دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mohammad Asadzadeh. Reimond Emanuelsson
سری:
ISBN (شابک) : 9781800613317, 9781800613331
ناشر: World Scientific Publishing
سال نشر: 2024
تعداد صفحات: 665
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Mathematical Concepts and Formulas for Students in Science and Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب مفاهیم و فرمول های ریاضی برای دانشجویان علوم و مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه ای جامع از مفاهیم اصلی ریاضی است: تعاریف، قضایا، جداول و فرمول هایی که دانشجویان علوم و مهندسی در دوران تحصیل و بعداً در حرفه خود با آن مواجه می شوند. متن به روزی که خواننده/گروه هدف را برای دیدن، به آسانی در دسترس، راه های نزدیک شدن به پرسش ها/مشکلاتشان، در عین حال آشنا شدن با استدلال، اغلب کوتاه، ریاضی/منطقی، پشتیبانی می کند مثالها با یکدیگر همبستگی دارند ضمیمه هایی با برنامه نویسی Mathematica و Math-Lab وجود دارد که شامل برنامه هایی با ویژگی های ساده برای اهداف آموزشی و همچنین برخی برنامه های درگیرتر است که برای حل مسائل کاربردی واقعی تر طراحی شده اند.
\"This book is a comprehensive collection of main mathematical concepts: definitions, theorems, tables, and formulas that the students of science and engineering encounter in their studies and later on in their professional careers. The aim is to introduce mathematics in an up-to-date text that supports the reader/target group to see, easily accessible, ways to approach their questions/problems, meanwhile getting familiar with, often short, mathematical/logical reasoning. The layout is designed so that the theory, applications, and examples are in correlation with each other. The book covers crucial concepts of whole calculus, linear and abstract algebra, as well as analysis, applied math, mathematical statistics, and numerical analysis. Most of the complex theorems appear in a simplified form without affecting their context. There are appendices with Mathematica and Math-Lab programming, which contain programs of simple character for educational purposes, as well as some more involved ones designed to solve problems of more real application\"--
Contents Preface About the Authors Acknowledgments I Elementary Set Theory, Algebra, and Geometry 1. Set Theory 1.1 Basic Concepts 1.1.1 Product set 1.2 Sets of Numbers 1.3 Cardinality 2. Elementary Algebra 2.1 Basic Concepts 2.2 Rules of Arithmetics 2.2.1 Fundamental algebraic rules 2.2.2 The binomial theorem 2.3 Polynomials in One Variable 2.4 Rational Expression 2.4.1 Expansion of rational expression 2.5 Inequalities 2.5.1 Absolute value 2.6 Complex Numbers 2.6.1 To solve equations of second degree with complex coefficients 2.6.2 Complex numbers in polar form 2.7 Powers and Logarithms 2.7.1 Powers 2.7.2 Logarithms 3. Geometry and Trigonometry 3.1 Plane Geometry 3.1.1 Angle 3.1.2 Units of different angular measurements 3.1.3 Reflection in point and line 3.1.4 Polygon 3.1.5 Types of triangles 3.1.6 Regular polygons 3.1.7 Circle and ellipse 3.2 Space Geometry 3.2.1 Names and volumes of some common bodies 3.2.2 Parallelepiped and the five regular polyhedra 3.3 Coordinate System (R2) 3.4 Trigonometry 3.4.1 Basic theorems 3.5 Addition Formulas 3.5.1 Addition formulas for sine and cosine functions 3.5.2 Addition formulas for tangent 3.5.3 Phase–amplitude form 3.5.4 Identities for double and half angles 3.5.5 Some exact values 3.6 Inverse Trigonometric Functions 3.7 Trigonometric Equations 3.8 Solving Triangles 3.9 Coordinate System (R3) 3.9.1 Identities in spherical trigonometry 3.9.2 Triangle solution of spheric triangle 4. Vector Algebra 4.1 Basic Concepts 4.1.1 Line in R2 4.2 Vectors in R3 4.2.1 Cross product and scalar triple product 4.2.2 Plane in R3 4.2.3 Distance between some objects in R3 4.2.4 Intersection, projection, lines, and planes 5. Linear Algebra 5.1 Linear Equation Systems 5.1.1 Solution of linear system of equations with matrices 5.1.2 Column, row, and null-spaces 5.2 Matrix Algebra 5.2.1 Inverse matrix 5.2.2 Elementary matrices 5.2.3 LU-factorization 5.2.4 Quadratic form 5.3 Determinant 5.3.1 Number of solutions for ES, determinant, and rank 5.3.2 Computing the determinant using sub-determinants 5.3.3 