دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Chunlei Guo. Subhash Chandra Singh
سری:
ISBN (شابک) : 9780367649173, 9781003130123
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: [495]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 40 Mb
در صورت تبدیل فایل کتاب Handbook of Laser Technology and Applications, Volume 4: Laser Applications: Medical, Metrology and Communication به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای فناوری و کاربردهای لیزر، جلد 4: کاربردهای لیزر: پزشکی، مترولوژی و ارتباطات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتابچه راهنمای جامع، راهنمای کاملاً بهروز شده لیزرها و سیستمهای لیزری، شامل طیف کاملی از کاربردهای فنی آنها را ارائه میکند. جلد اول، اجزای اساسی لیزرها، خواص و اصول کار آنها را تشریح میکند. جلد دوم، پوشش جامعی از تمام دستههای اصلی ارائه میکند. از لیزرها، از دیود حالت جامد و نیمه هادی گرفته تا لیزرهای فیبر، موجبر، گاز، شیمیایی و رنگی. جلد سوم شامل کاربردهای مدرن در مهندسی و فناوری، از جمله تمام مطالعات موردی جدید و به روز شده از مخابرات و ذخیره داده ها تا پزشکی، نوری است. اندازه گیری، دفاع و امنیت، پردازش و شناسایی نانومواد"--
"This comprehensive handbook gives a fully updated guide to lasers and laser systems, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties and working principles. The second volume gives exhaustive coverage of all major categories of lasers, from solid-state and semiconductor diode to fiber, waveguide, gas, chemical, and dye lasers. The third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization"--
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors 1. Lasers in Metrology: Section Introduction 2. Fundamental Length Metrology 2.1 Introduction 2.2 Basics 2.2.1 Evolution of the Metre – Definition and Realization 2.2.2 Laser Interferometry 2.2.3 Homodyne Laser Interferometry 2.2.4 Heterodyne Laser Interferometry 2.2.5 Interferometer Set-ups 2.2.6 Grating Interferometers 2.3 Frequency Stabilized Lasers 2.3.1 He-Ne laser Stabilized to the Gain Profile 2.3.2 Iodine-Stabilized He-Ne Laser at λ = 633 nm 2.3.3 Stabilized Frequency-Doubled Nd:YAG Laser at 532 nm Wavelength 2.3.4 Frequency-Stabilized Diode Lasers 2.4 Practical Issues 2.4.1 Refractometry 2.4.2 Interpolation 2.4.3 Accuracy Limits of Laser Interferometers 2.4.4 Applications of Laser Interferometers 2.5 Multiple Wavelength Interferometry 2.5.1 Gauge Block Calibration 2.5.2 Interferometric Distance Measurements References 3. Laser Velocimetry 3.1 Laser Velocimetry 3.1.1 Laser Doppler Velocimetry 3.1.1.1 Fringe Model 3.1.1.2 Doppler Model 3.1.1.3 Transmitting Optics 3.1.1.4 Receiving Optics 3.1.1.5 System Configurations 3.1.1.6 Signal Processing 3.1.1.7 Data Processing 3.2 Particle Image Velocimetry 3.2.1 Basic Principles 3.2.2 Choice of Laser 3.2.3 Three-Velocity Component PIV 3.3 Doppler Global Velocimetry 3.4 Phase Doppler Techniques 3.4.1 Basics of Light Scattering 3.4.2 Measurement Principle 3.4.3 Implementation 3.5 Application Issues 3.6 Future Directions References Articles Further Reading 4. Laser Vibrometers 4.1 Introduction 4.2 Basic Principles of Laser Vibrometry 4.3 Solid-Surface Vibration Measurements 4.3.1 Frequency-Shifting and/or Direction Ambiguity