دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Chunlei Guo. Subhash Chandra Singh
سری:
ISBN (شابک) : 9781138033320, 9781315310855
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: [359]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 Mb
در صورت تبدیل فایل کتاب Handbook of Laser Technology and Applications, Volume 3: Laser Applications: Material Processing and Spectroscopy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای فناوری و کاربردهای لیزر، جلد 3: کاربردهای لیزر: پردازش مواد و طیف سنجی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتابچه راهنمای جامع راهنمای کاملاً به روز شده لیزرها و سیستم های لیزری، شامل طیف کاملی از کاربردهای فنی آنها را ارائه می دهد. جلد اول به تشریح اجزای اساسی لیزرها، خواص و اصول کار آنها می پردازد. جلد دوم پوشش کاملی از تمام دسته های اصلی لیزرها، از دیود حالت جامد و نیمه هادی گرفته تا لیزرهای فیبر، موجبر، گاز، شیمیایی و رنگی را ارائه می دهد. جلد سوم کاربردهای مدرن در مهندسی و فناوری، از جمله تمام مطالعات موردی جدید و به روز شده را در بر می گیرد که ارتباطات از راه دور و ذخیره داده ها را در بر می گیرد تا پزشکی، اندازه گیری نوری، دفاع و امنیت، پردازش و شناسایی مواد نانو.
This comprehensive handbook gives a fully updated guide to lasers and laser systems, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties and working principles. The second volume gives exhaustive coverage of all major categories of lasers, from solid-state and semiconductor diode to fiber, waveguide, gas, chemical, and dye lasers. The third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors 1. Laser Material Processing: Section Introduction 2. Laser Welding 2.1 Introduction 2.2 What Are the Basic Mechanisms for Laser Welding? 2.2.1 Light–matter Interaction 2.2.1.1 Laser Energy Is Absorbed by the Material 2.2.1.2 Melt Is Generated 2.2.1.3 After Cooling 2.2.2 Continuous and Pulsed Welding 2.2.3 Laser Sources 2.2.4 Practical Considerations 2.2.4.1 Beam Delivery 2.2.4.2 Gas Shrouding 2.2.4.3 Filler Materials 2.2.4.4 Defects 2.3 Why Use Laser Welding? 2.4 What Is Being Done to Ruggedize the Process and Expand Its Implementation? 2.4.1 Dissimilar Materials 2.4.1.1 Metal–metal Welding 2.4.1.2 Dissimilar Materials 2.4.2 Plastics and Transmissive Materials 2.4.3 Micro-welding 2.4.4 Process Developments 2.4.4.1 Hybrid Processing 2.4.4.2 Melt Pool Manipulation 2.4.4.3 Short Wavelength 2.4.4.4 Short Pulse 2.4.4.5 Multiple Beams 2.4.4.6 Melt Pool Support 2.4.4.7 Aluminium to Steel 2.4.5 Implementations 2.4.5.1 Remote Laser Welding 2.4.5.2 Process Set-up and Diagnostics 2.5 Future Opportunities References 3. High-Power Laser Cutting 3.1 The Basics of the Laser Cutting Process 3.1.1 Introduction 3.1.2 Why Use Laser Cutting? 