دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Barbara Elvers (editor), Andrea Schütze (editor) سری: ISBN (شابک) : 9783527813490, 3527813497 ناشر: Wiley-VCH سال نشر: 2022 تعداد صفحات: [579] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Handbook of Fuels: Energy Sources for Transportation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای سوخت: منابع انرژی برای حمل و نقل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Contents Preface to the Second Edition Preface to the First Edition Chapter 1 Introduction 1.1 History of the Spark Ignited “Otto” Engine and of Gasoline 1.2 History of the Diesel Engine and of Diesel Fuel 1.3 History of Alternative Fuels 1.3.1 Ethanol 1.3.2 Methanol 1.3.3 Vegetable Oils and Hydrotreated Vegetable Oils (HVOs) 1.3.4 Biodiesel/FAME 1.3.5 Liquefied Petroleum Gas (LPG) 1.3.6 Natural Gas 1.4 Emission Regulations Worldwide 1.4.1 Europe 1.4.2 United States 1.4.3 Japan 1.4.4 China 1.5 Well‐to‐Wheel Analysis of Alternative Fuels 1.5.1 Life‐cycle Assessment 1.5.2 Well‐to‐Wheel 1.5.3 Boundary Conditions of the JRC Study 1.5.4 Summary of Results of the JRC Study 1.5.4.1 Alternative Liquid Fuels 1.5.4.2 Alternative Gaseous Fuels 1.5.4.3 Electricity and Hydrogen 1.5.4.4 2020+ Horizon References Part I Automotive Fuels Chapter 2 Engine Technology 2.1 Otto Engines 2.2 Diesel Engines References Chapter 3 Fuel Composition and Engine Efficiency 3.1 Fuel Composition and Engine Efficiency 3.1.1 Quality Aspects of Gasoline 3.1.1.1 Octane Quality 3.1.1.2 Volatility 3.1.1.3 Fuel Composition to Reduce Toxicity and Exhaust Emissions 3.1.1.4 Stability, Cleanliness, etc. 3.1.1.5 Performance Additives 3.1.2 Quality Aspects of Diesel Fuels 3.1.2.1 Ignition Quality 3.1.2.2 Density 3.1.2.3 Sulfur Content 3.1.2.4 Cold Flow Properties 3.1.2.5 Lubricity 3.1.2.6 Viscosity 3.1.2.7 Volatility 3.1.2.8 Diesel Fuel Stability, Cleanliness, and Safety 3.1.2.9 Diesel Fuel Effects on Exhaust Emissions 3.1.2.10 Performance Additives References Chapter 4 Fuel Components: Petroleum‐derived Fuels 4.1 Petroleum‐derived Fuels 4.1.1 Gasoline Components 4.1.1.1 Straight‐run Gasoline 4.1.1.2 Thermally Cracked Gasoline 4.1.1.3 Catalytically Cracked Gasoline 4.1.1.4 Catalytic Reformate (Platformate) 4.1.1.5 Isomerate 4.1.1.6 Alkylate 4.1.1.7 Polymer Gasoline 4.1.1.8 Oxygenates 4.1.2 Diesel Fuel Components 4.1.2.1 Straight‐run Middle Distillate 4.1.2.2 Thermally Cracked Gas Oil 4.1.2.3 Catalytically Cracked Gas Oil 4.1.2.4 Hydrocracked Gas Oil 4.1.2.5 Kerosene 4.1.2.6 Biofuel Components 4.1.2.7 Synthetic Diesel Fuel 4.1.3 Storage and Transportation References Chapter 5 Liquefied Petroleum Gas 5.1 Introduction 5.2 Properties 5.3 Production and Processing 5.3.1 Recovery from Natural Gas 5.3.1.1 Recovery and Manufacture in the Refinery 5.4 Purification 5.4.1 Adsorptive