Removal 4.3.2 Optical Geometry/Interferometer 4.3.3 Doppler Signal Processing 4.3.4 Solid-Surface Scattering of Laser Light: Laser Speckle 4.4 Limitations of Use 4.4.1 Laser Speckle Effects 4.4.2 Measurements on Rotating Targets 4.4.3 Scanning Laser Vibrometers, Impact Measurements and Practical Considerations 4.5 Measurement of Angular Vibration Velocity 4.5.1 Introduction 4.5.2 The Laser Torsional or Rotational Vibrometer 4.5.3 Measurements within a Rotating System 4.5.4 Practical Considerations and Examples of Use References 5. Electronic Speckle Pattern Interferometry (ESPI) 5.1 Introduction 5.2 Principle of ESPI 5.2.1 Introduction 5.2.2 Description of the Technique 5.2.3 Principle of Fringe Formation 5.2.4 Fringe Interpretation: Relationship between the Phase Change Δ (x,y) and Deformation Components u, v, and w.... 5.2.5 Measurement of Out-of-Plane and In-Plane Deformation 5.3 Evaluation of the Interference Phase in ESPI 5.3.1 Temporal Phase-Shift Technique 5.3.1.1 4 +4 Algorithm 5.3.1.2 4 +1 Algorithm 5.3.1.3 Other Temporal Phase-Shift Algorithms 5.3.1.4 Generation of a Phase-Shift 5.3.2 Spatial Phase-Shift Technique 5.3.2.1 Spatial Phase-Shift Method Based on Multi-Pixel Calculation 5.3.2.2 Spatial Phase-Shift Method Based on Carrier-Frequency and Fourier Transformation 5.4 Applications of ESPI 5.4.1 Applications of Temporal Phase-Shift ESPI 5.4.1.1 Out-of-Plane and In-Plane Deformation Measurement and Non-destructive-Test 5.4.1.2 Measurement of Three-Dimensional Deformations and Strain 5.4.2 Applications of Spatial Phase-Shift ESPI 5.4.2.1 Out-of-Plane and In-Plane Deformation Measurement under a Continuous Loading 5.4.2.2 Simultaneous Measurement of 3D-Deformations under a Single Loading 5.4.3 Applications for Dynamic Measurements 5.4.3.1 Time-Averaged Method with a Refreshed Reference Frame 5.4.3.2 Stroboscopic Method 5.4.3.3 Double-Pulse Method 5.4.3.4 Further applications of ESPI 5.5 Conclusions References 6. Optical Fibre Hydrophones 6.1 Introduction 6.2 Basic Principles 6.2.1 Sonar System Requirements 6.2.2 Brief History 6.2.3 Interferometric Hydrophone Basic Principles 6.3 Optical Fibre Interferometry 6.3.1 Interferometer Configurations 6.3.2 Lasers 6.3.3 Modulation Properties 6.3.4 Noise Properties 6.3.5 Summary of Characteristics of Lasers Used in Interferometric Fibre Optic Sensors 6.3.6 Components 6.4 Acoustic Interactions 6.4.1 The Basic Transduction Mechanism 6.4.2 Coated Fibres 6.4.3 Mandrel Hydrophones 6.4.4 Hydrophone Responsivity with Depth 6.4.5 Hydrophone Response at Higher Frequencies and Directionality 6.4.6 Sensitivity to Other Effects 6.4.7 Practical Hydrophone Designs 6.5 Signal Processing 6.5.1 Passive Interrogation Schemes 6.5.2 Noise Sources and Phase Resolution 6.5.3 Dynamic Range 6.5.4 Digital Techniques 6.6 Optical Systems and Multiplexing 6.6.1 The FDM Technique 6.6.2 TDM Architectures 6.6.3 TDM Architectures Analysis 6.6.4 Large-Scale Array Architectures 6.6.5 Overcoming Polarization-Induced Signal Fading 6.6.6 Future Trends in Optical Hydrophone Technology—Fibre Laser Sensors 6.7 The Optical Geophone 6.7.1 The Basic Transduction Mechanism 6.7.2 Alternative Geophone Designs 6.7.3 