دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sidman. Jessica, Sitharam. Meera, St. John. Audrey سری: Discrete mathematics and its applications. ISBN (شابک) : 9781315121116, 1351647431 ناشر: CRC Press سال نشر: 2019 تعداد صفحات: 605 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 73 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب کتاب اصول سیستم های محدودیت هندسی: صلبیت (هندسه)، هندسه، جبری، هندسه، طراحی سازه -- ریاضیات، ریاضیات / هندسه / عمومی
در صورت تبدیل فایل کتاب Handbook of geometric constraint systems principles به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب اصول سیستم های محدودیت هندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover......Page 1
Half title......Page 2
Series Editors......Page 3
Title......Page 4
Copyrights......Page 5
Dedication......Page 6
Contents......Page 10
Foreword......Page 22
Preface......Page 24
Contributors......Page 26
Chapter 1 Overview and Preliminaries Meera Sitharam and Troy Baker......Page 28
1.1.1 Specifying a GCS......Page 29
1.2 Parts and Chapters of the Handbook......Page 30
1.2.1 Part I: Geometric Reasoning Techniques......Page 31
1.2.2 Part II: Distance Geometry, Configuration Space, and Real Algebraic Ge-ometry Techniques......Page 32
1.2.3 Part III: Geometric Rigidity Techniques......Page 33
1.2.4 Part IV: Combinatorial Rigidity Techniques......Page 34
1.2.4.2 Body Frameworks......Page 35
1.2.5 Missing Topics and Chapters......Page 36
1.3.2 Rigidity of Frameworks......Page 37
1.3.3 Generic Rigidity of Frameworks......Page 39
1.3.4 Approximate Degree-of-Freedom and Sparsity......Page 40
1.4 Alternative Pathway through the Book......Page 42
Part I Geometric Reasoning, Factorization and Decomposition......Page 46
Chapter2 Computer-Assisted Theorem Proving in Synthetic Geometry Julien Narboux, Predrag Janici´c, and Jacques Fleuriot......Page 48
2.2 Automated Theorem Proving......Page 49
2.2.3 Purely Synthetic Methods......Page 50
2.2.3.2 Deductive Database Method, GRAMY, and iGeoTutor......Page 51
2.2.3.3 Logic-Based Approaches......Page 53
2.2.4.1 Area Method......Page 55
2.2.4.2 Full-Angle Method......Page 57
2.2.4.3 Vector-Based Method......Page 58
2.2.4.4 Mass-Point Method......Page 59
2.2.5 Provers Implementations and Repositories of Theorems......Page 60
2.3.1 Formalization of Foundations of Geometry......Page 61
2.3.1.1 Hilbert’s Geometry......Page 62
2.3.1.2 Tarski’s Geometry......Page 64
2.3.1.3 Axiom Systems and Continuity Properties......Page 65
2.3.1.4 Other Axiom Systems and Geometries......Page 67
2.3.2 Higher Level Results......Page 68
2.3.3 Other Formalizations Related to Geometry......Page 69
2.3.4 Verified Automated Reasoning......Page 71
Chapter3 Coordinate-Free Theorem Proving in Incidence Geometry J¨urgen Richter-Gebert and Hongbo Li......Page 88
3.1.1 Incidence Geometry in the Plane......Page 89
3.1.2 Other Primitive Operations......Page 92
3.1.3 Projective Invariance......Page 93
3.2.1 Bracket Algebra and Straightening......Page 94
3.2.2 Division......Page 97
3.2.3 Final Polynomials......Page 98
3.3.1 Cayley Expansion......Page 100
3.3.2 Cayley Factorization......Page 102
3.3.3 Cayley Expansion and Factorization in Geometric Theorem Proving......Page 103
3.3.4 Rational Invariants and Antisymmetrization......Page 104
3.4.1 The Points I and J......Page 106
