دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Distante A., Distante C سری: ISBN (شابک) : 9783030381479, 9783030381486 ناشر: Springer سال نشر: 2020 تعداد صفحات: 507 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Handbook of image processing and computer vision. Vol.1 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای پردازش تصویر و بینایی کامپیوتری. جلد 1 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgments Contents 1 Image Formation Process 1.1 Introduction 1.2 From Energy to Image 1.3 Electromagnetic Energy, Photons and Light 1.3.1 Characteristic of Electromagnetic Waves 1.4 The Energy of Electromagnetic Waves 1.5 Sources of Electromagnetic Waves 1.6 Light–Matter Interaction 1.7 Photons 1.8 Propagation of Electromagnetic Waves in Matter 1.9 The Spectrum of Electromagnetic Radiation 1.10 The Light 1.10.1 Propagation of Light 1.10.2 Reflection and Refraction 1.11 The Physics of Light 1.12 Energy of an Electromagnetic Wave 1.13 Reflectance and Transmittance 1.13.1 Angle of Brewster 1.13.2 Internal Reflection 1.14 Thermal Radiation 1.15 Photometric Magnitudes 1.16 Functions of Visual Luminosity 2 Radiometric Model 2.1 Introduction 2.2 Light Sources and Radiometric Aspects 2.3 Bidirectional Reflectance Distribution Function—BRDF 2.3.1 Lambertian Model 2.3.2 Model of Specular Reflectance 2.3.3 Lambertian–Specular Compound Reflectance Model 2.3.4 Phong Model 2.4 Fundamental Equation in the Process of Image Formation 3 Color 3.1 Introduction 3.1.1 The Theory of Color Perception 3.2 The Human Visual System 3.3 Visual Phenomena: Sensitivity to Contrast 3.4 Visual Phenomena: Simultaneous Contrast 3.5 Visual Phenomena: Bands of Mach 3.6 Visual Phenomena: Color Blindness 3.7 The Colors of Nature 3.8 Constancy of Color 3.9 Colorimetry 3.9.1 Metamerism and Grassmann\'s Law 3.10 Additive Synthesis Method 3.10.1 Tristimulus Curves of Equal Radiance 3.10.2 Chromaticity Coordinates 3.11 3D Representation of RGB Color 3.12 XYZ Color Coordinates 3.13 Chromaticity Diagram—RGB 3.14 Chromaticity Diagram—XYZ 3.14.1 Calculation of the Positions of the RGB Primaries in the Chromaticity Diagram Xy 3.14.2 Analysis of the Transformation from RGB to the XYZ System 3.15 Geometric Representation of Color 3.16 HSI Color Space 3.17 The Color in Image Processing 3.18 RGB to the HSI Space Conversion 3.18.1 RGB rightarrow HSI 3.18.2 HSI rightarrow RGB 3.19 HSV and HSL Color Space 3.20 CIE 1960/64 UCS Color Space 3.21 CIE 1976 L*a*b* Color Space 3.22 CIE 1976 L*u*v* Color Space 3.23 CIELab LCh and CIELuv LCh Color Spaces 3.24 YIQ Color Space 3.25 Subtractive Synthesis Method 3.26 Color Reproduction Technologies 3.27 Summary and Conclusions 4 Optical System 4.1 Introduction 4.2 Reflection of Light on Spherical Mirrors 4.3 Refraction of Light on Spherical Surfaces 4.4 Thin Lens 4.4.1 Diagram of the Main Rays for Thin Lenses 4.4.2 Optical Magnification: Microscope and Telescope 4.5 Optical Aberrations 4.5.1 Parameters of an Optical System 5 Digitization and Image Display 5.1 Introduction 5.2 The Human Optical System 5.3 Image Acquisition Systems 5.4 Representation of the Digital Image 5.5 Resolution and Spatial Frequency 5.6 Geometric Model of Image Formation 5.7 Image Formation with a Real Optical System 5.8 Resolution of the Optical System 5.8.1 Contrast Modulation Function—MTF 5.8.2 Optical Transfer Function (OTF) 5.9 Sampling 5.10 Quantization 5.11 Digital Image Acquisition Systems—DIAS 5.11.1 Field of View—FoV 5.11.2 Focal Length of the Optical System 5.11.3 Spatial Resolution of Optics 5.11.4 Spatial Size and Resolution of the Sensor 5.11.5 Time Resolution of the Sensor 5.11.6 Depth of Field and Focus 5.11.7 Depth of Field Calculation 5.11.8 Calculation of Hyperfocal 5.11.9 Depth of