Cramer’s rule 5.3.4 Determinant and row operations 5.3.5 Pseudoinverse 5.3.6 Best LS solutions for some common functions 5.3.7 Eigenvalues and eigenvectors 5.3.8 Diagonalization of matrix 5.3.9 Matrices with complex elements 5.3.10 Base 5.3.11 Basis and coordinate change 5.4 The Quaternion Ring 5.4.1 Splitting a quaternion q in its scalar and vector parts 5.4.2 Matrix representation 5.5 Optimization 5.5.1 Linear optimization 5.5.2 Convex optimization 6. Algebraic Structures 6.1 Overview 6.2 Homomorphism and Isomorphism 6.3 Groups 6.3.1 Examples of groups 6.4 Rings 6.4.1 Examples of rings 7. Logic and Number Theory 7.1 Combinatorics 7.1.1 Sum and product 7.1.2 Factorials 7.1.3 Permutations and combinations 7.2 Proof by Induction 7.2.1 Strong induction 7.3 Relations 7.4 Expressional Logic 7.4.1 Tautology and contradiction 7.4.2 Methods of proofs 7.5 Predicate Logic 7.6 Boolean Algebra 7.6.1 Graph theory 7.6.2 Trees 7.7 Difference Equations 7.8 Number Theory 7.8.1 Introductory concepts 7.8.2 Some results 7.8.3 RSA encryption 8. Calculus of One Variable 8.1 Elementary Topology on R 8.2 Real Functions 8.2.1 Symmetry; even and odd functions (I) 8.3 The Elementary Functions 8.3.1 Algebraic functions 8.3.2 Transcendental functions 8.3.3 Polynomial 8.3.4 Power functions 8.3.5 Exponential functions 8.3.6 Logarithmic functions 8.3.7 The trigonometric functions 8.3.8 The arcus functions 8.3.9 Composition of functions and (local) inverses 8.3.10 Tables of elementary functions 8.4 Some Specific Functions 8.4.1 Some common function classes 8.5 Limit and Continuity 8.5.1 Calculation rules for limits 8.5.2 Corollary from the limit laws 8.5.3 The size order between exp-, power-, and logarithm functions 8.5.4 Limits for the trigonometric functions 8.5.5 Some special limits 8.5.6 Some derived limits 8.6 Continuity 8.6.1 Definition 8.6.2 Calculus rules for continuity 8.6.3 Some theorems about continuity 8.6.4 Riemann’s z-function 9. Derivatives 9.1 Directional Coefficient 9.1.1 The one- and two-point formulas 9.1.2 Continuity and differentability 9.1.3 Tangent, normal, and asymptote 9.2 The Differentiation Rules 9.3 Applications of Derivatives 9.3.1 Newton–Raphson iteration method 9.3.2 L’Hôspital’s rule 9.3.3 Lagrange’s mean value theorem 9.3.4 Derivative of inverse function and implicit derivation 9.3.5 Second derivative of inverse function 9.3.6 Implicit differentiation 9.3.7 Convex and concave functions 9.4 Tables 10. Integral 10.1 Definitions and Theorems 10.1.1 Lower and upper sums 10.2 Primitive Function 10.3 Rules of Integral Calculus 10.3.1 Linearity of integral 10.3.2 Area between function curves 10.3.3 The integral mean value theorem (I) 10.3.4 The integral mean theorem (II) 10.3.5 Some common inequalities for integrals 10.4 Methods of Integration 10.4.1 Symmetry; even and odd functions (II) 10.4.2 Integration by parts 10.4.3 Variable substitution 10.4.4 The tan x/2−substitution 10.5 Improper Integral 10.6 Tables 10.6.1 Common indefinite integrals with algebraic integrand 10.6.2 Common indefinite integrals with non-algebraic integrands 10.6.3 Some integrals with trigonometric integrands 10.6.4 Recursion formulas 10.6.5 Tables of some definite integrals 10.6.6 Tables of improper integrals 10.6.7 Tables of some non-elementary integrals 10.6.8 The Dirac function 10.7 Numerical Integration 11. Differential Equations 11.1 ODEs of Order 1 and 2 11.2 Linear ODE 11.2.1 Linear ODE of first order 11.3 Linear DE with Constant Coefficients 11.3.1 Solution of linear DE 11.3.2 Ansatz to determine yp 11.4 Linear DE with Continuous Coefficients 11.4.1 Linear ODE of second order 11.4.2 Some special ODEs of second order 11.4.3 Linear system of differential equations 11.5 Existence and Uniqueness of the Solution 11.6 Partial Differential Equations (PDEs) 11.6.1 The most common initial and boundary value problems 11.6.2 Representation with orthogonal series 11.6.3 Green’s functions 12. Numerical Analysis 12.1 Computer Language Approach 12.2 Numerical Differentiation and Integration 12.2.1 Numerical differentiation 12.2.2 Numerical integration 12.3 Solving f(x) = 0 12.3.1 Linear case 12.3.2 Numerical solution