3.1.3 Types of High-power Laser Cutting Machines 3.1.3.1 Three-dimensional Laser Cutting 3.1.4 Differences between CO[sub(2)] and Fibre Laser Cutting 3.1.4.1 General 3.1.4.2 Cutting Speeds 3.1.4.3 Cut Quality 3.1.4.4 Laser Absorption in the Cutting Zone 3.2 How Lasers Cut Different Materials 3.2.1 General Notes 3.2.2 Cutting Stainless Steels 3.2.3 Cutting Mild and Carbon Steels 3.2.3.1 Cutting Mild Steel with Oxygen 3.2.3.2 Cutting Mild Steel with Nitrogen 3.2.4 Cutting Alloy Steels 3.2.5 Cutting Non-ferrous Metals 3.2.5.1 Aluminium and Copper Alloys 3.2.5.2 Titanium Alloys 3.2.5.3 Nickel Alloys 3.2.5.4 Other Alloys 3.2.6 Cutting Non-metals with CO[sub(2)] Lasers 3.2.6.1 General Notes 3.2.6.2 Polymers 3.2.6.3 Other Non-metals 3.3 Cutting Speeds 3.3.1 Mild and Carbon Steels 3.3.2 Stainless Steels 3.3.3 Aluminium Alloys 3.3.4 Non-metals – CO[sub(2)] Lasers Only Acknowledgements 4. Laser Marking 4.1 Introduction 4.2 Laser-marking Equipment 4.2.1 CO[sub(2)] Lasers (10.6 μm IR Wavelength) 4.2.2 Excimer Lasers 4.2.3 YAG Lasers 4.3 Materials 4.3.1 Plastics 4.3.2 Glass and Ceramics 4.3.3 Metals 4.3.4 Semiconductors 4.4 Competitors for Laser Marking 4.5 Case Study: Decorative Marking of Plastics References 5. Laser Micromachining 5.1 Introduction 5.2 Basics 5.2.1 Energy Transfer 5.2.2 Absorption of Light 5.2.3 Heat Transfer for Long (Nanosecond) Pulses 5.2.3.1 Heat Diffusion Equation 5.2.3.2 Point Source in Infinite Homogeneous 3D Body 5.2.3.3 Linear Heat Conduction 5.2.3.4 Enthalpy Model 5.2.4 Heat Transfer for Ultra-short Pulses 5.2.4.1 Two-temperature Model 5.2.4.2 Metals 5.2.4.3 Dielectrics and Semiconductors 5.2.5 Heat Accumulation 5.3 Optimized Material Removal 5.3.1 Problem 5.3.2 Ablation Efficiency 5.3.2.1 Top Hat Intensity Distribution 5.3.2.2 Gaussian Beam 5.3.3 Specific Removal Rate 5.3.4 Consequences from the Model 5.3.5 Incubation 5.3.6 Influence of the Pulse Duration 5.3.7 Influence on the Machining Quality 5.3.7.1 Metals 5.3.7.2 Semiconductors: Silicon and Germanium 5.4 Power Scale-up for Surface Structuring: Demands, Solutions and Limiting Factors 5.4.1 Surface Structuring 5.4.2 Marking Speed and Power Scale-up 5.4.3 Limiting Factors 5.4.3.1 Heat Accumulation 5.4.3.2 Plasma and Particle Shielding 5.4.4 Pulse Bursts 5.4.5 Alternative Approaches 5.5 Summary and Future Challenges References 6. Rapid Manufacturing 6.1 Basic Principles 6.2 Main Technologies and System Requirements 6.2.1 Control of Material Composition Changes 6.3 Case Study 6.4 Future Trends References 7. Laser Printing 7.1 Introduction 7.2 Multiphoton Polymerization 7.3 Stimulated Emission Depletion for Multiphoton Lithography (STED) 7.4 Laser-induced Forward Transfer 7.5 Conclusions References 8. 3D Printing and Additive Manufacturing 8.1 Introduction 8.2 Stereolithography 8.3 Selective Laser Sintering (SLS) Technology 8.4 Microscale 3D Printing Techniques 8.4.1 Projection Micro-stereolithography 8.4.2 Multiphoton Lithography 8.4.2.1 Multiphoton Polymerization Technique 8.4.2.2 Sequential and Simultaneous Two-photon Absorption (TPA) 8.4.2.3 Experimental Set-up 8.4.2.4 Materials for Laser Polymerization 8.4.2.5 Applications References 9. Photolithography 9.1 Basic Principles 9.2 System Requirements 9.3 Case Study (KrF Excimer Laser Lithography) 9.4 Future Trends Bibliography 10. Pulsed Laser Deposition of Thin Films 10.1 History and Background 10.2 Operation of PLD and Process Steps 10.2.1 Laser–Material Interaction 10.2.2 Material Transport 10.2.3 Nucleation