دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Yu-Jin Zhang
سری:
ISBN (شابک) : 9789811558726, 9789811558733
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 1963
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 50 مگابایت
در صورت تبدیل فایل کتاب Handbook of Image Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای مهندسی تصویر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface General Directory Contents About the Author Part I: Image Fundamentals Chapter 1: Image Basics 1.1 Basic Concepts of Image 1.1.1 Image and Image Space 1.1.2 Digital Image and Computer-Generated Image 1.2 Image Decomposition 1.2.1 Image Decomposition 1.2.2 Pixel and Voxel 1.2.3 Various Elements 1.3 All Kinds of Image 1.3.1 Images with Different Wavelengths 1.3.2 Different Dimensional Images 1.3.3 Color Image 1.3.4 Images for Different Applications 1.4 Special Attribute Images 1.4.1 Images with Various Properties 1.4.2 Image with Specific Attribute 1.4.3 Depth Images 1.4.4 Image with Variant Sources 1.4.5 Processing Result Image 1.4.6 Others 1.5 Image Representation 1.5.1 Representation 1.5.2 Image Property 1.5.3 Image Resolution 1.6 Image Quality Chapter 2: Image Engineering 2.1 Image Engineering Technology 2.1.1 Image Engineering 2.1.2 Image Processing 2.1.3 Image Analysis 2.1.4 Image Understanding 2.2 Similar Disciplines 2.2.1 Computer Vision 2.2.2 Machine Vision 2.2.3 Computer Graphics 2.2.4 Light Field 2.3 Related Subjects 2.3.1 Fractals 2.3.2 Topology 2.3.3 Virtual Reality 2.3.4 Others Chapter 3: Image Acquisition Devices 3.1 Device Parameters 3.1.1 Camera Parameters 3.1.2 Camera Motion Description 3.1.3 Camera Operation 3.2 Sensors 3.2.1 Sensor Models 3.2.2 Sensor Characteristics 3.2.3 Image Sensors 3.2.4 Specific Sensors 3.2.5 Commonly Used Sensors 3.3 Cameras and Camcorders 3.3.1 Conventional Cameras 3.3.2 Camera Models 3.3.3 Special Structure Cameras 3.3.4 Special Purpose Cameras 3.3.5 Camera Systems 3.4 Camera Calibration 3.4.1 Calibration Basics 3.4.2 Various Calibration Techniques 3.4.3 Internal and External Camera Calibration 3.5 Lens 3.5.1 Lens Model 3.5.2 Lens Types 3.5.3 Lens Characteristics 3.5.4 Focal Length of Lens 3.5.5 Lens Aperture and Diaphragm 3.6 Lens Aberration 3.6.1 Lens Distortions 3.6.2 Chromatic Aberration 3.7 Other Equipment and Devices 3.7.1 Input Devices 3.7.2 Filters 3.7.3 Microscopes 3.7.4 RADAR 3.7.5 Other Devices Chapter 4: Image Acquisition Modes 4.1 Imaging and Acquisition 4.1.1 Image Capture 4.1.2 Field of View 4.1.3 Camera Models 4.1.4 Imaging Methods 4.1.5 Spectral Imaging 4.1.6 Coordinate Systems 4.1.7 Imaging Coordinate Systems 4.1.8 Focal Length and Depth 4.1.9 Exposure 4.1.10 Holography and View 4.2 Stereo Imaging 4.2.1 General Methods 4.2.2 Binocular Stereo Imaging 4.2.3 Special Methods 4.2.4 StructuredLight 4.3 Light Source and Lighting 4.3.1 Light and Lamps 4.3.2 Light Source 4.3.3 Lighting 4.3.4 Illumination 4.3.5 IlluminationField 4.4 Perspective and Projection 4.4.1 Perspective 4.4.2 Perspective Projection 4.4.3 Projective Imaging 4.4.4 Various Projections 4.5 Photography and Photogrammetry 4.5.1 Photography 4.5.2 Photogrammetry Chapter 5: