دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Moutushi Chatterjee and Ashis Kumar Chakraborty
سری: A Chapman & Hall Book
ISBN (شابک) : 2020946029, 9780429298349
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: [353]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب Handbook of Multivariate Process Capability Indices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای شاخص های قابلیت فرآیند چند متغیره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Contents Preface Acknowledgements Biography of First Author Biography of Second Author 1. Introduction 1.1. Concept of Process Capability Index 1.2. Process Capability Indices in Six Sigma, Lean Six and Design for Six Sigma (DFSS) 1.3. Concept of Multivariate Process Capability Index (MPCI) 1.4. Some Uses of Process Capability Indices 1.5. Some Applications of MPCIs 1.6. Overview of the Chapters Bibliography 2. Some Useful Concepts of Univariate and Multivariate Statistics 2.1. Introduction 2.2. Univariate Statistics 2.2.1. Normal Distribution 2.2.1.1. Properties of Normal Distribution 2.2.2. Radial Error Distribution 2.2.3. Folded Normal Distribution 2.2.4. Uniform Distribution 2.2.5. Log-Normal Distribution 2.2.6. Exponential Distribution 2.3. Estimation of Process Mean and Variance Using Control Chart 2.3.1. Estimation of Process Mean and Variance Based on X???? R Chart Information 2.3.2. Estimation of Process Mean and Variance Based on X???? S Chart Information 2.4. Some Bayesian Concepts 2.5. Multivariate Statistics 2.5.1. Multivariate Normal Distribution 2.5.2. Multivariate Folded Normal Distribution 2.6. Principal Component Analysis (PCA) 2.7. Delta Method Bibliography 3. Univariate Process Capability Indices 3.1. Introduction 3.2. Univariate Process Capability Indices for Symmetric Specication Limits 3.2.1. Unication of Univariate PCIs for Symmetric Specication Limits 3.3. Univariate Process Capability Indices for Asymmetric Specication Limits 3.3.1. Uni cation of Univariate PCIs for Asymmetric Specication Limits 3.4. Univariate Process Capability Indices for Unilateral (One-Sided) Specication Limits 3.4.1. Unication of Univariate PCIs for Unilateral Specication Limits 3.5. Univariate Process Capability Indices for Non-Normal Distributions 3.6. Univariate Process Capability Indices PNC 3.7. Univariate Process Capability Assessments Using Bayesian Approach 3.8. Concluding Remarks Bibliography 4. Bivariate Process Capability Indices (BPCIs) 4.1. Introduction 4.2. Bivariate Generalization of Univariate PCIs for Bilateral Specication Limits 4.3. Bivariate Generalization of Univariate PCIs for Unilateral Specication Limits 4.4. Bivariate PCIs for Circular Specication Region 4.5. Numerical Examples 4.5.1. Example 1 4.5.2. Example 2 4.6. Concluding Remarks Bibliography 5. Multivariate Process Capability Indices for Bilateral Specication Region Based on Principal Component Analysis (PCA) 5.1. Introduction 5.2. MPCIs Analogous to Univariate PCIs viz., Cp, Cpk, Cpm, and Cpmk 5.2.1. Probability-Based MPCI Based on First Few Principal Components 5.3. PCA-Based MPCIs with Unequal Weighting 5.4. PCA-Based MPCIs Similar to Taam et al.'s [12] Ratio-Based MPCIs 5.5. MPCIs Based on First Principal Component Only 5.6. Some Other PCA-Based MPCIs 5.7. A Real-Life Example 5.8. Conclusion Bibliography 6. Ratio-Based Multivariate Process Capability Indices for Symmetric Specification Region 6.1. Introduction 6.2. MPCIs Dened as Multivariate Analogue of Cp 6.3. MPCIs Dened as Multivariate Analogue of Cpk 6.4. MPCIs Dened as Multivariate Analogue of Cpm 6.5. CG(u; v) ???? A Super-structue of MPCIs 6.6. A Numerical Example 6.7. Concluding Remark Bibliography 7. Multivariate Process Capability Indices for Asymmetric Specification Region 7.1. Introduction 7.2. MPCIs Generalizing C 0p (u; v) for u = 0; 1 and v = 0; 1 ???? A Geometric Approach (Grau [11]) 7.3 Multivariate Analogue of C0p (u; v), for u = 0; 1 