3.4.2 Proving Euclidean Theorems......Page 107
4.1 Introduction: the Grassmann-Cayley Algebra and Frameworks......Page 112
4.2.1 Motivation......Page 114
4.2.3 Equations on Projective Space......Page 115
4.2.5 Grassmannians and Pl¨ucker Coordinates......Page 116
4.2.6 More About Lines in 3-space......Page 117
4.3 The Bracket Algebra and Rings of Invariants......Page 118
4.3.1 Group Actions and Invariant Polynomials......Page 120
4.3.2 Relations Among the Brackets......Page 121
4.4.1 Motivation......Page 124
4.4.2 The cross product as a Join......Page 125
4.4.4 Brackets and the Grassmann-Cayley algebra......Page 126
4.5.1 Motivation......Page 127
4.5.2 The Pure Condition as a Bracket Monomial......Page 128
4.5.3 White’s Algorithm for Multilinear Grassmann-Cayley Factorization......Page 130
5.1 Euclidean Distance Geometry......Page 134
5.2 The Distance Geometry Theory of Molecular Conformation......Page 137
5.3 Inductive Geometric Reasoning by Random Sampling......Page 142
5.4 From Distances to Advanced Euclidean Invariants......Page 149
5.5 Geometric Reasoning in Euclidean Conformal Geometry......Page 156
Chapter6 Tree-Decomposable and Underconstrained Geometric Constraint Problems Ioannis Fudos, Christoph M. Hoffmann, and Robert Joan-Arinyo......Page 166
6.1 Introduction, Concepts, and Scope......Page 167
6.1.1 Geometric Constraint Systems (GCS)......Page 168
6.1.2 Constraint Graph, Deficit, and Generic Solvability......Page 169
6.1.4 Root Identification and Valid Parameter Ranges......Page 171
6.1.6 Triangle-Decomposing Solvers......Page 172
6.2 Geometric Constraint Systems......Page 174
6.3 Constraint Graph......Page 175
6.3.1 Geometric Elements and Degrees of Freedom......Page 176
6.3.3 Compound Geometric Elements......Page 177
6.3.4 Serializable Graphs......Page 178
6.3.6 Triangle Decomposability......Page 180
6.3.7 Generic Solvability and the Church-Rosser Property......Page 182
6.3.8 2D and 3D Graphs......Page 184
6.4 Solver......Page 185
6.4.1 2D Triangle-Decomposable Constraint Problems......Page 186
6.4.2 Root Identification and Order Type......Page 187
6.4.3 Extended Geometric Vocabulary......Page 193
6.5 Spatial Geometric Constraints......Page 195
6.6 Under-Constrained Geometric Constraint Problems......Page 198
7.1 Introduction......Page 208
7.1.1 Terminology and Basic Concepts......Page 209
7.1.2 Triangle-Decomposition......Page 211
7.1.3 Dulmage-Mendelsohn Decomposition......Page 212
7.1.4 Assur Decomposition......Page 213
7.1.5 The Frontier Vertex Algorithm......Page 214
7.1.6 Canonical Decomposition......Page 215
7.2.1 Numerical Instability of Rigid Body Incidence and Seam Matroid......Page 218
7.2.2 Optimal Parameterization in Recombination......Page 219
7.2.3 Reconciling Conflicting Combinatorial Preprocessors......Page 221
7.4.1 Root Selection and Navigation......Page 222
7.4.3 Dynamic Maintenance......Page 223
7.5 Conclusion......Page 224
PartII Distance Geometry, Real Algebraic Geometry, and Configuration Spaces......Page 226
8.1 Introduction......Page 228
8.2 Stress Matrices and Gale Matrices......Page 229
8.3 Dimensional Rigidity Results......Page 231
8.4.1 Affine Motions......Page 233
8.4.2 Universal Rigidity Basic Results......Page 234
8.4.3 Universal Rigidity for Special Graphs......Page 235
8.5 Glossary......Page 236
9.1 Introduction......Page 240
