrane 31.6.2.2. Carbon material-based nanocomposite membranes Graphene-based nanocomposites membrane CNT-based nanocomposites membrane 31.7. Reactors applied for the treatment of MP using nanomaterials 31.7.1. The annular reactor 31.7.2. Spinning disc reactor 31.7.3. Optical fiber photo reactor 31.7.4. Ultraviolet light emitting diode-based reactor 31.7.5. Membrane photoreactor/photocatalytic membrane reactors 31.7.6. Microreactors 31.8. Nanomaterials applied at large-scale operation and associated challenges 31.9. Conclusion and a way forward References Chapter 32: Antimicrobial activities of nanomaterials in wastewater treatment: A case study of graphene-based nanomaterials 32.1. The structure and properties of graphene-based nanomaterials 32.2. Mechanisms of antibacterial action of graphene nanomaterials 32.2.1. Physical/mechanical destruction 32.2.2. Oxidative stress 32.2.3. Photothermal effect 32.2.4. Other antibacterial effects 32.3. Water treatment with graphene-based nanomaterials 32.3.1. Filtration 32.3.2. Adsorption 32.3.3. Photocatalysis and electrode deposition/degradation 32.4. Antimicrobial action of graphene-based nanomaterials in wastewater treatment, synthesis, efficiency, and perspectiv ... 32.4.1. Cost analysis 32.5. Conclusions Acknowledgment Dedication References Chapter 33: Potential of nano biosurfactants as an ecofriendly green technology for bioremediation 33.1. Introduction 33.2. Use of biosurfactants as potential bioremediators 33.2.1. Biosurfactants as the molecule for present and future applications 33.2.2. Microorganisms producing biosurfactants 33.2.3. Diverse habitats of biosurfactants 33.2.4. Mechanism of action of the biosurfactant 33.3. Recent trends for using nanoscale material as agents for bioremediation 33.4. Nano biosurfactants as source of bioremediation 33.5. Conclusions and future perspective References Chapter 34: Potential risk and safety concerns of industrial nanomaterials in environmental management 34.1. Introduction 34.2. Health risk 34.2.1. Ingestion 34.2.2. Dermal 34.2.3. Inhalation 34.3. Toxicological impact 34.3.1. Chemical composition 34.3.2. Particle size 34.3.3. Surface area and reactivity 34.3.4. Surface treatments on particles, particularly for engineered nanoparticulates 34.3.5. Degree of agglomeration 34.3.6. Particle shape and/or electrostatic attraction potential 34.4. Environmental impact 34.4.1. Release during manufacturing 34.4.2. Release in use 34.4.3. Release in disposal 34.5. Risk and safety associated for using INMs 34.5.1. Associated risks 34.5.2. Food industry 34.5.3. Agri-food industry 34.5.4. Automobile industry 34.5.5. Aerospace industry 34.6. Design of an ideal nanomaterial 34.7. Conclusion References Chapter 35: A novel SnO2/polypyrrole/SnO2 nanocomposite modified anode with improved performance in benthic microbial fue ... 35.1. Introduction 35.2. Experimental work 35.2.1. Acid-treatment of the electrode surface 35.2.2. SnO2 nanoparticles synthesis 35.2.3. Preparation of nanocomposites of SnO2/PPy 35.2.4. Preparation of modified anodes 35.2.5. Construction of BMFC reactors 35.2.6. Physical and electrochemical characterization 35.3. Results and discussion 35.3.1. Surface characterization of modified anode 35.3.1.1. Scanning electron microscopy 35.3.1.2. Fourier-transform infrared spectroscopy 35.3.1.3. Wettability of modified anode 35.3.2. Electrochemical analyses of the composite anode 35.3.2.1. Cyclic voltammogram 35.3.2.2. Kinetics of the composite anode 35.3.2.3. Electrochemical impedance spectroscopy 35.3.3. Working of reactors containing different anodes 35.3.3.1. Physicochemical properties 35.3.3.2. Open circuit potential 35.3.3.3. Power density and polarization curves 35.4. Conclusion Acknowledgments Declarations of interest References Chapter 36: Visible light photocatalysis: Case study (process) 36.1. Introduction 36.2. Visible light photocatalytic processes for wastewater treatment 36.2.1. Heterogeneous photocatalysis 36.2.2. Homogenous photocatalysis 36.2.3. Hybrid processes 36.2.3.1. Case-1: Photo-Fenton process 36.2.3.2. Case-2: Sonophotocatalysis 36.2.3.3. Case-3: Photocatalytic membrane filtration 36.2.3.4. Case-4: Photocatalytic ozonation process 36.3. Current trends and scale-up challenges 36.4. Conclusions Acknowledgments References Chapter 37: Nanomaterials for wastewater treatment: Concluding remarks 37.1. Introduction 37.2. Nanomaterials and their properties for wastewater treatment 37.2.1. Zero-valent nanomaterials 37.2.2. Metal oxide nanomaterials 37.2.3. Luminescent and Ln3+-doped oxide nanomaterials 37.2.4. Nanozeolites 37.2.5. Carbon/graphene-supported nanocomposites 37.2.6. Metal organic frameworks nanocomposites 37.2.7. Nanocomposite membranes/nanocomposite photocatalytic membranes 37.3. Current status and challenges of use of nanomaterial-based processes 37.3.1. Photocatalytic nanomaterials-based processes 37.3.2. Adsorbent nanomaterials-based processes 37.3.3. Nanocomposite membranes-based processes 37.3.4. Nanomaterial-based photocatalytic membrane-based processes 37.3.5. Nanomaterials-based advanced oxidation processes 37.3.6. Nanomaterial-based electro-oxidation processes 37.3.7. Nanomaterials-based processes for removal for micropollutants 37.4. Challenges for nanomaterial-based processes, potential risk, and safety concerns 37.5. Concluding remarks References Index Back Cover