of nonlinear equations 12.3.3 Common methods of iterations 12.4 Ordinary Differential Equations (ODEs) 12.4.1 The initial value problems 12.4.2 Some common methods 12.4.3 More accurate methods 12.5 Finite Element Method (FEM) 12.6 Monte Carlo Methods 12.6.1 Monte Carlo method for DEs (indirect method) 12.6.2 Examples of finite difference approximations for parabolic equations 12.6.3 Monte Carlo for elliptic equations 13. Differential Geometry 13.1 Curve 13.1.1 Examples of curves and surfaces in R2 13.2 R3 13.2.1 Notations in R3 13.2.2 Curve and surface in R3 13.2.3 Slice method 13.2.4 Volume of rotation bodies 13.2.5 Guldin’s rules 14. Sequence and Series 14.1 General Theory 14.2 Positive Series 14.2.1 Examples of sequences and series 14.3 Function Sequences and Function Series 14.3.1 General theory 14.3.2 Power series 14.3.3 Taylor expansions 14.3.4 Fourier series 14.3.5 Some sums, series, and inequalities 14.4 Some Important Orthogonal Functions 14.4.1 Generation of the most common polynomial classes 14.4.2 Hypergeometric functions 14.5 Products 14.5.1 Basic examples 14.5.2 Infinite products 15. Transform Theory 15.1 Fourier Transform 15.1.1 Cosine and sine transforms 15.1.2 Relations between Fourier transforms 15.1.3 Special symbols 15.1.4 Fourier transform in signal and system 15.1.5 Table of discrete Fourier transform 15.2 The jω-Method 15.3 The z -Transform 15.4 The Laplace Transform 15.5 Distributions 16. Complex Analysis 16.1 Curves and Domains in the Complex Plane C 16.2 Functions on the Complex Plane C 16.2.1 Elementary functions 16.3 Lines, Circles, and Möbius Transforms 16.3.1 Preliminaries: The Riemann sphere 16.4 Some Simple Mappings 16.4.1 Möbius mappings 16.4.2 Angle preserving functions 16.5 Some Special Mappings 16.5.1 Applications in potential theory 16.6 Harmonic Functions 16.7 Laurent Series, Residue Calculus 17. Multidimensional Analysis 17.1 Topology in Rn 17.1.1 Subsets of Rn 17.1.2 Connected sets, etc. 17.2 Functions Rm −→ Rn 17.2.1 Functions Rn −→ R 17.2.2 Some common surfaces 17.2.3 Level curve and level surface 17.2.4 Composite function and its derivatives 17.2.5 Some special cases of chain rule 17.3 Taylor’s Formula 17.4 Maximum and Minimum Values of a Function 17.4.1 Max and min with constraints 17.5 Optimization Under Constraints for Linear or Convex Function 17.5.1 Convex optimization 17.6 Integral Calculus 17.6.1 Variable substitution in multiple integral 18. Vector Analysis 18.1 Differential Calculus in Rn 18.2 Types of Differential Equations 19. Topology 19.1 Definitions and Theorems 19.1.1 Variants of compactness 19.2 The Usual Topology on Rn 19.2.1 A comparison between two topologies 19.3 Axioms 19.3.1 The parallel axiom 19.3.2 The induction axiom 19.3.3 Axiom of choice 19.4 The Supremum Axiom with Some Applications 19.4.1 The supremum axiom 19.4.2 Compact set in Rn 19.4.3 Three theorems about continuity on compact, connected set K ⊆ Rn 19.5 Map of Topological Spaces 20. Integration Theory 20.1 The Riemann Integral 20.1.1 Definition of the Riemann integral 20.1.2 Integrability of continuous functions 20.1.3 Comments about the Riemann integral 20.2 The Lebesgue Integral 20.2.1 General theory 20.2.2 The Lebesgue integral on Rn 21. Functional Analysis 21.1 Topological Vector Space 21.2 Some Common Function Spaces 21.2.1 Hilbert space 21.2.2 Hilbert space and Fourier series 21.2.3 A criterion for Banach space 21.2.4 Fourier transform 21.3 Distribution Theory 21.3.1 Generalized function 21.4 Distributions 21.4.1 Tempered distribution 22. Mathematical Statistics 22.1 Elementary Probability Theory 22.2 Descriptive Statistics 22.2.1 Class sample 22.3 Distributions 22.3.1 Discrete distribution 22.3.2 Some common discrete distributions 22.3.3 Continuous distributions 22.3.4 Some common continuous distributions 22.3.5 Connection between arbitrary normal distribution and the standard normal distribution 22.3.6 Approximations 22.4 Location and Spread Measures 22.5 Multivariate Distributions 22.5.1 Discrete distributions 22.5.2 Bivariate continuous distribution 22.6 Conditional Distribution 22.7 Linear Combination of Random Variables 22.8 Generating