Focus 5.11.10 Camera 5.11.11 Video Camera 5.11.12 Infrared Camera 5.11.13 Time-of-Flight Camera—ToF 5.12 Microscopy 5.13 Telescopic 5.14 The MTF Function of an Image Acquisition System 6 Properties of the Digital Image 6.1 Digital Binary Image 6.2 Pixel Neighborhood 6.3 Image Metric 6.3.1 Euclidean Distance 6.3.2 City Block Distance 6.3.3 Chessboard Distance 6.4 Distance Transform 6.5 Path 6.6 Adjacency and Connectivity 6.7 Region 6.7.1 Connected Component 6.7.2 Foreground Background and Holes 6.7.3 Object 6.7.4 Contour 6.7.5 Edges 6.8 Topological Properties of the Image 6.8.1 Euler Number 6.8.2 Convex Hull 6.8.3 Area, Perimeter and Compactness 6.9 Property Independent of Pixel Position 6.9.1 Histogram 6.10 Correlation-Dependent Property Between Pixels 6.10.1 The Image as a Stochastic Process ! Random Field 6.10.2 Correlation Measurement 6.11 Image Quality 6.11.1 Image Noise 6.11.2 Gaussian Noise 6.11.3 Salt-and-Pepper Noise 6.11.4 Impulsive Noise 6.11.5 Noise Management 6.12 Perceptual Information of the Image 6.12.1 Contrast 6.12.2 Acuteness 7 Data Organization 7.1 Data in the Different Levels of Processing 7.2 Data Structures 7.2.1 Matrix 7.2.2 Co-Occurrence Matrix 7.3 Contour Encoding (Chain Code) 7.4 Run-Length Encoding 7.4.1 Run-Length Code for Grayscale and Color Images 7.5 Topological Organization of Data-Graph 7.5.1 Region Adjacency Graph (RAG) 7.5.2 Features of RAG 7.5.3 Algorithm to Build RAG 7.5.4 Relational Organization 7.6 Hierarchical Structure of Data 7.6.1 Pyramids 7.6.2 Quadtree 7.6.3 T-Pyramid 7.6.4 Gaussian and Laplacian Pyramid 7.6.5 Octree 7.6.6 Operations on Quadtree and Octree 8 Representation and Description of Forms 8.1 Introduction 8.2 External Representation of Objects 8.2.1 Chain Code 8.2.2 Polygonal Approximation—Perimeter 8.2.3 Polygonal Approximation—Splitting 8.2.4 Polygonal Approximation—Merging 8.2.5 Contour Approximation with Curved Segments 8.2.6 Signature 8.2.7 Representation by Convex Hull 8.2.8 Representation by Means of Skeletonization 8.3 Description of the Forms 8.3.1 Shape Elementary Descriptors 8.3.2 Statistical Moments 8.3.3 Moments Based on Orthogonal Basis Functions 8.3.4 Fourier Descriptors 9 Image Enhancement Techniques 9.1 Introduction to Computational Levels 9.2 Improvement of Image Quality 9.2.1 Image Histogram 9.2.2 Probability Density Function and Cumulative Distribution Function of Image 9.2.3 Contrast Manipulation 9.2.4 Gamma Transformation 9.3 Histogram Modification 9.3.1 Histogram Equalization 9.3.2 Adaptive Histogram Equalization (AHE) 9.3.3 Contrast Limited Adaptive Histogram Equalization (CLAHE) 9.4 Histogram Specification 9.5 Homogeneous Point Operations 9.6 Nonhomogeneous Point Operations 9.6.1 Point Operator to Correct the Radiometric Error 9.6.2 Local Statistical Operator 9.7 Color Image Enhancement 9.7.1 Natural Color Images 9.7.2 Pseudo-color Images 9.7.3 False Color Images 9.8 Improved Quality of Multispectral Images 9.9 Towards Local and Global Operators 9.9.1 Numerical Spatial Filtering 9.10 Spatial Convolution 9.10.1 1D Spatial Convolution 9.10.2 2D Spatial Convolution 9.11 Filtering in the Frequency Domain 9.11.1 Discrete Fourier Transform DFT 9.11.2 Frequency Response of Linear System 9.11.3 Convolution Theorem 9.12 Local Operators: Smoothing 9.12.1 Arithmetic Average 9.12.2 Average Filter 9.12.3 Nonlinear Filters 9.12.4 Median Filter 9.12.5 Minimum and Maximum Filter 9.12.6 Gaussian Smoothing Filter 9.12.7 Binomial Filters 9.12.8 Computational Analysis of Smoothing Filters 9.13 Low Pass Filtering in the Fourier Domain 9.13.1 Ideal Low Pass Filter 9.13.2 Butterworth Low Pass Filter 9.13.3 Gaussian Low Pass Filter 9.13.4 Trapezoidal Low Pass Filter 9.13.5 Summary of the Results of the Smoothing Filters Index