9.2 Metric and Cut Cones and Polytopes......Page 242
9.3 Hypermetric Cone and Hypermetric Polytope......Page 243
9.4 Cut and Metric Polytopes of Graphs......Page 245
9.5 Quasi-Semimetric Polyhedra......Page 249
9.6 Partial Metrics......Page 251
9.7 Supermetric and Hemimetric Cones......Page 252
9.8 Software Computations......Page 255
10.1 Introduction......Page 260
10.1.1 Euclidean Distance Cone......Page 261
10.3 Related Chapters......Page 262
10.4 Characterizing 2D Graphs with Convex Cayley Configuration Spaces......Page 263
10.5 Extension to other Norms, Higher Dimensions, and Flattenability......Page 265
10.5.2 Some Background on the Distance Cone......Page 267
10.5.3 Genericity and Independence in the Context of Flattenability......Page 269
10.6 Efficient Realization through Optimal Cayley Modification......Page 272
10.7 Cayley Configuration Spaces of 1-Dof Tree-Decomposable Linkages in 2D......Page 273
10.8 Conclusion......Page 277
11.1 Introduction......Page 280
11.1.1 Linkages and Joints......Page 281
11.2 Mechanisms and Algebraic Varieties......Page 282
11.2.2 Study Parameters......Page 283
11.2.3 Dual Quaternions......Page 285
11.2.4 Analyzing Mechanisms via Algebraic Varieties......Page 287
11.3 Serial Manipulators......Page 289
11.3.2 Synthesis of Open and Closed Serial Chains......Page 291
11.4 Parallel Manipulators......Page 293
11.4.1 Direct and Inverse Kinematics......Page 294
11.4.2 Singularities and Self-Motions......Page 295
11.4.3 Open Problems......Page 296
12.1 Introduction......Page 300
12.2 Ideals and Varieties......Page 302
12.3......Page 303
12.4 Structure of Algebraic Varieties......Page 304
12.4.1 Zariski Topology......Page 305
12.4.3 Maps......Page 306
12.5.1 Algebraic Relaxation......Page 307
12.5.2 Semi-Algebraic Sets......Page 308
12.5.3 Certificates......Page 310
PartIII Geometric Rigidty......Page 314
13.2 Cauchy’s Theorem......Page 316
13.3 Co-Dimension 2 Results – Bricard Octahedra......Page 317
13.4 Polyhedral Surfaces......Page 319
14.1 Introduction......Page 326
14.2 Tensegrity Frameworks......Page 327
14.2.3 Packings......Page 331
14.3 Types of Rigidity......Page 332
14.3.2 Universal and Dimensional Rigidity......Page 333
14.3.3 Operations on Tensegrities......Page 335
14.4 Examples and Applications......Page 336
14.4.1 Examples......Page 337
14.4.2 Applications......Page 338
Chapter15 Geometric Conditions of Rigidity in Nongeneric Settings Oleg Karpenkov......Page 344
15.1 Introduction......Page 345
15.2 Configuration Space of Tensegrities and its Stratification......Page 346
15.2.2 Definition of a Tensegrity......Page 347
15.2.4 Tensegrities on 4 Points in the Plane......Page 348
15.3.1 Extended Cayley Algebra......Page 349
15.3.2 Geometric Relations on Configuration Spaces of Points and Lines......Page 351
15.4.1 Examples in the Plane......Page 352
15.4.3 Non-parallelizable Tensegrities......Page 353
15.4.5 Conjecture on Strong Geometric Conditions for Tensegrities......Page 354
15.5 Surgeries on Graphs......Page 355
15.6.1.1 Basic Definitions......Page 357
15.6.1.2 Geometric Conditions for Framed Cycles......Page 358
15.6.2.1 Definition of Resolution Schemes......Page 359
15.6.2.3 HF-Surgeries on Completely Generic Resolution Schemes......Page 360
15.6.4 Framed Cycles Associated to Generic Resolutions of a Graph......Page 362