System Configurations for Geophone Use 6.8 Application Studies References Further Reading 7. Laser Stabilization for Precision Measurements 7.1 Basic Spatial and Spectral Characteristics of Lasers 7.2 Advantages of Frequency Stabilization 7.3 Applications of Frequency-Stabilized Lasers 7.3.1 Frequency-Stabilized Lasers as Sources for Dimensional Interferometry 7.3.2 Interferometry for Gravitational Wave Detection 7.3.3 The Determination of Fundamental Constants 7.4 Gas-Cell-Absorption-Based Stabilization Techniques 7.4.1 Frequency Stabilization of a He-Ne Laser to the Gain Curve 7.4.2 Frequency Stabilization Based on Doppler-Limited Absorption 7.4.3 Frequency-Stabilization-Based Doppler-Free Spectroscopy 7.4.4 Frequency-Stabilized Lasers Referenced to Iodine, Rubidium and Acetylene 7.5 Evaluation of Frequency Stability and Reproducibility 7.6 Cavity-Stabilization Techniques 7.7 Summary References Further Reading 8. Laser Cooling and Trapping 8.1 Introduction 8.2 Theory of Atom–Light Interactions 8.2.1 Incoherent Excitation: Einstein A and B Coefficients 8.2.2 Momentum Associated with Atom–Light Interactions: Radiation Pressure 8.2.3 Coherent Excitation 8.2.3.1 The Light Shift 8.2.4 The Rabi Solution 8.2.5 The Optical Bloch Equations 8.3 Light Forces 8.3.1 The Dipole Force 8.3.2 The Spontaneous Force 8.3.3 Deceleration of an Atomic Beam 8.4 Doppler Cooling 8.4.1 One-Dimensional Doppler Cooling—Two Counter-Propagating Beams 8.4.2 Equilibrium Temperature 8.4.3 Optical Molasses in Three Dimensions 8.5 Sub-Doppler Cooling 8.6 Trapping of Cold Atoms 8.6.1 The Magneto-Optical Trap 8.6.2 Magnetic and Optical Dipole Traps 8.7 Laser-Cooling Technology 8.8 Summary References Further Reading 9. Precision Timekeeping: Optical Atomic Clocks 9.1 Principles of Atomic Clocks 9.1.1 Clock Stability 9.1.2 Clock Accuracy 9.2 Ultra-stable Optical Cavities and Optical Frequency Combs 9.2.1 Ultra-stable Optical Cavities 9.2.2 Optical Frequency Combs 9.3 Optical Atomic Clocks 9.3.1 Clock Interrogation Sequences 9.3.2 Common Optical Clock Systematic Shifts 9.3.2.1 Magnetic Fields 9.3.2.2 Electric Fields 9.3.2.3 Blackbody Radiation 9.3.2.4 Doppler Shifts 9.3.2.5 Gravitational Redshift 9.3.3 Single-Ion Optical Clocks 9.3.3.1 Ion Clock Operation 9.3.3.2 Ion Clock Systematics 9.3.4 Neutral Atom Optical Lattice Clocks 9.3.4.1 Optical Lattice Clock Operation 9.3.4.2 Optical Lattice Clock Systematics 9.4 Outlook and Future Directions 9.4.1 Next-Generation Clocks 9.4.1.1 3 D Optical Lattice Clocks 9.4.1.2 Cryogenic Optical Clocks 9.4.1.3 Superradiant Optical Clocks 9.4.1.4 Entangled Clocks 9.4.1.5 Exotic Atomic Clocks 9.4.2 Emerging Applications of Optical Clocks 9.4.2.1 SI Unit Definitions, the World Clock, Navigation, and Geodesy 9.4.2.2 Searches for Variations of Fundamental Constants, Dark Matter, and Gravitational Waves 9.4.2.3 Many-Body Quantum Physics References Further Reading 10. Optical Atomic Clock and Laser Applications to Length and Time Metrology 10.1 Introduction 10.2 Outline of Optical Atomic Clocks 10.3 Optical Clocks Based on Single Trapped Ion 10.3.1 Ion Trapping 10.3.2 Ion Optical Clocks Referenced to Quadrupole Transitions 10.3.3 Ion