دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Andrei Broder, Monika Henzinger (auth.), James Abello, Panos M. Pardalos, Mauricio G. C. Resende (eds.) سری: Massive Computing 4 ISBN (شابک) : 9781461348825, 9781461500056 ناشر: Springer US سال نشر: 2002 تعداد صفحات: 1209 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 39 مگابایت
کلمات کلیدی مربوط به کتاب راهنمای مجموعه داده های عظیم: ساختارهای داده، رمز شناسی و نظریه اطلاعات، هوش مصنوعی (شامل رباتیک)، فیزیک آماری، سیستم های دینامیکی و پیچیدگی
در صورت تبدیل فایل کتاب Handbook of Massive Data Sets به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای مجموعه داده های عظیم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکثیر مجموعههای داده عظیم، یک سری چالشهای محاسباتی ویژه را به همراه دارد. این \"بهمن داده\" در طیف گسترده ای از کاربردهای علمی و تجاری به وجود می آید. با پیشرفت در رایانه و فناوری اطلاعات، بسیاری از این چالشها توسط گروههای بین رشتهای مختلف، که شامل دانشمندان رایانه، ریاضیدانان، آماردانان و مهندسان هستند، شروع به رسیدگی میکنند که در همکاری با کارشناسان حوزه کاربرد کار میکنند. برنامه های کاربردی با مشخصات بالا شامل اخترفیزیک، بیو فناوری، جمعیت شناسی، امور مالی، سیستم های اطلاعات جغرافیایی، دولت، پزشکی، مخابرات، محیط زیست و اینترنت است. جان آر. تاکر از هیئت علمی ریاضیات بیان کرده است: "علاقه من به این مشکل (مجموعه داده های عظیم) این است که آن را به عنوان یک مشکل مقطعی مهم برای علوم طبیعی در حل عملی مسائل برای دهه آینده می بینم. "راهنمای مجموعه داده های عظیم" شامل ده مقاله است که توسط متخصصان در مورد موضوعات انتخاب شده ای نوشته شده است که با برخی از جنبه های اصلی مجموعه داده های عظیم سروکار دارد. این شامل فصول مربوط به بازیابی اطلاعات در اینترنت و به معنای سنتی، خزنده های وب، نمودارهای عظیم، پردازش رشته، فشرده سازی داده ها، روش های گردگیری، موجک ها، زمان بندی عملیات، الگوریتم های حافظه خارجی و ساختارهای داده، پروژه ملی گردگیر ایالات متحده، بالا می باشد. محاسبات عملکرد، انبارهای داده، مکعبهای داده، دادههای نیمه ساختاریافته، له کردن دادهها، کیفیت دادهها، صورتحساب در بزرگ، تشخیص تقلب، و پردازش دادهها در اخترفیزیک، آلودگی هوا، دادههای زیست مولکولی، رصد زمین و محیطزیست.
The proliferation of massive data sets brings with it a series of special computational challenges. This "data avalanche" arises in a wide range of scientific and commercial applications. With advances in computer and information technologies, many of these challenges are beginning to be addressed by diverse inter-disciplinary groups, that indude computer scientists, mathematicians, statisticians and engineers, working in dose cooperation with application domain experts. High profile applications indude astrophysics, bio-technology, demographics, finance, geographi cal information systems, government, medicine, telecommunications, the environment and the internet. John R. Tucker of the Board on Mathe matical Seiences has stated: "My interest in this problern (Massive Data Sets) isthat I see it as the rnost irnportant cross-cutting problern for the rnathernatical sciences in practical problern solving for the next decade, because it is so pervasive. " The Handbook of Massive Data Sets is comprised of articles writ ten by experts on selected topics that deal with some major aspect of massive data sets. It contains chapters on information retrieval both in the internet and in the traditional sense, web crawlers, massive graphs, string processing, data compression, dustering methods, wavelets, op timization, external memory algorithms and data structures, the US national duster project, high performance computing, data warehouses, data cubes, semi-structured data, data squashing, data quality, billing in the large, fraud detection, and data processing in astrophysics, air pollution, biomolecular data, earth observation and the environment.
Front Matter....Pages i-xii
Front Matter....Pages 1-1
Algorithmic Aspects of Information Retrieval on the Web....Pages 3-23
High-Performance Web Crawling....Pages 25-45
Internet Growth: Is There a “Moore’s Law” for Data Traffic?....Pages 47-93
Front Matter....Pages 95-95
Random Evolution in Massive Graphs....Pages 97-122
Property Testing in Massive Graphs....Pages 123-147
Front Matter....Pages 149-149
String Pattern Matching for a Deluge Survival Kit....Pages 151-194
Searching Large Text Collections....Pages 195-243
Data Compression....Pages 245-309
Front Matter....Pages 311-311
External Memory Data Structures....Pages 313-357
External Memory Algorithms....Pages 359-416
Front Matter....Pages 417-417
Data Envelopment Analysis (DEA) in Massive Data Sets....Pages 419-437
Optimization Methods in Massive Data Sets....Pages 439-471
Wavelets and Multiscale Transform in Astronomical Image Processing....Pages 473-500
Clustering in Massive Data Sets....Pages 501-543
Front Matter....Pages 545-545
Managing and Analyzing Massive Data Sets with Data Cubes....Pages 547-578
Data Squashing: Constructing Summary Data Sets....Pages 579-591
Mining and Monitoring Evolving Data....Pages 593-642
Data Quality in Massive Data Sets....Pages 643-659
Data Warehousing....Pages 661-710
Aggregate View Management in Data Warehouses....Pages 711-741
Front Matter....Pages 545-545
Semistructured Data and XML....Pages 743-788
Front Matter....Pages 789-789
Overview of High Performance Computers....Pages 791-852
The National Scalable Cluster Project: Three Lessons about High Performance Data Mining and Data Intensive Computing....Pages 853-874
Sorting and Selection on Parallel Disk Models....Pages 875-892
Front Matter....Pages 893-893
Billing in the Large....Pages 895-909
Detecting Fraud in the Real World....Pages 911-929
Massive Datasets in Astronomy....Pages 931-979
Data Management in Environmental Information Systems....Pages 981-1091
Massive Data Sets Issues in Earth Observing....Pages 1093-1140
Mining Biomolecular Data Using Background Knowledge and Artificial Neural Networks....Pages 1141-1168
Massive Data Set Issues in Air Pollution Modelling....Pages 1169-1220
Back Matter....Pages 1221-1223