Image Digitization 5.1 Sampling and Quantization 5.1.1 Sampling Theorem 5.1.2 Sampling Techniques 5.1.3 Quantization 5.2 Digitization Scheme 5.2.1 Digitization 5.2.2 Digitizing Grid Chapter 6: Image Display and Printing 6.1 Display 6.1.1 Image Display 6.1.2 Display Devices 6.2 Printing 6.2.1 Printing Devices 6.2.2 Printing Techniques 6.2.3 Halftoning Techniques Chapter 7: Image Storage and Communication 7.1 Storage and Communication 7.1.1 Image Storage 7.1.2 Image Communication 7.2 Image File Format 7.2.1 Bitmap Images 7.2.2 Various Formats Chapter 8: Related Knowledge 8.1 Basic Mathematics 8.1.1 Analytic and Differential Geometry 8.1.2 Functions 8.1.3 Matrix Decomposition 8.1.4 Set Theory 8.1.5 Least Squares 8.1.6 Regression 8.1.7 Linear Operations 8.1.8 Complex Plane and Half-Space 8.1.9 Norms and Variations 8.1.10 Miscellaneous 8.2 Statistics and Probability 8.2.1 Statistics 8.2.2 Probability 8.2.3 Probability Density 8.2.4 Probability Distributions 8.2.5 Distribution Functions 8.2.6 Gaussian Distribution 8.2.7 More Distributions 8.3 Signal Processing 8.3.1 Basic Concepts 8.3.2 Signal Responses 8.3.3 Convolution and Frequency 8.4 Tools and Means 8.4.1 Hardware 8.4.2 Software 8.4.3 Diverse Terms Part II: Image Processing Chapter 9: Pixel Spatial Relationship 9.1 Adjacency and Neighborhood 9.1.1 Spatial Relationship Between Pixels 9.1.2 Neighborhood 9.1.3 Adjacency 9.2 Connectivity and Connected 9.2.1 Pixel Connectivity 9.2.2 Pixel-Connected 9.2.3 Path 9.3 Connected Components and Regions 9.3.1 Image Connectedness 9.3.2 Connected Region in Image 9.4 Distance 9.4.1 Discrete Distance 9.4.2 Distance Metric 9.4.3 Geodesic Distance 9.4.4 Distance Transform Chapter 10: Image Transforms 10.1 Transformation and Characteristics 10.1.1 Transform and Transformation 10.1.2 Transform Properties 10.2 Walsh-Hadamard Transform 10.2.1 Walsh Transform 10.2.2 Hadamard Transform 10.3 Fourier Transform 10.3.1 Variety of Fourier Transform 10.3.2 Frequency Domain 10.3.3 Theorem and Property of Fourier Transform 10.3.4 Fourier Space 10.4 Discrete Cosine Transform 10.5 Wavelet Transform 10.5.1 Wavelet Transform and Property 10.5.2 Expansion and Decomposition 10.5.3 Various Wavelets 10.6 Karhunen-Loève Transform 10.6.1 Hotelling Transform 10.6.2 Principal Component Analysis 10.7 Other Transforms Chapter 11: Point Operations for Spatial Domain Enhancement 11.1 Fundamentals of Image Enhancement 11.1.1 Image Enhancement 11.1.2 Intensity Enhancement 11.1.3 Contrast Enhancement 11.1.4 Operator 11.2 Coordinate Transformation 11.2.1 Spatial Coordinate Transformation 11.2.2 Image Transformation 11.2.3 Homogeneous Coordinates 11.2.4 Hierarchy of Transformation 11.2.5 Affine Transformation 11.2.6 Rotation Transformation 11.2.7 Scaling Transformation 11.2.8 Other Transformation 11.3 Inter-image Operations 11.3.1 Image Operation 11.3.2 Arithmetic Operations 11.3.3 Logic Operations 11.4 Image Gray-Level Mapping 11.4.1 Mapping 11.4.2 Contrast Manipulation 11.4.3 Logarithmic and Exponential Functions 11.4.4 Other Functions 11.5 Histogram Transformation 11.5.1 Histogram 11.5.2 Histogram Transformation 11.5.3 Histogram Modification 