Optical Clocks Referenced to the Transitions Other Than the Quadrupole Transitions 10.3.4 Evaluation of Systematic Shifts 10.4 Optical Clocks Based on Neutral Atoms 10.4.1 Preparation of Neutral Atoms for Interrogation 10.4.2 Spectroscopy and Laser Locking 10.4.3 Systematic Evaluations 10.5 Absolute Frequency Measurement and Optical Frequency Synthesis Using Femtosecond Combs 10.5.1 Absolute Optical Frequency Measurement 10.5.2 Optical Frequency Ratio Measurement 10.5.3 Optical Frequency Synthesis 10.6 Internationally Recommended Optical Frequency Standards and Optical Clocks References 11. Gravitation Measurements with Laser Interferometry 11.1 Introduction 11.2 Gravitational Wave Detection 11.2.1 First Detection 11.2.2 Detector Design 11.2.2.1 Laser Source and Input Optics 11.2.2.2 Fabry-Perot Cavities 11.2.2.3 Interferometer Control and Gravitational Wave Signal Extraction 11.2.3 Future Work on Earth and in Space 11.3 Absolute Gravimetry 11.3.1 Falling Corner Cube Gravimeters 11.3.1.1 Laser Source 11.3.1.2 Falling Corner Cube 11.3.1.3 Drag-Free Chamber and Drop Mechanism 11.3.1.4 Super-spring Inertial Reference 11.3.1.5 Signal Acquisition and Analysis 11.3.1.6 Current Status and Future Work 11.3.2 Cold Atom Gravimeters 11.3.2.1 Atomic Fountain 11.3.2.2 Atom Interferometry 11.3.2.3 Raman Transitions and Atom Interferometery 11.3.2.4 Inertial Reference 11.3.2.5 Current Status of Cold-Atom Gravimeters 11.3.2.6 New Methods 11.4 Determination of the Newtonian Constant of Gravitation 11.4.1 Free-Falling Corner Cube Determination 11.4.2 Atom Interferometer Determinations 11.4.3 Suspended Fabry-Perot Cavity Determination References 12. Satellite Laser Ranging 12.1 Introduction 12.2 Working Principle 12.2.1 General Description 12.2.2 Components 12.2.2.1 Ground Segment 12.2.2.2 Space Segment 12.3 Operations 12.3.1 Signal Strength 12.3.1.1 Track Detection 12.3.1.2 Data Screening 12.3.2 Ranging Policy 12.3.3 Calibration 12.3.4 Safety 12.3.5 Global Network 12.4 Analysis 12.4.1 Centre of Mass Corrections 12.4.2 Accuracy and Quality Control 12.5 Applications 12.5.1 Terrestrial Reference Frame 12.5.2 Support of Scientific Missions 12.5.3 Tracking of GNSS Constellations 12.5.4 Space Debris 12.5.5 Time Transfer 12.5.6 Lunar Laser Ranging 12.6 Concluding Remarks and Future Trends References 13. Lasers in Medical: Section Introduction 14. Light–Tissue Interactions 14.1 Introduction 14.2 Fundamental Interactions 14.2.1 Absorption 14.2.2 Luminescence 14.2.3 Elastic Scattering 14.2.4 Scattering by a Dielectric Particle 14.2.5 Scattering by Many Particles 14.2.6 Inelastic Scattering 14.2.7 Miscellaneous 14.3 Optical Properties of Tissue and Their Measurement 14.3.1 Absorption Coefficient 14.3.2 Scattering Coefficient 14.3.3 Scattering Phase Function 14.3.4 Measurement of Optical Properties Ex Vivo 14.3.5 Measurement of Optical Properties In Vivo 14.4 Physical Models of Light Propagation in Tissue 14.4.1 The Radiative Transport Equation 14.4.2 Numerical Solution of the RTE 14.4.3 Monte Carlo Simulation 14.4.4 The Diffusion Approximation 14.4.5 Fluence Rate Distributions in Tissue 14.5 Therapeutic Laser–Tissue Interactions 14.5.1 Introduction 