and Growth 10.3 Materials Grown by Using PLD 10.3.1 Metals and Alloys 10.3.2 Oxides 10.3.2.1 Ferroelectric, Multiferroics, and Piezoelectric Oxides 10.3.2.2 Superconducting Oxides 10.3.2.3 Transparent Conducting Oxides 10.3.3 Nitrides 10.3.4 Transition Metal Dichalcogenides 10.3.5 Diamond-like Carbon 10.3.6 Polymers 10.3.7 Biomaterials 10.3.8 Other Materials 10.4 Advantages and Disadvantages of PLD 10.5 Summary References 11. Surface Micro- and Nano-structuring on Metals with Femtosecond Lasers 11.1 Introduction 11.2 Basic Principles 11.3 Femtosecond Laser Nano-/Microstructuring 11.3.1 Irregular Nanostructures 11.3.2 Femtosecond Laser-induced 1D Periodic Subwavelength Structures 11.3.3 Femtosecond Laser-Induced 2D Periodic Subwavelength Structures 11.4 Conclusion References 12. Laser Ablation in Liquids for Nanoparticle Generation and Modification 12.1 Introduction 12.2 Background of LP-PLA of a Solid Target at the Solid–Liquid Interface 12.2.1 Nucleation and Growth of NPs from Laser-produced Plasmas Confined in Liquid 12.2.1.1 Early Stage 12.2.1.2 Intermediate Stage 12.2.1.3 Later Stage 12.3 Effects of Different Experimental Parameters on the Dynamics of Laser Ablation 12.4 Cavitation Bubble Formation and Related Effects 12.5 Non-reactive LP-PLA of Solids for the Generation of Elemental Nanoparticles 12.6 Reactive Pulsed Laser Ablation for the Generation of Metal Compound Nanoparticles 12.7 Laser Ablation of Suspended Particles in Liquids 12.8 Conclusions References 13. Laser-Induced Forward Transfer 13.1 Introduction 13.1.1 LIFT with a Sacrificial Layer 13.1.2 LIFT of Liquids 13.2 LIFT in Science: Examples of Materials and Devices Transferred by LIFT 13.3 LIFT in Industry 13.4 Conclusions and Future Directions Acknowledgements References 14. Laser Pyrolysis 14.1 Introduction 14.2 Experimental Set-up 14.3 Control Parameters 14.4 Typical Operating Procedures for Laser Pyrolysis 14.5 Examples of NPs Synthesized by Laser Pyrolysis 14.5.1 Elemental NPs 14.5.2 Compound Non-oxide NPs 14.5.3 Compound Oxide NPs 14.6 Challenges and Future Work 14.7 Conclusions References 15. Laser Spectroscopy: Section Introduction 16. Laser Raman Spectroscopy: Fundamentals to Applications 16.1 Raman Scattering 16.2 Theory of Raman Scattering 16.2.1 Classical Description of Raman Effect 16.2.2 Quantum Mechanical Description of Raman Effect 16.2.3 Instrumentation 16.3 Other Raman Spectroscopic Techniques 16.3.1 Surface-Enhanced Raman Scattering 16.3.1.1 Origin of Enhancement 16.3.2 Non-linear Raman and Ultrafast Spectroscopy 16.3.2.1 Theory and Instrumentation of Non-linear Third-Order Processes 16.3.2.2 Experimental Method 16.4 Applications of Raman Spectroscopy 16.4.1 Carbon Characterization Using Raman Spectroscopy 16.4.2 Applications of SERS 16.4.3 Raman Spectroscopy in Semiconductors 16.4.4 Raman Spectroscopy for Pharmaceutical Analysis 16.5 Raman Spectroscopic Techniques for Non-invasive Depth-Resolved Studies 16.5.1.1 Spatially Offset Raman Spectroscopy 16.5.1.2 Universal Multiple-Angle Raman Spectroscopy 16.5.1.3 Transmission Raman Spectroscopy (TRS) 16.6 Raman Imaging: From 2D Mapping Towards 3D Imaging 16.7 Non-linear Spectroscopic Applications 16.7.1 Photoisomerization of Optically Excited Solvated Trans-stilbene 16.7.2 Ultrafast Structural Dynamics 16.7.3 Excited-state Planarization Dynamics of Bis(phenylethnyl)benzene 16.8 Conclusion and Future Directions References 17. Laser Scattering Spectroscopy: Rayleigh Scattering and Dynamic Light Scattering 17.1 Introduction 17.2 General Principles of DLS (Photon Correlation Spectroscopy) 17.3 Consideration of Angular and Concentration Effect on the DLS Measurement 17.4 Consideration of Uncertainty Sources of the DLS Measurement 17.5 Consideration of the Size Distribution of Particles Determined by DLS 17.6 Conclusion References 18. Laser-Induced Breakdown Spectroscopy 18.1 Introduction 18.2 Application of LIBS 18.2.1 Determination of Gold Fineness by Laser-induced Breakdown Spectroscopy 18.2.2 Laser-induced Plasma to Decompose Hydrocarbon Molecules 18.2.2.1 Medical Application References 19. Laser-Induced Fluorescence (LIF) for the Detection of Microbes 19.1 Introduction 19.2 Principles of Fluorescence and LIF from Microbes 19.2.1 Physical Principles and Special Properties in Biological Samples 19.2.2 Biological Fluorophores 19.2.3 Basic Fluorescence Behaviour of Microbes 19.3 Equipment for Laser-Induced Fluorescence 19.4 Data Analysis 19.4.1 Classification, Discrimination, Identification 19.4.2 LIDAR Equation: Application for LIF Stand-off Detection 19.5 Fields of Application 19.5.1 Single-Particle Detection (Short Distances) 19.5.2 Bulk Detection (Short and Long Distances) 19.5.2.1 LIF Stand-Off Detection of Diluted Microbes 19.5.2.2 LIF Stand-Off Detection of Atmospheric Aerosols (Fluorescence LIDAR) 19.6 Summary References 20. Harmonic Generation—Materials and Methods 20.1 Introduction 20.2 Second-harmonic Generation 20.2.1 Effective Non-linear Coefficient 20.2.2 Conversion Efficiency 20.2.3 Phase-matching 20.2.4 Phase-matching Bandwidth 20.2.5 Intra-cavity and Resonant Cavity Second-harmonic Generation 20.3 Sum and Difference Frequency Mixing 20.3.1 Theory 20.3.2 Sum Frequency Mixing 20.3.3 Difference Frequency Mixing 20.4 Third- and Higher-harmonic Generation 20.5 Non-linear Materials for Frequency Conversion 20.5.1 Birefringent Materials 20.5.2 Quasi-Phase-matched Materials 20.5.3 Self-doubling and Summing Materials 20.6 Frequency Conversion of Particular Lasers 20.6.1 Nd Lasers 20.6.2 Ti:sapphire Lasers 20.6.3 Carbon Dioxide Lasers 20.7 Developing and Growth Areas References 21. Non-linear Optical Properties of Novel Nanomaterials 21.1 Introduction 21.1.1 Origin of NLO: Master-Slave Flip Flop 21.1.2 Maxwell’s Equations and Non-linear Polarization 21.2 Second-order NLO Properties 21.2.1 Second Harmonic Generation 21.2.2 Sum Frequency Generation 21.2.3 Difference Frequency Generation 21.2.4 Nanomaterials for Second-Order Non-linear Optics 21.3 Third-Order Optical Non-linearities 21.3.1 Non-linear Absorption 21.3.1.1 Saturable Absorption and Reverse Saturable Absorption 21.3.1.2 Genuine Multi-photon Absorption 21.3.1.3 