11.5.4 Histogram Analysis Chapter 12: Mask Operations for Spatial Domain Enhancement 12.1 Spatial Domain Enhancement Filtering 12.1.1 Spatial Domain Filtering 12.1.2 Spatial Domain Filters 12.2 Mask Operation 12.2.1 Mask 12.2.2 Operator 12.3 Linear Filtering 12.3.1 Linear Smoothing 12.3.2 Averaging and Mean 12.3.3 Linear Sharpening 12.4 Nonlinear Filtering 12.4.1 Nonlinear Smoothing 12.4.2 Mid-point, Mode, and Median 12.4.3 Nonlinear Sharpening 12.5 Gaussian Filter 12.5.1 Gaussian 12.5.2 Laplacian of Gaussian Chapter 13: Frequency Domain Filtering 13.1 Filter and Filtering 13.1.1 Basic of Filters 13.1.2 Various Filters 13.2 Frequency Domain Filters 13.2.1 Filtering Techniques 13.2.2 Low-Pass Filters 13.2.3 High-Pass Filters 13.2.4 Band-Pass Filters 13.2.5 Band-Reject Filters 13.2.6 Homomorphic Filters Chapter 14: Image Restoration 14.1 Fundamentals of Image Restoration 14.1.1 Basic Concepts 14.1.2 Basic Techniques 14.1.3 Simulated Annealing 14.1.4 Regularization 14.2 Degradation and Distortion 14.2.1 Image Degradation 14.2.2 Image Geometric Distortion 14.2.3 Image Radiometric Distortion 14.3 Noise and Denoising 14.3.1 Noise Models 14.3.2 Noise Sources 14.3.3 Distribution 14.3.4 Impulse Noise 14.3.5 Some Typical Noises 14.3.6 Image Denoising 14.4 Filtering Restoration 14.4.1 Unconstrained and Constrained 14.4.2 Harmonic and Anisotropic Chapter 15: Image Repair and Recovery 15.1 Image Inpainting 15.2 Image Completion 15.3 Smog and Haze Elimination 15.3.1 Defogging and Effect 15.3.2 Atmospheric Scattering Model 15.4 Geometric Distortion Correction 15.4.1 Geometric Transformation 15.4.2 Grayscale Interpolation 15.4.3 Linear Interpolation Chapter 16: Image Reconstruction from Projection 16.1 Principle of Tomography 16.1.1 Tomography 16.1.2 Computational Tomography 16.1.3 Historical Development 16.2 Reconstruction Methods 16.3 Back-Projection Reconstruction 16.4 Reconstruction Based on Series Expansion 16.4.1 Algebraic Reconstruction Technique 16.4.2 Iterative Back-Projection Chapter 17: Image Coding 17.1 Coding and Decoding 17.1.1 Coding and Decoding 17.1.2 Coder and Decoder 17.1.3 Source coding 17.1.4 Data Redundancy and Compression 17.1.5 Coding Types 17.2 Coding Theorem and Property 17.2.1 Coding Theorem 17.2.2 Coding Property 17.3 Entropy Coding 17.3.1 Entropy of Image 17.3.2 Variable-Length Coding 17.4 Predictive Coding 17.4.1 Lossless and Lossy 17.4.2 Predictor and Quantizer 17.5 Transform Coding 17.6 Bit Plane Coding 17.7 Hierarchical Coding 17.8 Other Coding Methods Chapter 18: Image Watermarking 18.1 Watermarking 18.1.1 Watermarking Overview 18.1.2 Watermarking Embedding 18.1.3 Watermarking Property 18.1.4 Auxiliary Information 18.1.5 Cover and Works 18.2 Watermarking Techniques 18.2.1 Technique Classification 18.2.2 Various Watermarking Techniques 18.2.3 Transform Domain Watermarking 18.3 Watermarking Security 18.3.1 Security 18.3.2 Watermarking Attacks 18.3.3 Unauthorized Attacks Chapter 19: Image Information Security 19.1 Image Authentication and Forensics 19.1.1 Image Authentication 19.1.2 Image Forensics 19.2 Image Hiding 19.2.1 Information Hiding 19.2.2 Image Blending 19.2.3 