14.5.2 Photochemical Effects 14.5.3 Photothermal Effects 14.5.3.1 Laser Heating 14.5.3.2 Thermal Diffusion 14.5.3.3 Thermal Damage 14.5.4 Photomechanical Effects 14.5.4.1 Thermoelastic Expansion 14.5.4.2 Spallation and Cavitation 14.5.4.3 Vaporization 14.5.4.4 Plasma Formation 14.6 Summary References 15. Ophthalmic Laser Therapy and Surgery 15.1 Introduction 15.1.1 Early History 15.1.2 Optical Properties of the Eye 15.2 Photothermal Therapy 15.2.1 Photothermal Interactions 15.2.2 Quantification of Thermal Damage 15.2.3 Photocoagulation 15.2.3.1 Retinal Plasticity Following Photocoagulation 15.2.3.2 Optimization of Pulse Duration for Photocoagulation 15.2.3.3 Pattern-Scanning Retinal Photocoagulation 15.2.3.4 Non-damaging Laser Therapy of the Macula 15.2.3.5 Real-Time Monitoring of Tissue Temperature 15.2.3.6 Laser Trabeculoplasty 15.3 Tissue-Selective Therapy Using Photochemical Interactions 15.4 Photomechanical Interactions 15.4.1 Selective RPE Therapy 15.4.2 Selective Laser Trabeculoplasty 15.4.3 Corneal Ablation for Refractive Surgery 15.5 Transparent Tissue Surgery with Ultrashort-Pulse Lasers 15.5.1 Refractive Surgery 15.5.2 Vitreoretinal Surgery 15.5.3 Cataract Surgery 15.6 Summary and Future Directions Disclosure Statement References 16. Therapeutic Application: Refractive Surgery 16.1 Introduction 16.2 Excimer Laser-Based Procedures 16.3 Excimer Laser-Based Procedures Complications 16.4 FSL-Based Procedures 16.5 ReLEx Procedures 16.6 Newer Application of Small-Incision Lenticule Extraction References 17. Photodynamic Therapy 17.1 Introduction 17.2 Light Sources 17.2.1 Lasers 17.2.2 Non-laser Sources 17.3 Light Delivery Systems 17.4 Optical Monitoring and Dosimetry 17.5 Alternative Photosensitizer Activation Schemes 17.5.1 Two-photon Activation 17.5.2 Up-converting Nanoparticles 17.5.3 Bioluminescence Activation 17.5.4 Ultrasound Activation 17.5.5 Ionizing Radiation Activation 17.6 PDT for Cancer Treatment 17.7 Other Applications of PDT 17.8 Conclusions Bibliography 18. Therapeutic Applications: Thermal Treatment of Tumours 18.1 Introduction 18.2 Laser Therapy with Flexible Endoscopes 18.2.1 Cancers of the Gastrointestinal Tract 18.2.2 Cancer of the Lungs 18.2.3 Urology 18.3 Interstitial Laser Photocoagulation 18.4 Conclusion References 19. Therapeutic Applications: Dermatology—Selective Photothermolysis 19.1 Introduction 19.1.1 Photothermal Interactions 19.1.2 Selective Photothermolysis 19.2 Laser Treatment of Cutaneous Vascular Lesions 19.2.1 Principles of Selective Photothermolysis and the Treatment of PWSs 19.3 Laser Treatment of Pigmented Lesions and Tattoos 19.4 Laser Treatment of Hair by Selective Photothermolysis 19.5 Carbon Dioxide and Erbium:YAG Lasers in Dermatology 19.5.1 Erbium:YAG Laser in Dermatology References 20. Therapeutic Applications: Lasers in Vascular Surgery 20.1 Atheroma and Angioplasty-Like Injury 20.2 Laser Angioplasty 20.3 Reported and Ongoing Studies on Excimer Laser Angioplasty 20.3.1 Coronary Arteries 20.3.2 Peripheral (Femoral) Arteries 20.4 PDT in the Arteries 20.4.1 PDT of Injured and Diseased Arteries 20.4.2 Light Delivery 20.4.3 Clinical Data 20.5 Conclusions References 21. Therapeutic