15.6.6 Techniques to Construct Geometric Conditions Defining Tensegrities......Page 363
16.1 Basic Setup......Page 368
16.2 Connelly’s Sufficiency Theorem......Page 370
16.3 Hendrickson’s Necessary Conditions......Page 372
16.3.1 Nonsufficiency......Page 373
16.5 Randomized Algorithm for Testing Generic Global Rigidity......Page 374
16.6 Surgery......Page 375
16.7 Other Spaces......Page 376
17.1 Introduction......Page 378
17.2 Projective Transfer of Infinitesimal Rigidity......Page 379
17.2.1 Coning and Spherical Frameworks......Page 380
17.2.2 Rigidity Matrices......Page 382
17.2.2.1 Spherical to Affine Transfer......Page 384
17.2.3 Equilibrium Stresses......Page 385
17.2.4 Point-Hyperplane Frameworks......Page 386
17.2.5 Tensegrity Frameworks......Page 387
17.3 Projective Frameworks......Page 388
17.4 Pseudo-Euclidean Geometries......Page 390
17.5 Transfer of Symmetric Infinitesimal Rigidity......Page 391
17.5.1 Symmetric Frameworks......Page 392
17.6 Global Rigidity......Page 393
17.6.1 Universal Rigidity......Page 395
17.6.2 Projective Transformations......Page 396
17.7 Summary and Related Topics......Page 397
PartIV Combinatorial Rigidity......Page 402
Chapter18 Planar Rigidity Brigitte Servatius and Herman Servatius......Page 404
18.1 Rigidity of Bar and Joint Frameworks......Page 405
18.1.1 Rigidity Matrix and Augmented Rigidity Matrices......Page 407
18.1.2 Rigidity Matrix as a Transformation......Page 409
18.1.3 The Infinitesimal Rigidity Matroid of a Framework......Page 411
18.2 Abstract Rigidity Matroids......Page 413
18.2.1 Characterizations of A2 and (A2)?......Page 414
18.2.2 The 2-Dimensional Generic Rigidity Matroid......Page 416
18.2.3 Cycles in G2(n)......Page 417
18.2.4 Rigid Components of G2(G)......Page 418
18.2.5 Representability of G2(n)......Page 420
18.3 Rigidity and Connectivity......Page 422
18.3.1 Birigidity......Page 423
18.3.2 Tree Decomposition Theorems......Page 424
18.3.2.1 Computation of Independence in G2(n)......Page 425
18.3.3.1 Isostatic Pinned Framework......Page 427
18.3.4 Body and Pin Structures......Page 433
18.3.5 Rigidity of Random Graphs......Page 434
19.1 Introduction......Page 440
19.2 Rigidity in Rd......Page 441
19.2.1 Inductive Operations on Frameworks......Page 443
19.2.2 Recursive Characterizations of Graphs......Page 445
19.2.3 Combinatorial Characterizations of Rigidity......Page 448
19.3 Body-Bar, Body-Hinge, Molecular, etc......Page 449
19.3.1 Geometry and Combinatorics......Page 450
19.4 Further Rigidity Contexts......Page 451
19.4.2 Infinite Frameworks......Page 452
19.4.3 Surfaces......Page 453
19.4.7 Nearly Generic Frameworks......Page 455
19.5 Summary Tables......Page 456
Chapter20 Rigidity of Body-Bar-Hinge Frameworks Csaba Kir´aly and Shin-ichi Tanigawa......Page 462
20.1.1 Body-Bar Frameworks......Page 463
20.1.2 Body-Hinge Frameworks......Page 467
20.1.3 Body-Bar-Hinge Frameworks......Page 469
20.2.2 Body-Hinge Frameworks......Page 470
20.3 Other Related Models......Page 471
20.3.2 Identified Body-Hinge Frameworks......Page 472
20.3.4 Molecular Frameworks......Page 473
20.3.5 Body-Pin Frameworks......Page 475
20.3.6 Body-Bar Frameworks with Boundaries......Page 476
20.4.1 Body-Bar Frameworks......Page 477
20.4.2 Body-Hinge Frameworks......Page 478
20.5 Graph Theoretical Aspects......Page 479
20.5.1 Tree Packing and Connectivity......Page 480
