دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Komal Rizwan, Anish Khan, Abdullah Mohammed Ahmed Asiri سری: Smart Nanomaterials Technology ISBN (شابک) : 981992037X, 9789819920372 ناشر: Springer سال نشر: 2023 تعداد صفحات: 388 [389] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Functionalized Nanostructured MXenes: Synthetic Strategies and Applications from Energy to Environment Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هندبوک MXen های نانوساختار کاربردی: استراتژی ها و کاربردهای مصنوعی از انرژی تا پایداری محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Editors Introduction to MXenes 1 Introduction 2 Synthesis of 2D MXenes 3 Application of MXenes 3.1 Sensors 3.2 Drug Delivery Applications 3.3 Photo/Chemotherapy of Cancer 3.4 Tissue Engineering 3.5 Bioimaging 3.6 Antibacterial Agent 3.7 Environmental Applications 4 MXenes Incorporated Membranes 5 Conclusions References Structural Design, Properties, and Synthesis of Original MXenes 1 Two-Dimensional Materials 2 MXenes 2.1 Preparation of MXenes 2.2 Properties of MXenes 2.3 Applications of MXenes 3 Conclusion References Structural Design and Synthesis of Elemental Doped MXenes and MXenes-Based Composites 1 What Are MXenes? 2 Structural Design of MXenes 3 Types of MXenes 3.1 Elemental Doped MXenes (EDMs) 3.2 MXenes-Based Composites (MBCs) 3.3 Applications of MXenes 4 Conclusion References Functionalized MXene-Based Polymer Composites 1 Introduction 2 Structures and Properties 2.1 Polyvinyl Butyral Composites of MXene 2.2 UHMWPE Composites of MXene 2.3 Polyether Sulfone Composites of MXene 2.4 Chitosan Composites of Mxene 3 Applications of MXene Polymer Composites 3.1 Energy Storage 3.2 Biomedical Applications 3.3 Sensing Applications 4 Conclusion References Fabrication and Structural Design of MXene-Based Hydrogels 1 Introduction 2 Overview of the MXene and MXene-Based Hydrogel 3 Fabrication and Gelation Method of MXene-based Hydrogel 3.1 MXene Crosslinked with MXene to Form Hydrogel (Total MXene Hydrogel) 3.2 MXene Crosslinked with Metal Ions to Form Hydrogel 3.3 MXene-Based Micellar Hydrogels 3.4 MXenes Crosslinked with Polymer to Form Hydrogels 3.5 MXene-Based Nanocomposite Hydrogel 3.6 MXenes Crosslinked with Graphene 4 Applications of MXene-Based Hydrogels 5 Conclusion References Emerging Trends of MXenes in Supercapacitors 1 Introduction 2 Synthesis of MXenes 3 Supercapacitors 3.1 Electric Double-Layer Capacitors 3.2 Pseudocapacitors 3.3 Hybrid Supercapacitors 4 MXenes in Supercapacitors 5 Conclusion and Outlook References Recent Advancements in MXene-Based Lithium-Ion Batteries 1 Introduction 2 History of Lithium-Ion Battery 3 Different Types of Lithium-Ion Batteries 3.1 Primary Lithium-Ion Batteries 3.2 Secondary Lithium-Ion Batteries 4 Advantages of Lithium-Ion Batteries 5 Disadvantages Lithium-Ion Batteries 6 Early Lithium-Ion Batteries 7 Present Lithium-Ion Batteries 8 Future of Lithium-Ion Batteries 9 Important Elements of Lithium-Ion Batteries 9.1 Electrodes 9.2 Separators 10 How to Secure Lithium-Ion Batteries 11 MXene Energy Applications and LIBs’ Performance Enhancement 11.1 Organic Acid as a Lithium-Ion Reductant 11.2 Titanium Carbide Lithium-Ion Battery 11.3 Nitrogen as an Anode to Enhance Lithium-Ion Batteries’ Capacity 11.4 Zinc Anode for Enhancing the Capacity of LIBs 11.5 Strontium Anode in LIBs 11.6 Vanadium Carbide MXene Anode for LIBs 11.7 FeOOH/MXene Enhances the LIBs 11.8 Lithium Complex Deposition on MXene Surface 11.9 Nanostructured Material of MXene Enhances the Effect of LIBs 12 Heat Role in Lithium Batteries 13 Conclusion References MXene-Based Sodium-Ion Batteries 1 Energy Storage Devices 2 Sodium-Ion Batteries 