Applications: Free-Electron Laser 21.1 Introduction 21.2 Laser Ablation 21.2.1 Ablation with the FEL 21.3 Towards Clinical Application of the FEL 21.3.1 Beam Transport and Alignment 21.3.2 Surgical Beam Delivery 21.4 Clinical Experience 21.4.1 Neurosurgery 21.4.2 Clinical Experience: Ophthalmology 21.5 Conclusions References 22. Medical Diagnostics 22.1 Introduction 22.2 In Vivo Methods and Applications 22.2.1 White-Light (Reflectance) Imaging 22.2.2 Diffuse Optical Spectroscopy and Spectral Imaging 22.2.3 Elastic Scattering Spectroscopy 22.2.4 Optical Coherence Tomography 22.2.5 Confocal Imaging 22.2.6 Fluorescence Spectroscopy and Imaging 22.2.7 Raman Spectroscopy and Imaging 22.2.7.1 Photoacoustic Imaging 22.2.9 Other Methods 22.2.10 Optical Imaging in Pathology 22.3 Comparison of Techniques and General Future Trends Bibliography 23. Broad Bandwidth Light Sources in Optical Coherence Tomography (OCT) 23.1 Introduction to OCT 23.1.1 Time Domain OCT 23.1.2 Fourier Domain OCT 23.2 Broadband Sources for OCT 23.2.1 Femtosecond Lasers 23.2.2 Swept Source Lasers 23.2.3 Supercontinuum Sources 23.2.4 Superluminescent Diodes 23.3 Source Parameters and Their Indications for OCT Performance 23.3.1 Spectrum (Central Wavelength and Bandwidth) 23.3.2 Source Noise 23.3.3 Instantaneous Linewidth of a Swept Source 23.3.4 Repetition/Sweep Rate of Broadband Sources 23.4 Conclusions References 24. Laser Applications in Biology and Biotechnology 24.1 Introduction 24.2 Light Interaction with Matter 24.2.1 Absorption of Light 24.2.2 Emission of Light 24.2.3 Scattering of Light 24.2.4 Quantum Confinement—Quantum Dots 24.3 Laser Probing of Biological Samples 24.3.1 Endogenous Molecular Probes 24.3.1.1 Endogenous Absorbers 24.3.1.2 Endogenous Fluorophores 24.3.2 Exogenous Probes 24.3.2.1 Small Organic Fluorescent Probes 24.3.2.2 Fluorescent Protein-Based Probes 24.3.2.3 Quantum Dots 24.3.2.4 Raman Probes—Surface-Enhanced Raman Scattering 24.3.3 Optical Spectroscopy 24.3.3.1 Steady-State Measurements 24.3.3.2 Time-Resolved Measurements 24.3.3.3 Applications to Tissue Diagnostics 24.3.4 Spectral Imaging 24.4 Laser-Based Imaging: Applications Classified Using the Properties of Light 24.4.1 Applications Based on Linear Optical Responses 24.4.1.1 Laser Scanning Confocal Fluorescence Microscopy (LSCFM) 24.4.1.2 Laser Microscopy Beyond the Diffraction Limit 24.4.2 Applications Based on Non-linear Optical Responses 24.4.2.1 Multi-photon Laser Scanning Fluorescence Microscopy 24.4.2.2 Imaging Techniques Exploiting Second Harmonic Generation (SHG) 24.4.2.3 Imaging Techniques Employing Coherent Anti-stokes Raman Scattering (CARS) 24.4.2.4 Surface-Enhanced Raman Scattering 24.4.3 Spectral-Based Applications—Imaging Beyond the Visible Region 24.4.3.1 Imaging with Soft X-rays in the ‘Water-Window’ Region 24.4.3.2 Imaging with Lasers Operating in the ‘Water-Window’ Region 24.5 Laser-Based Imaging: Applications to Different Levels of Biological Organization 24.5.1 Single-Molecule Detection 24.5.2 Imaging at Sub-cellular Level 24.5.3 Imaging of Organelles and Bacteria 24.5.4 Imaging at Cellular Level 24.5.5 Imaging in Tissue 24.6 Lasers for Micromanipulation