20.5.4 Algorithms......Page 482
Chapter21 Global Rigidity of Two-Dimensional Frameworks Bill Jackson, Tibor Jord´an, and Shin-Ichi Tanigawa......Page 488
21.1 Introduction......Page 489
21.2.1 Stress Matrix Characterization in Rd......Page 490
21.3 Graph Operations......Page 491
21.4 Characterization of Global Rigidity in R1 and R2......Page 493
21.5 The Rigidity Matroid......Page 494
21.5.3 Rd-Connected Graphs......Page 495
21.6.1 Highly Connected Graphs......Page 497
21.6.3 Vertex Transitive Graphs......Page 498
21.6.5 Random Graphs......Page 499
21.6.7 Squares of Gaphs, Line Graphs, and Zeolites......Page 500
21.7.1 Globally Linked Pairs of Vertices......Page 501
21.7.3 Globally Loose Pairs......Page 503
21.7.5 The Number of Non-Equivalent Realizations......Page 504
21.7.6 Stability Lemma and Neighborhood Results......Page 505
21.8 Direction Constraints......Page 506
21.8.1 Parallel Drawings......Page 507
21.8.2 Direction-Length Global Rigidity......Page 508
21.10Optimization Problems......Page 509
22.1 Introduction......Page 514
22.1.3 Constraint Graphs and Frameworks......Page 515
22.2 Point-Line Graphs and Frameworks......Page 517
22.2.1 Point-Line Frameworks and the Rigidity Map......Page 518
22.2.2 The Rigidity Matrix......Page 519
22.2.4 Affine Properties of the Point-Line Rigidity Matrix......Page 521
22.2.5 Fixed-Slope Point-Line Frameworks......Page 522
22.3.1 A Count Matroid for Point-Line Graphs......Page 523
22.3.2 A Characterization of Independence in MPL(G) when G is Naturally Bi-partite......Page 526
22.3.4 The Rank Function forPL(G)......Page 528
22.4.2 Point-Hyperplane Frameworks in Rd......Page 529
22.5 Direction-Length Frameworks......Page 530
23.1 Overview......Page 532
23.2.1 Glossary......Page 533
23.2.2 Getting to Know Body-and-Cad Frameworks......Page 534
23.2.3 Formalization of the Algebraic Setting......Page 536
23.2.4 Building a 3D Body-and-Cad Framework......Page 539
23.3.1 Glossary......Page 540
23.3.2.1 Primitive Angular and Blind Constraints......Page 542
23.4.1 Glossary......Page 544
23.4.3 Characterizing Generic Body-and-Cad Rigidity......Page 545
23.4.4 Algorithms......Page 546
23.5 Open Questions......Page 549
24.1 Introduction......Page 552
24.1.1 Glossary......Page 553
24.2.1 Points of Differentiability......Page 554
24.2.2 The Rigidity Matrix......Page 555
24.2.3 Framework Colors......Page 556
24.2.5 Path Chasing......Page 557
24.2.6 Symmetry......Page 558
24.3 Rigidity of Graphs......Page 562
24.3.2 Regular Points......Page 563
24.3.3 Symmetric Isostatic Placements......Page 564
24.3.4 Symmetric Tree Decompositions......Page 566
25.1 Introduction......Page 570
25.2.1 Glossary......Page 571
25.2.2 Symmetry-Adapted Maxwell Counts......Page 572
25.2.3 Characterizations of Symmetric Isostatic Graphs......Page 575
25.3.1 Glossary......Page 576
25.3.2 Symmetric Motions and the Orbit Rigidity Matrix......Page 578
25.3.3 Characterizations of Forced-Symmetric Rigid Graphs......Page 580
25.4.1 Glossary......Page 581
25.4.2 Phase-Symmetric Orbit Rigidity Matrices......Page 583
25.4.3 Characterizations of Symmetric Infinitesimally Rigid Graphs......Page 584
25.5.1 Glossary......Page 586
25.5.2 Maxwell Counts for Periodic Rigidity......Page 587
25.5.3 Characterizations of Periodic Rigid Graphs......Page 588
Index......Page 594