Excited-state Absorption and Free Carrier Absorption 21.3.2 Non-linear Refraction 21.3.2.1 Electronic Polarization 21.3.2.2 Raman-induced Kerr Effect and Photorefractive Effect 21.3.2.3 Molecular Orientational Effects and Population Redistribution 21.3.2.4 Electrostriction 21.3.2.5 Thermo-optic Effects 21.3.3 Optical Limiting 21.3.4 Z-scan Experimental Technique 21.3.4.1 Theory of Open Aperture Z-scan 21.3.4.2 Wavelength-dependent Non-linear Absorption Coefficient 21.3.4.3 Theory of Closed Aperture Z-scan 21.3.5 Third-order NLO Susceptibility and Optical Limiting 21.3.6 Third-order NLO Materials: Brief Survey 21.3.6.1 Metal Nanoparticles 21.3.6.2 Metal Nanocomposites 21.3.6.3 Perovskite Materials 21.4 Conclusions 21.5 Future Scope References 22. Lasers in Imaging: Section Introduction 23. Lasers in Microscopy 23.1 Introduction 23.2 Basic Principles of Microscopy 23.2.1 Wide-field and Laser Scanning Microscopy 23.2.2 Fluorescence Excitation and Emission 23.2.3 Resolution 23.2.4 Scattering and Absorption of the Specimen 23.3 Advanced Techniques in Microscopy 23.3.1 Two-photon Excitation 23.3.2 Raman Microscopy 23.3.3 Coherent Anti-Stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) Microscopy 23.3.4 Super-resolution Microscopy 23.3.4.1 Stimulated Emission Depletion (STED) 23.3.4.2 Single-molecule Localization Microscopy (SMLM) 23.4 Conclusion and Discussion References 24. Laser-based Coherent Diffractive Imaging 24.1 Introduction 24.2 Methods 24.2.1 Plane-Wave CDI 24.2.2 Fresnel CDI 24.2.3 Ptychography 24.3 Algorithms 24.3.1 Error Reduction 24.3.2 HIO 24.3.3 Projector Notation 24.4 Applications 24.5 Perspective References 25. High-Speed Imaging 25.1 Properties of Laser Radiation Which Make It Useful for High-speed Imaging 25.1.1 Short-duration Pulses 25.1.2 Low Divergence 25.1.3 Fibre Delivery 25.1.4 Lightsheets 25.1.5 Laser Speckle 25.1.6 High-Brightness Imaging 25.2 High-speed Camera Technology 25.2.1 High-speed Film 25.2.2 Electronic Cameras 25.3 Choice of Laser 25.3.1 Illumination Techniques 25.4 Application Examples 25.4.1 Time-resolved PIV in Engines 25.4.2 Agricultural Spray Characterization 25.4.3 Drug Delivery Sprays 25.5 Summary References Further Reading 26. Ultrafast Optical Imaging 26.1 Introduction 26.2 Multiple-shot Ultrafast Optical Imaging 26.2.1 Temporal Scanning 26.2.1.1 Ultrashort Probing 26.2.1.2 Ultrafast Gating 26.2.2 Spatial Scanning 26.2.2.1 Point Scanning 26.2.2.2 Line Scanning 26.3 Single-shot Ultrafast Optical Imaging 26.3.1 Active Detection 26.3.1.1 Angle Division 26.3.1.2 Wavelength Division 26.3.1.3 Frequency Division 26.3.2 Passive Detection 26.3.2.1 Direct Imaging 26.3.2.2 Computational Reconstruction 26.4 Summary and Outlook References 27. Transient Absorption Microscopy Measurements of Single Nanostructures 27.1 Introduction 27.2 Experimental Methods 27.2.1 Laser Systems for Transient Absorption Microscopy 27.2.2 Optical Components and Signal Detection 27.2.3 Signal-to-Noise Considerations 27.3 Dynamics of Single Nanostructures 27.4 Summary and Future Directions Acknowledgements References Index