Cryptography 19.2.4 Other Techniques Chapter 20: Color Image Processing 20.1 Colorimetry and Chromaticity Diagram 20.1.1 Colorimetry 20.1.2 Color Chart 20.1.3 Primary and Secondary Color 20.1.4 Color Mixing 20.1.5 Chromaticity Diagram 20.1.6 Diagram Parts 20.2 Color Spaces and Models 20.2.1 Color Models 20.2.2 RGB-Based Models 20.2.3 Visual Perception Models 20.2.4 CIE Color Models 20.2.5 Other Color Models 20.3 Pseudo-color Processing 20.3.1 Pseudo-color Enhancement 20.3.2 Pseudo-Color Transform 20.4 True Color Processing 20.4.1 True Color Enhancement 20.4.2 Saturation and Hue Enhancement 20.4.3 False Color Enhancement 20.4.4 Color Image Processing 20.4.5 Color Ordering and Edges 20.4.6 Color Image Histogram Chapter 21: Video Image Processing 21.1 Video 21.1.1 Analog and Digital Video 21.1.2 Various Video 21.1.3 Video Frame 21.1.4 Video Scan and Display 21.1.5 Video Display 21.2 Video Terminology 21.2.1 Video Terms 21.2.2 Video Processing and Techniques 21.3 Video Enhancement 21.3.1 Video Enhancement 21.3.2 Motion-Based Filtering 21.3.3 Block Matching 21.4 Video Coding 21.4.1 Video Codec 21.4.2 Intra-frame Coding 21.4.3 Inter-frame Coding 21.5 Video Computation 21.5.1 Image Sequence 21.5.2 Video Analysis Chapter 22: Multi-resolution Image 22.1 Multi-resolution and Super-Resolution 22.1.1 Multi-resolution 22.1.2 Super-Resolution 22.2 Multi-scale Images 22.2.1 Multi-scales 22.2.2 Multi-scale Space 22.2.3 Multi-scale Transform 22.3 Image Pyramid 22.3.1 Pyramid Structure 22.3.2 Gaussian and Laplacian Pyramids Part III: Image Analysis Chapter 23: Segmentation Introduction 23.1 Segmentation Overview 23.1.1 Segmentation Definition 23.1.2 Object and Background 23.1.3 Method Classification 23.1.4 Various Strategies 23.2 Primitive Unit Detection 23.2.1 Point Detection 23.2.2 Corner Detection 23.2.3 Line Detection 23.2.4 Curve Detection 23.3 Geometric Unit Detection 23.3.1 Bar Detection 23.3.2 Circle and Ellipse Detection 23.3.3 Object Contour 23.3.4 Hough Transform 23.4 Image Matting 23.4.1 Matting Basics 23.4.2 Matting Techniques Chapter 24: Edge Detection 24.1 Principle 24.1.1 Edge Detection 24.1.2 Sub-pixel Edge 24.2 Various Edges 24.2.1 Type of Edge 24.2.2 Edge Description 24.3 Gradients and Gradient Operators 24.3.1 Gradient Computation 24.3.2 Differential Edge Detector 24.3.3 Gradient Operators 24.3.4 Particle Gradient Operators 24.3.5 Orientation Detection 24.4 High-Order Detectors 24.4.1 Second-Derivative Detectors 24.4.2 Gaussian-Laplacian Detectors 24.4.3 Other Detectors Chapter 25: Object Segmentation Methods 25.1 Parallel-Boundary Techniques 25.1.1 Boundary Segmentation 25.1.2 Boundary Points 25.1.3 Boundary Thinning Techniques 25.2 Sequential-Boundary Techniques 25.2.1 Basic Techniques 25.2.2 Graph Search 25.2.3 Active Contour 25.2.4 Snake 25.2.5 General Active Contour 25.2.6 Graph Cut 25.3 Parallel-Region Techniques 25.3.1 Thresholding 25.3.2 Global Thresholding Techniques 25.3.3 Local Thresholding Techniques 25.3.4 Clustering and Mean Shift 25.4 Sequential-Region Techniques 25.4.1 Region Growing 25.4.2 Watershed 25.4.3 Level Set 25.5 More Segmentation Techniques Chapter 26: Segmentation