3 Anode Materials for Sodium-Ion Batteries 4 MXene Structure 5 MXene-Based Sodium-Ion Batteries 5.1 Sodium Storage of Pure MXene 5.2 Sulfide-Based MXene Materials to Store Na+ 5.3 Oxide-Based MXenes to Store Na+ 5.4 Sodium Storage of MXene-Carbon Composites 5.5 Miscellaneous MXene Materials to Store Na+ 6 Conclusion References Design and Applications of MXene-Based Li–S Batteries 1 Introduction 2 Electrochemical Concepts and Challenges for Lithium–Sulfur Batteries 3 Free-Standing Networks for Li–S Batteries 3.1 Free-Standing Network for Sulfur Cathode 3.2 Functional Interlayers Based on Free-Standing Networks 3.3 Anode Protection Based on Free-Standing Networks 4 Introduction of MXenes 4.1 2D/3D MXenes 5 Electronic and Mechanical Aspects of MXenes 6 MXene Interactions with Sulfur 7 Fundamental Understanding of MXenes by Theoretical Calculations 8 Synthesis of MXenes 9 Assembling of MXenes 10 Administration of MXenes in Lithium–Sulfur Batteries 10.1 As a Sulfur Host 10.2 As Functional Separator Coatings 10.3 As Lithium Deposition Host 11 Summary and Future Outlook References Nanostructured MXenes for Hydrogen Storage and Energy Applications 1 Introduction 2 Importance of 2D Materials 2.1 MXenes: A Newfangled 2D Nanostructure 2.2 Applications of MXenes 2.3 Characteristics of MXenes 3 Methods for MXenes Synthesis 3.1 Hydrofluoric Acid Etching 3.2 In-Situ Hydrofluoric Acid-Forming Etching 3.3 Methods of Electrochemical Etching 3.4 Methods of Alkali Etching 4 Current Methods for Storing H2 4.1 Physical Storage 5 Chemical Storage 6 Storage of H2 in MXenes 7 Conclusion and Prospects References Diverse Applications of MXene Composites for Electrochemical Energy Storage 1 Introduction 2 MXene Composites 2.1 Applications of MXene Composites 2.2 Applications in Electrochemical Energy Storage 3 Conclusion References Potential of MXenes in Photocatalysis 1 Introduction 2 Fundamental Principle of Photocatalysis 3 Applications of MXenes-Based Photocatalysts in Degradation of Organic Pollutants 4 Applications of MXenes-Based Photocatalysts in Production of Energy Sources 5 Conclusions References Efficacy of MXene-Based Materials in the Removal of Gases 1 Introduction 2 Application of MXene-Based Materials for Gas Abatement 2.1 CO2 Abatement 2.2 Methane Abatement 2.3 Hydrogen Abatement 2.4 Other Gas Contaminants 3 Cost Analysis 4 Membrane Longevity 5 MXene Reusability 6 Arguments for Potential Uses 7 Conclusions References Environmental Remediation of Heavy Metals Through MXene Composites 1 Introduction 2 Synthesis of MXenes 3 Structure of MXenes Entailed for Heavy Metal Removal 3.1 Mono M Elements 3.2 Solid Solutions 3.3 Ordered Out of Plane Double M Elements 3.4 Ordered in Plane Double M Elements 3.5 Vacancies Ordered 3.6 Vacancies Randomly Distributed 4 Properties of MXenes Involved in Heavy Metal Adsorption 4.1 Surface Functional Moieties 4.2 Electronic Structure 4.3 Electrical Properties 4.4 Mechanical Properties 4.5 Magnetic Properties 4.6 Thermal Properties 4.7 Optical Properties 5 Structural Modifications in MXenes for Heavy Metal Uptake 5.1 Intercalation 5.2 Delamination 5.3 Surface Modifications 5.4 Doping 5.5 Composite Formation 6 Heavy Metal Remediation by MXenes 6.1 Remediation of Cr6+ 6.2 Remediation of Pb2+ 6.3 Remediation of Cu2+ 6.4 Remediation of Hg2+ 6.5 Remediation of Cd2+ 6.6 Remediation of Miscellaneous Heavy Metal Ions 7 Mechanism of Adsorption 7.1 Inner-Sphere Complexation 7.2 Ion-Exchange 7.3 Redox Reaction 7.4 Multiple Chemical Combinations 8 Conclusion References Advanced Approach of MXene-Based Materials in Removal of Radionuclides 1 Introduction 2 Application of MXenes for Adsorptive Removal of