of Biological Samples 24.6.1 Opto-Mechanical Manipulation of Biological Samples 24.6.1.1 Optical Tweezers 24.6.1.2 Perforation (Optoporation) 24.6.1.3 Nanosurgery (Laser Scalpels) 24.6.1.4 Tissue Welding and Soldering 24.6.2 Physico-Chemical Manipulation of Biological Samples 24.6.2.1 Pump-Probe Technique 24.6.2.2 Laser-Activated Processes 24.6.3 Fluorescence Correlation Spectroscopy 24.6.4 Flow Cytometry 24.7 Emerging Applications of Lasers in Biotechnology 24.7.1 DNA Micro-arrays and Genomics 24.7.2 Protein Micro-arrays and Proteomics 24.7.3 Bio-Cavity Lasers References 25. Biomedical Laser Safety 25.1 Introduction 25.2 Laser Accidents 25.2.1 Case Studies 25.3 Classes of Lasers in Medical Use 25.3.1 Class 1 25.3.2 Class 1C 25.3.3 Class 1M 25.3.4 Class 2 25.3.5 Class 2M 25.3.6 Class 3R 25.3.7 Class 3B 25.3.8 Class 4 25.4 Intense Pulsed Light Sources 25.5 Principles of Quality Assurance 25.6 Laser Standards and Guidelines 25.6.1 Electrical and Mechanical Construction 25.6.2 Optical Radiation Safety Documents 25.6.3 Optical Beam Specification 25.6.4 General Optical Safety Guidance 25.7 Laser Safety Management 25.7.1 Optical Radiation Safety Policy 25.7.2 Laser Protection Adviser 25.7.3 Laser Protection Supervisor 25.7.4 Local Rules 25.7.5 Laser Controlled Area 25.7.6 Authorized Users 25.7.7 Training 25.7.8 Medical Examination 25.7.9 Incident Reports 25.7.10 Equipment 25.7.11 Equipment Modification 25.7.12 Legislative Health and Safety Requirements 25.7.13 Conclusion 25.8 Precautions 25.8.1 Hazards to the Eye 25.8.2 Hazards to the Skin 25.8.3 Equipment Features 25.8.4 Room Layout 25.8.5 Protective Eyewear 25.8.6 Risk Assessment 25.9 Reflections 25.10 Fires 25.11 Hazards to Patients 25.11.1 Risk to Eyes 25.11.2 Risk to Skin 25.11.3 Misdirected Beam 25.11.4 Endotracheal Tube Ignition 25.11.5 Carbonization 25.12 Incidental Hazards 25.12.1 Laser Plume 25.12.2 Electrical Danger 25.12.3 Carcinogenic Dyes 25.12.4 Fire 25.13 Conclusion References Further Reading 26. Laser in Communications: Section Introduction 27. Fibre-to-the-Chip: Development of Vertical Cavity Surface-Emitting Laser Arrays Designed for Integration with VLSI Circuits 27.1 Introduction and Background 27.2 VCSEL: The P[sup(2)]I[sup(2)] VCSEL Design 27.3 First Implementation: The I[sup(2)]-VCSEL 27.4 Design Modifications for High-Speed P[sup(2)]I[sup(2)]-VCSELs 27.5 Results from the First High-Speed P[sup(2)]I[sup(2)]-VCSELs377 27.6 Conclusions Acknowledgments References 28. Advances in Laser Satellite Communications 28.1 Introduction 28.1.1 Lasercom Benefits 28.1.2 Lasercom Challenges 28.1.3 Technology Maturity 28.1.4 Link Budget 28.2 Technology and Design Drivers 28.2.1 Laser Beam Spatial Acquisition, Tracking, Pointing and Stabilization 28.2.2 Rugged Opto-Mechanical and Thermo-Mechanical Optics 28.2.3 Signal Detection 28.2.4 Modulation and Coding 28.2.5 Flight Laser Transmitter 28.2.6 The Atmospheric Channel 28.2.6.1 Mitigating Effects of Turbulence/Scintillation 28.3 Ground Station 28.3.1 Ground Receive Telescope 28.3.2 Ground Uplink Transmitter 28.3.3 Ground PAT 28.4 Applications References 29. Passive Silicon Photonic Integrated Components and Circuits