Evaluation 26.1 Evaluation Scheme and Framework 26.2 Evaluation Methods and Criteria 26.2.1 Analytical Methods and Criteria 26.2.2 Empirical Goodness Methods and Criteria 26.2.3 Empirical Discrepancy Methods and Criteria 26.2.4 Empirical Discrepancy of Pixel Numbers 26.3 Systematic Comparison and Characterization Chapter 27: Object Representation 27.1 Object Representation Methods 27.1.1 Object Representation 27.1.2 Spline {8} 27.2 Boundary-Based Representation 27.2.1 Boundary Representation 27.2.2 Boundary Signature 27.2.3 Curve Representation 27.2.4 Parametric Curve 27.2.5 Curve Fitting 27.2.6 Chain Codes 27.3 Region-Based Representation 27.3.1 Polygon 27.3.2 Surrounding Region 27.3.3 Medial Axis Transform 27.3.4 Skeleton 27.3.5 Region Decomposition Chapter 28: Object Description 28.1 Object Description Methods 28.1.1 Object Description 28.1.2 Feature Description 28.2 Boundary-Based Description 28.2.1 Boundary 28.2.2 Curvature 28.3 Region-Based Description 28.3.1 Region Description 28.3.2 Moment Description 28.4 Descriptions of Object Relationship 28.4.1 Object Relationship 28.4.2 Image Topology 28.5 Attributes 28.6 Object Saliency Chapter 29: Feature Measurement and Error Analysis 29.1 Feature Measurement 29.1.1 Metric 29.1.2 Object Measurement 29.1.3 Local Invariance 29.1.4 More Invariance 29.2 Accuracy and Precision 29.3 Error Analysis 29.3.1 Measurement Error 29.3.2 Residual and Error Chapter 30: Texture Analysis 30.1 Texture Overview 30.1.1 Texture 30.1.2 Texture Elements 30.1.3 Texture Analysis 30.1.4 Texture Models 30.2 Texture Feature and Description 30.2.1 Texture Features 30.2.2 Texture Description 30.3 Statistical Approach 30.3.1 Texture Statistics 30.3.2 Co-occurrence Matrix 30.4 Structural Approach 30.4.1 Structural Texture 30.4.2 Local Binary Pattern 30.5 Spectrum Approach 30.6 Texture Segmentation 30.7 Texture Composition 30.7.1 Texture Categorization 30.7.2 Texture Generation Chapter 31: Shape Analysis 31.1 Shape Overview 31.1.1 Shape 31.1.2 Shape Analysis 31.2 Shape Representation and Description 31.2.1 Shape Representation 31.2.2 Shape Model 31.2.3 Shape Description 31.2.4 Shape Descriptors 31.3 Shape Classification 31.4 Shape Compactness 31.4.1 Compactness and Elongation 31.4.2 Specific Descriptors 31.5 Shape Complexity 31.6 Delaunay and Voronoï Meshes 31.6.1 Mesh Model 31.6.2 Delaunay Meshes 31.6.3 Voronoï Meshes 31.6.4 Maximal Nucleus Cluster Chapter 32: Motion Analysis 32.1 Motion and Analysis 32.1.1 Motion 32.1.2 Motion Classification 32.1.3 Motion Estimation 32.1.4 Various Motion Estimations 32.1.5 Motion Analysis and Understanding 32.2 Motion Detection and Representation 32.2.1 Motion Detection 32.2.2 Motion Representation 32.3 Moving Object Detection 32.3.1 Object Detection 32.3.2 Object Trajectory 32.4 Moving Object Tracking 32.4.1 Feature Tracking 32.4.2 Object Tracking 32.4.3 Object Tracking Techniques 32.4.4 Kalman Filter 32.4.5 Particle Filtering 32.5 Motion and Optical Flows 32.5.1 Motion Field 32.5.2 Optical Flow 32.5.3 Optical Flow Field 32.5.4 Optical Flow Equation Chapter 33: Image Pattern Recognition 33.1 Pattern 33.2 Pattern Recognition 33.2.1 Recognition 