Functions 22.9 Some Inequalities 22.10 Convergence of Random Variables 22.10.1 Table of some probability and moment generating functions 22.11 Point Estimation of Parameters 22.11.1 Expectancy accuracy and efficiency 22.12 Interval Estimation 22.12.1 Confidence interval for μ in normal distribution: X ∈ N(μ, σ) 22.12.2 Confidence interval for σ2 in normal distribution 22.12.3 Sample in pair and two samples 22.13 Hypothesis Testing of μ in Normal Distribution σ Known 22.13.1 σ unknown 22.14 F-Distribution and F-Test 22.15 Markov Chains II Appendices A. Mechanics A.1 Definitions, Formulas, etc A.1.1 Newton’s motion laws A.1.2 Linear momentum A.1.3 Impulse momentum and moment of inertia A.1.4 Table of center of mass, and moment of inertia of some homogenous bodies A.1.5 Physical constants B. Varia B.1 Greek Alphabet B.1.1 Uppercase B.1.2 Lowercase B.1.3 The numbers π and e B.1.4 Euler constant C. Programming Mathematica (Mma) C.1 Elementary Syntax C.1.1 Parentheses C.1.2 Operations C.1.3 Equalities and defining concepts C.1.4 Elementary algebra C.2 Linear Algebra C.3 Calculus C.3.1 Calculus in several variables C.4 Ordinary Differential Equations C.5 Mathematical Statistics C.6 Difference or Recurrence Equations (RE) C.6.1 List of common commands D. The Program Matlab D.1 Introduction D.1.1 Accessing MATLAB D.1.2 Arithmetic operations D.1.3 Elementary functions D.1.4 Variables D.1.5 Editing and formatting D.2 Help in MATLAB D.2.1 Description of help command D.2.2 Example for how to use help D.2.3 The error message D.2.4 The command look for D.2.5 Demos and documentation D.3 Row Vectors and Curve Plotting D.3.1 Operations with row vectors D.3.2 Generating arithmetic sequences D.3.3 Plotting curves D.3.4 Plotting graphs of functions D.3.5 Several graphs/curves in the same figure D.3.6 Dimensioning of the coordinate axes D.4 Good to Know D.4.1 Strings and the command eval D.4.2 The command fplot D.4.3 Complex numbers D.4.4 Polynomials D.4.5 To save, delete, and recover data D.4.6 Text in figures D.4.7 Three-dimensional graphics D.5 To Create Own Commands D.5.1 Textfiles D.5.2 Function files D.5.3 How to write own help command D.5.4 Some simple but important recommendations D.6 Matrix Algebras D.6.1 Basic matrix operations D.6.2 System of equations (matrix division) D.6.3 Rows, columns, and individual matrixelements D.6.4 A guide for a better way to work with matrices D.6.5 Inverse and identity matrix D.6.6 Determinants, eigenvalues, and eigenvectors D.6.7 Functions of matrices D.7 Programming in MATLAB D.7.1 General function files D.7.2 Choice and condition D.7.3 Loops D.7.4 Input and output D.7.5 Functions as in-variables D.7.6 Efficient programming D.7.7 Search command and related topics D.7.8 Examples of some programs D.7.9 List of most important command categories D.8 Algorithms and MATLAB Codes D.8.1 The bisection method D.8.2 An algorithm for the bisection method D.8.3 An algorithm for the secant method D.8.4 An algorithm for the Newton’s method D.8.5 An algorithm for L2-projection D.8.6 A Matlab code to compute the mass matrix M for a non-uniform mesh D.8.7 A Matlab routine to compute the load vector b D.8.8 Matlab routine to compute the L2-projection D.8.9 A Matlab routine for the composite midpoint rule D.8.10 A Matlab routine for the composite trapezoidal rule D.8.11 A Matlab routine for the composite Simpson’s rule D.8.12 A Matlab routine assembling the stiffness matrix D.8.13 A Matlab routine to assemble the convection matrix D.8.14 Matlab routines for Forward-, Backward-Euler and Crank–Nicolson D.8.15 A Matlab routine for mass-matrix in 2D D.8.16 A Matlab routine for a Poisson assembler in 2D III Tables E. Tables E.1 Some Mathematical Constants E.2 Table of the CDF of N(0, 1) E.3 Table of Some Quantiles of t-Distribution E.4 Table of the χ2-Distribution E.5 F-Table F. Key Concepts F.1 Symbols F.2 General Notation F.3 Derivatives and Differential Calculus F.4 Differential Geometry F.4.1 General notations for a vector space F.4.2 Notation of special vector spaces F.5 Generalized Functions F.5.1 Finite element related concepts F.6 Filter Bibliography Supplementary Material Index