for Optical Communications 29.1 Introduction 29.2 Silicon Nanophotonic Waveguides 29.3 Silicon Photonic Devices for On-Chip Polarization-Handling 29.3.1 Silicon PBSs 29.3.2 Silicon PRs 29.4 Multi-mode Silicon Photonics 29.4.1 On-Chip Mode (De)Multiplexers 29.4.2 Sharp Multi-mode Waveguide Bends 29.5 Wavelength-Selective Silicon Photonic Devices 29.5.1 AWG-Based Optical Filters 29.5.2 MRR-Based Optical Filters 29.5.2.1 MRR-Based Optical Filters with Large FSRs 29.5.2.2 MRR-Based Optical Filters with Box-Like Responses 29.5.2.3 Polarization-Selective MRR Optical Filters 29.5.3 Grating-Based Optical Filters 29.6 Reconfigurable Silicon Photonic Devices and Circuits 29.6.1 Optical Switches 29.6.2 ROADMs 29.7 Conclusion and Future Trends References 30. Fibre-Optic Transmission Systems from Chip-to-Chip Interconnects to Trans-Oceanic Cables 30.1 The Role of Fibre Optics in Communications 30.2 Modulation and Multiplexing: Theoretical and Practical Limits 30.2.1 Digital Modulation and Multiplexing in a Nutshell 30.2.2 Practical Aspects of Modulation and Multiplexing in Optical Communications 30.3 Fibre-Optic Communication Systems from Short-Reach to Ultra-Long-Haul 30.3.1 Short-Reach Systems (≤ 10 km ) 30.3.2 Mobile Front-Haul and PONs 30.3.3 Datacentre Interconnects (≤ 100 km) 30.3.4 Metro and Long-Haul Networks (100 km ~ 5000 km) 30.3.5 Sub-marine Transmission ( ≥ 5000 km) References 31. Visible Light Communications and LiFi 31.1 Introductions 31.2 Communication Front-End Characterization 31.2.1 Transmitters 31.2.1.1 White-Coloured LEDs 31.2.1.2 White-Coloured LDs 31.2.1.3 Micro-Sized LEDs 31.2.1.4 Resonant Cavity LEDs 31.2.1.5 Organic LEDs 31.2.2 Receivers 31.2.2.1 PIN-PDs and APDs 31.2.2.2 Single-Photon APDs 31.2.2.3 PV Solar Cells 31.3 Indoor VLC Channel Characterizations 31.3.1 Line-of-Sight Channel and Non-line-of-Sight Channel 31.3.2 Deterministic Method 31.3.3 Monte Carlo Method 31.3.4 Frequency Domain Calculation 31.3.5 Simplified Sphere Model 31.3.6 Efficient Analytical Method 31.3.7 Comparison of NLoS Channel Calculation Methods 31.4 Digital Modulation Techniques 31.4.1 Single-Carrier Modulation Techniques 31.4.2 OFDM-Based MCM 31.4.2.1 DCO-OFDM 31.4.2.2 Unipolar OFDM Techniques 31.4.2.3 Hybrid OFDM Techniques 31.4.3 Colour Modulation Techniques 31.5 Multiple-Input Multiple-Output Techniques in VLC and LiFi 31.5.1 Spatial Multiplexing 31.5.2 Repetition Coding 31.5.3 Spatial Modulation 31.5.4 Electrical-to-Optical Conversion Based on Multiple Light Sources 31.5.5 MIMO Optical Source and Detector Deployment in VLC and LiFi 31.5.6 Adaptation of MIMO techniques 31.6 Co-channel Interference and Interference Mitigation Techniques in Multi-Cell LiFi Networks 31.6.1 Access Point Layout and SINR Characterizations 31.6.2 Interference Mitigation Techniques 31.7 Conclusion References 32. Optical Data Storage 32.1 von Neumann Architecture: CMOS Technologies 32.2 von Neumann Bottleneck 32.3 Non-von Neumann Architecture: Memcomputing 32.4 Non-volatile Photonic Memory 32.5 Photonic Memelements for Non-von Neumann Architecture 32.6 Other Method of Optical Memory 32.7 Associative Optical Memory for Pattern Recognition References Index