and v = 0; 1 ???? An Alternative Approach 7.3.1. Interrelationships between the Member Indices of CM(u; v) for u = 0; 1 and v = 0; 1 7.4. Threshold Value of CM(0; 0) 7.4.1. For Bivariate Case 7.4.2. For Multivariate Case 7.4.3. Plug-in Estimators of the Member Indices of CM(u; v) for u = 0; 1 and v = 0; 1 and Their Estimation Procedures 7.5. A Real-Life Example 7.6. Concluding Remark Bibliography 8. Multivariate Process Capability Indices for Unilateral Specification Region 8.1. Introduction 8.2. MPCI for Unilateral Specication Region Based on Proportion of Nonconformance 8.3. MPCI for Unilateral Specication Region Based on Principal Component Analysis 8.4. A Numerical Example 8.5. Concluding Remarks Bibliography 9. Multivariate Process Capability Indices Based on Proportion of Nonconformance 9.1. Introduction 9.2. MPCIs Based on Location-Scale Family of Distributions 9.3. Other MPCIs Based on Proportion of Conformance Bibliography 10. Multivariate Process Capability Indices for Quality Characteristics Having Nonnormal Statistical Distributions 10.1. Introduction 10.2. MPCIs for Nonnormal Data Using Principal Component Analysis 10.3. MPCIs for Multivariate Nonnormal Data Using Distance Approach 10.4. MPCIs Using Multivariate g and h Distribution 10.5. MPCIs for Multivariate Nonnormal Processes Using Skewness Reduction Approach 10.6. Nonparametric MPCIs for Nonnormal Processes 10.7. Numerical Example 10.8. Concluding Remark Bibliography 11. Multivariate Process Capability Indices Based on Bayesian Approach 11.1. Introduction 11.2. Cb(D) : A Bayesian MPCI Analogous to Cpk 11.3. Vector Valued Multivariate Analogues of Cp and Cpk from Bayesian Perspective 11.4. A Numerical Example 11.5. Concluding Remark Bibliography 12. Multivariate Process Capability Indices for Autocorrelated Data 12.1. Introduction 12.2. MPCIs Analogous to Cp for Autocorrelated Processes 12.3. MPCIs Analogous to Cpm for Autocorrelated Processes 12.4. MPCIs for Autocorrelated Processes Having Unilateral Specification Region 12.5. Data Analysis 12.6. Concluding Remarks Bibliography 13. Multivariate Process Capability Vectors 13.1. Introduction 13.2. Multivariate Process Capability Vectors for Bilateral Specication Region ???? A Modication of Traditional MPCIs 13.3. Multivariate Process Capability Vector Based on One-Sided Models 13.4. Multivariate Process Incapability Vector 13.5. An MPCV for Both the Unilateral and Bilateral Specication Regions 13.6. A Numerical Example 13.7. Concluding Remark Bibliography 14. MPCIs Defined by Other Miscellaneous Approaches 14.1. Introduction 14.2. Priority-Based Multivariate Process Capability Indices (MPCIs) 14.3. MPCIs Based on Concepts of Linear Algebra 14.4. Viability Index 14.5. MPCIs Defined on Process-Oriented Basis 14.6. Multivariate Process Performance Analysis with Special Emphasis on Accuracy and Precision 14.7. Multivariate Process Capability Analysis Using Fuzzy Logic 14.7.1. A Fuzzy Logic-Based MPCI 14.7.2. Fuzzy Multivariate Process Capability Vector 14.8. MPCIs for Processes Having Linear and Nonlinear 14.8.1. MPCIs for Simple Linear Profile 14.8.2. MPCIs for Multivariate Nonlinear Profiles 14.9. Concluding Remark Bibliography 15. Applications of MPCIs 15.1. Introduction 15.2. Supplier Selection Based on Multivariate Process Capability Analysis 15.2.1. Supplier Selection Problem for Processes Having Symmetric Bilateral Specication Region 15.2.2. Supplier Selection Problem for Processes Having Unilateral Specication Region 15.2.3. Supplier Selection Problem for Processes Having Asymmetric Specication Region 15.3. Assessing Process Capability of Multivariate Processes Aeffcted by Gauge Measurement Error 15.3.1. Impact of Gauge Measurement Error on MCp 15.3.2. MPCIs Based on Principal Component Analysis for Processes Affected by Measurement Error 15.4. Multiresponse Optimization Using MPCIs 15.5. Concluding Remark Bibliography Conclusion Index