Radionuclides 2.1 Removal of Cesium (Cs) 2.2 Removal of Palladium (Pd) 2.3 Removal of Barium 2.4 Adsorptive Removal of Uranium 2.5 Adsorptive Removal of Thorium 3 Conclusion and Outlook References Functionalized Mxene Conjugates in Removal of Pharmaceuticals and Other Pollutants 1 Introduction 2 Synthesis Technique of the MXenes 3 Structure Pattern of MXenes 4 Properties 4.1 Optical Properties 4.2 Mechanical Properties 4.3 Oxidative/Thermal Stability 4.4 Hydrophilic Properties 5 Applications 5.1 Application for the Removal of the Pharmaceutical Waste 5.2 Removal of Dyes 5.3 Removal of Phenolics 5.4 Removal of Antibiotics 5.5 Removal of Radionuclides 6 Conclusion References Potential Mitigation of Dyes Through Mxene Composites 1 Introduction 2 Photocatalytic Degradation of Organic Dyes 2.1 Photocatalytic Degradation of Methylene Blue Through MXene Composites 2.2 Photocatalytic Degradation of Congo Red (CR) Dye via MXene Composites 2.3 Photocatalytic Degradation of Methyl Orange (MO) Dye Through MXene Composites 2.4 Photocatalytic Degradation of Rhodamine B (RhB) Dye via MXene Composites 2.5 Removal of Dyes by Adsorption Through MXene-Based Composites 3 Conclusion References MXene-Based Polymeric Nanocomposites for Pressure/Strain Sensing 1 Introduction 2 Synthesis Routes 2.1 In Situ Polymerization 2.2 Template Methods 2.3 Self-assembly Methods 2.4 Coating Approaches 2.5 Spinning Methods 2.6 3D Printing 3 Sensing Mechanism 4 Pressure/Strain Sensing Using MXene–Polymer Nanocomposites 4.1 1D Fiber Structures 4.2 2D Planar Structures 4.3 3D Architectures 5 Conclusion References Biosensing Applications of MXene-Based Composites 1 Introduction 2 Biosensing Application of MXene Biocomposites 2.1 Cytocompatibility 2.2 MXene-Based Electrochemical Biosensors 2.3 MXene Based Optical/Fluorescent Biosensors 2.4 Enzyme-Based Biosensors 2.5 Biosensors for Detection of Cancer Biomarkers 2.6 Cancer Theranostic Biosensors 2.7 MXene Quantum Dots as Biosensors 2.8 Applications in Drug Delivery 2.9 Antimicrobial Activity 2.10 Acetone-Based Sensors 2.11 MXene-Based Sensors for Pharmaceutical 3 Conclusion References Miscellaneous Applications of Other Mxene-Based Sensors 1 Introduction 2 Structural Features of Mxenes 3 Application of Mxene-Based Sensors 4 Tactile Sensors 5 Piezoresistive Tactile Sensor Based on Ti3C2Tx 6 Polydimethylsiloxane (PDMS)/MXene Films Tactile Sensors for Electronic Skin 7 Ti3C2Tx Nanosheet-Immersed Polyurethane Sensor for Biomonitoring 8 MXenes and 2D Transition Metal Dichalcogenides Sensor for Volatile Organic Compounds (VOCs) Detection 9 MXene-Based Wearable Biosensor for in Vitro Perspiration Analysis 10 Mxene-Based Fire Detection Sensor References Toxicology, Stability, and Environmental Impacts of MXenes and Its Composites 1 Toxicity of MXenes 1.1 MXenes Toxicity In-vitro 1.2 MXene Toxicity In-vivo 1.3 Toxicity Mechanisms 2 Stability of MXenes 2.1 Energy Storage Applications 2.2 Environmental Stability of MXenes 2.3 Structure Transition Under Different Environmental Conditions 2.4 Preparation of Stable MXenes with Various Terminated Group 2.5 Degradation at Room Temperature 2.6 Degradation Under Hydrothermal Condition 2.7 Optimization of the MAX Phase Synthesis 2.8 Modification of MXenes Structure by Changing the Lateral Size 2.9 Function of MXenes in Wearable Sensor 2.10 Physical Sensor 2.11 Strain Sensor 3 Environmental Impact of MXenes 3.1 Heavy Metal Ion Adsorption 3.2 Radionuclide Pollutant Adsorption 3.3 Gaseous Contaminant Adsorption 3.4 Adsorption of Other Pollutants 4 Conclusion References Challenges and Future Perspectives of Mxenes 1 Introduction 1.1 Challenges 2 Future Outlook 3 Conclusion References