33.2.2 Recognition Categories 33.2.3 Image Recognition 33.2.4 Various Recognition Methods 33.3 Pattern Classification 33.3.1 Category 33.3.2 Classification 33.3.3 Test and Verification 33.4 Feature and Detection 33.4.1 Feature 33.4.2 Feature Analysis 33.5 Feature Dimension Reduction 33.5.1 Dimension Reduction 33.5.2 Manifold and Independent Component 33.6 Classifier and Perceptron 33.6.1 Classifier 33.6.2 Optimal Classifier 33.6.3 Support Vector Machine 33.6.4 Perceptron 33.7 Clustering 33.7.1 Cluster 33.7.2 Cluster Analysis 33.8 Discriminant and Decision Function 33.8.1 Discriminant Function 33.8.2 Kernel Discriminant 33.8.3 Decision Function 33.9 Syntactic Recognition 33.9.1 Grammar and Syntactic 33.9.2 Automaton 33.10 Test and Error 33.10.1 Test 33.10.2 True 33.10.3 Error Chapter 34: Biometric Recognition 34.1 Human Biometrics 34.2 Subspace Techniques 34.3 Face Recognition and Analysis 34.3.1 Face Detection 34.3.2 Face Tracking 34.3.3 Face Recognition 34.3.4 Face Image Analysis 34.4 Expression Analysis 34.4.1 Facial Expression 34.4.2 Facial Expression Analysis 34.5 Human Body Recognition 34.5.1 Human Motion 34.5.2 Other Analysis 34.6 Other Biometrics 34.6.1 Fingerprint and Gesture 34.6.2 More Biometrics Part IV: Image Understanding Chapter 35: Theory of Image Understanding 35.1 Understanding Models 35.1.1 Computational Structures 35.1.2 Active, Qualitative, and Purposive Vision 35.2 Marr´s Visual Computational Theory 35.2.1 Theory Framework 35.2.2 Three-Layer Representations Chapter 36: 3-D Representation and Description 36.1 3-D Point and Curve 36.1.1 3-D Point 36.1.2 Curve and Conic 36.1.3 3-D Curve 36.2 3-D Surface Representation 36.2.1 Surface 36.2.2 Surface Model 36.2.3 Surface Representation 36.2.4 Surface Description 36.2.5 Surface Classification 36.2.6 Curvature and Classification 36.2.7 Various Surfaces 36.3 3-D Surface Construction 36.3.1 Surface Construction 36.3.2 Construction Techniques 36.4 Volumetric Representation 36.4.1 Volumetric Models 36.4.2 Volumetric Representation Methods 36.4.3 Generalized Cylinder Representation Chapter 37: Stereo Vision 37.1 Stereo Vision Overview 37.1.1 Stereo 37.1.2 Stereo Vision 37.1.3 Disparity 37.1.4 Constraint 37.1.5 Epipolar 37.1.6 Rectification 37.2 Binocular Stereo Vision 37.2.1 Binocular Vision 37.2.2 Correspondence 37.2.3 SIFT and SURF 37.3 Multiple-Ocular Stereo Vision 37.3.1 Multibaselines 37.3.2 Trinocular 37.3.3 Multiple-Nocular 37.3.4 Post-processing Chapter 38: Multi-image 3-D Scene Reconstruction 38.1 Scene Recovery 38.1.1 3-D Reconstruction 38.1.2 Depth Estimation 38.1.3 Occlusion 38.2 Photometric Stereo Analysis 38.2.1 Photometric Stereo 38.2.2 Illumination Models 38.3 Shape from X 38.3.1 Various reconstructions 38.3.2 Structure from Motion 38.3.3 Shape from Optical Flow Chapter 39: Single-Image 3-D Scene Reconstruction 39.1 Single-Image Reconstruction 39.2 Various Reconstruction Cues 39.2.1 Focus 39.2.2 Texture 39.2.3 Shading 39.2.4 Shadow 39.2.5 Other Cues Chapter 40: Knowledge and Learning 40.1 Knowledge and Model 40.1.1 Knowledge Classification 40.1.2 Procedure Knowledge 40.1.3 Models 40.1.4 Model Functions 40.2 Knowledge Representation Schemes 40.2.1 Knowledge Representation Models 40.2.2 Knowledge Base 40.2.3 Logic System 40.3 Learning 40.3.1 Statistical Learning 40.3.2 Machine Learning 40.3.3 Zero-Shot and Ensemble Learning 40.3.4 Various Learning Methods 40.4 Inference 40.4.1 Inference Classification 40.4.2 Propagation Chapter 41: General Image Matching 41.1 General Matching 41.1.1 Matching 41.1.2 Matching Function 41.1.3 Matching Techniques 41.2 Image Matching 41.2.1 Image Matching Techniques 41.2.2 Feature Matching Techniques 41.2.3 Correlation and Cross-Correlation 41.2.4 Mask Matching Techniques 41.2.5 Diverse Matching Techniques 41.3 Image Registration 41.3.1 Registration 41.3.2 Image Registration Methods 41.3.3 Image Alignment 41.3.4 Image Warping 41.4 Graph Isomorphism and Line Drawing 41.4.1 Graph Matching 41.4.2 Line Drawing 41.4.3 Contour Labeling Chapter 42: Scene Analysis and Interpretation 42.1 Scene Interpretation 42.1.1 Image Scene 42.1.2 Scene Analysis 42.1.3 Scene Understanding 42.1.4 Scene Knowledge 42.2 Interpretation Techniques 42.2.1 Soft Computing 42.2.2 Labeling 42.2.3 Fuzzy Set 42.2.4 Fuzzy Calculation 42.2.5 Classification Models Chapter 43: Image Information Fusion 43.1 Information Fusion 43.1.1 Multi-sensor Fusion 43.1.2 Mosaic Fusion Techniques 43.2 Evaluation of Fusion Result 43.3 Layered Fusion Techniques 43.3.1 Three Layers 43.3.2 Method for Pixel Layer Fusion 43.3.3 Method for Feature Layer Fusion 43.3.4 Method for Decision Layer Fusion Chapter 44: Content-Based Retrieval 44.1 Visual Information Retrieval 44.1.1 Information Content Retrieval 44.1.2 Image Retrieval 44.1.3 Image Querying 44.1.4 Database Indexing 44.1.5 Image Indexing 44.2 Feature-Based Retrieval 44.2.1 Features and Retrieval 44.2.2 Color-Based Retrieval 44.3 Video Organization and Retrieval 44.3.1 Video Organization 44.3.2 Abrupt and Gradual Changes 44.3.3 Video Structuring 44.3.4 News Program Organization 44.4 Semantic Retrieval 44.4.1 Semantic-Based Retrieval 44.4.2 Multilayer Image Description 44.4.3 Higher Level Semantics 44.4.4 Video Understanding Chapter 45: Spatial-Temporal Behavior Understanding 45.1 Spatial-Temporal Techniques 45.1.1 Techniques and Layers 45.1.2 Spatio-Temporal Analysis 45.1.3 Action Behavior Understanding 45.2 Action and Pose 45.2.1 Action Models 45.2.2 Action Recognition 45.2.3 Pose Estimation 45.2.4 Posture Analysis 45.3 Activity and Analysis 45.3.1 Activity 45.3.2 Activity Analysis 45.4 Events 45.4.1 Event Detection 45.4.2 Event Understanding 45.5 Behavior and Understanding 45.5.1 Behavior 45.5.2 Behavior Analysis 45.5.3 Behavior Interpretation 45.5.4 Petri Net Part V: Related References Chapter 46: Related Theories and Techniques 46.1 Random Field 46.1.1 Random Variables 46.1.2 Random Process 46.1.3 Random Fields 46.1.4 Markov Random Field 46.1.5 Markov Models 46.1.6 Markov Process 46.2 Bayesian Statistics 46.2.1 Bayesian Model 46.2.2 Bayesian Laws and Rules 46.2.3 Belief Networks 46.3 Graph Theory 46.3.1 Tree 46.3.2 Graph 46.3.3 Graph Representation 46.3.4 Graph Geometric Representation 46.3.5 Directed Graph 46.3.6 Graph Model 46.3.7 Graph Classification 46.4 Compressive Sensing 46.4.1 Introduction 46.4.2 Sparse Representation 46.4.3 Measurement Coding and Decoding Reconstruction 46.5 Neural Networks 46.5.1 Neural Networks 46.5.2 Special Neural Networks 46.5.3 Training and Fitting 46.5.4 Network Operations 46.5.5 Activation Functions 46.6 Various Theories and Techniques 46.6.1 Optimalization 46.6.2 Kernels 46.6.3 Stereology 46.6.4 Relaxation and Expectation Maximization 46.6.5 Context and RANSAC 46.6.6 Miscellaneous Chapter 47: Optics 47.1 Optics and Instruments 47.1.1 Classifications 47.1.2 Instruments 47.2 Photometry 47.2.1 Intensity 47.2.2 Emission and Transmission 47.2.3 Optical Properties of the Surface 47.3 Ray Radiation 47.3.1 Radiation 47.3.2 Radiometry 47.3.3 Radiometry Standards 47.3.4 Special Lights 47.4 Spectroscopy 47.4.1 Spectrum 47.4.2 Spectroscopy 47.4.3 Spectral Analysis 47.4.4 Interaction of Light and Matter 47.5 Geometric Optics 47.5.1 Ray 47.5.2 Reflection 47.5.3 Various Reflections 47.5.4 Refraction 47.6 Wave Optics 47.6.1 Light Wave 47.6.2 Scattering and Diffraction Chapter 48: Mathematical Morphology for Binary Images 48.1 Image Morphology 48.1.1 Morphology Fundamentals 48.1.2 Morphological Operations 48.1.3 Morphological Image Processing 48.2 Binary Morphology 48.2.1 Basic Operations 48.2.2 Combined Operations and Practical Algorithms Chapter 49: Mathematical Morphology for Gray-Level Images 49.1 Gray-Level Morphology 49.1.1 Ordering Relations 49.1.2 Basic Operations 49.1.3 Combined Operations and Practical Algorithms 49.2 Soft Morphology Chapter 50: Visual Sensation and Perception 50.1 Human Visual System 50.1.1 Human Vision 50.1.2 Organ of Vision 50.1.3 Visual Process 50.2 Eye Structure and Function 50.2.1 Eye Structure 50.2.2 Retina 50.2.3 Photoreceptor 50.3 Visual Sensation 50.3.1 Sensation 50.3.2 Brightness 50.3.3 Photopic and Scotopic Vision 50.3.4 Subjective Brightness 50.3.5 Vision Characteristics 50.3.6 Virtual Vision 50.4 Visual Perception 50.4.1 Perceptions 50.4.2 Perceptual Constancy 50.4.3 Theory of Color Vision 50.4.4 Color Vision Effect 50.4.5 Color Science 50.4.6 Visual Attention 50.5 Visual Psychology 50.5.1 Laws of Visual Psychology 50.5.2 Illusion 50.5.3 Illusion of Geometric Figure and Reason Theory Chapter 51: Application of Image Technology 51.1 Television 51.1.1 Digital Television 51.1.2 Color Television 51.2 Visual Surveillance 51.2.1 Surveillance 51.2.2 Visual Inspection 51.2.3 Visual Navigation 51.2.4 Traffic 51.3 Other Applications 51.3.1 Document and OCR 51.3.2 Medical Images 51.3.3 Remote Sensing 51.3.4 Various Applications Chapter 52: International Organizations and Standards 52.1 Organizations 52.1.1 International Organizations 52.1.2 National Organizations 52.2 Image and Video Coding Standards 52.2.1 Binary Image Coding Standards 52.2.2 Grayscale Image Coding Standards 52.2.3 Video Coding Standards: MPEG 52.2.4 Video Coding Standards: H.26x 52.2.5 Other Standards 52.3 Public Systems and Databases 52.3.1 Public Systems 52.3.2 Public Databases 52.3.3 Face Databases 52.4 Other Standards 52.4.1 International System of Units 52.4.2 CIE Standards 52.4.3 MPEG Standards 52.4.4 Various Standards Bibliography Index