Purification 5.4.2 Absorptive Purification 5.5 Storage and Transportation 5.5.1 Aboveground Storage 5.5.2 Underground Storage 5.5.3 Transportation 5.6 Uses 5.6.1 LPG Standards and Regulations 5.6.1.1 Refueling Infrastructure 5.6.1.2 Vehicle Conversions to LPG 5.6.2 Environmental Benefits 5.6.2.1 Outlook 5.7 Safety Aspects 5.7.1 Occupational Health References Chapter 6 Natural Gas 6.1 Occurrence 6.2 Composition 6.3 Processing 6.3.1 Oil and Condensate Removal 6.3.2 Water Removal 6.3.3 Separation of Natural Gas Liquids 6.3.3.1 Cryogenic Expansion Process 6.3.4 Sulfur and Carbon Dioxide Removal 6.4 Transport/Distribution/Local Blending 6.5 Properties and Specifications 6.6 Natural Gas as Automotive Fuel 6.6.1 Vehicle Refueling Systems 6.6.1.1 Slow‐Fill Refueling 6.6.1.2 Fast‐Fill Refueling 6.6.2 Vehicle and Engine Concepts 6.6.2.1 Vehicle Technology 6.6.3 CNG Vehicles in the Market 6.6.4 Vehicle Fuel Supply System 6.6.5 Combustion and Emissions 6.7 Safety Aspects 6.8 Biomethane 6.8.1 Production 6.8.1.1 Anaerobic Fermentation 6.8.1.2 Biogas from Solids 6.8.2 Upgrading of Biogas to Natural Gas Quality 6.8.2.1 Water Scrubbing and Physical Scrubbing 6.8.2.2 Chemical Absorption 6.8.2.3 Membrane Separation 6.8.2.4 Pressure Swing Adsorption (PSA) 6.8.2.5 Cryogenic Separation 6.8.3 Storage and Transportation 6.8.3.1 Storage 6.8.3.2 Distribution 6.8.4 Biomethane Regulations 6.8.4.1 Regulations and Standards 6.8.5 Well‐to‐wheel Analysis for LPG, CNG, and Biomethane 6.8.5.1 Well‐to‐Tank Analysis 6.8.5.2 Compressed Biomethane (CBM) 6.8.5.3 Well‐to‐Wheels Analysis References Chapter 7 Synthetic Diesel Fuels 7.1 XTL Fuels 7.1.1 History 7.1.2 XTL Production Process 7.1.2.1 Fischer–Tropsch Process 7.1.2.2 IH2 Technology 7.1.2.3 BTL Fuels 7.1.3 GTL and BTL Fuel Characteristics 7.1.3.1 Cold Flow Performance (Figure ) 7.1.3.2 Lubricity Performance 7.1.3.3 Impact on Injector Cleanliness and Spray Characteristics 7.1.3.4 Advantages of Synthetic Fuels for Emission Control 7.1.4 Outlook 7.2 DME (Dimethyl Ether) and OME Fuels 7.2.1 Introduction 7.2.2 Fuel Standards 7.2.3 Fuel Properties 7.2.4 Infrastructure and Safety 7.2.4.1 Use as Fuel 7.3 Well‐to‐Wheel (WTW) Analysis for XTL and DME Fuels 7.3.1 Well‐to‐Wheels Analysis for XTL 7.3.2 Well‐to‐Tank Analysis for DME 7.4 Well‐to‐Wheel Analysis for XTL and DME References Chapter 8 Synthetic Gasoline Fuels 8.1 GTL Naphtha 8.2 Methanol to Gasoline Process (MTG) 8.3 Production Process 8.4 Fuel Properties References Chapter 9 Ethanol 9.1 Production 9.1.1 Milling 9.1.2 Processing of Starch/Maize Mash 9.1.3 Fermentation of Glucose 9.1.4 Distillation and Increase of Ethanol Concentration 9.2 Feedstock 9.3 Land Use 9.3.1 Direct Land Use Change Emissions (DLUC) 9.3.2 Indirect Land Use Change (ILUC) 9.4 Nitrogen Oxide Emissions 9.5 Water Foot Print and Impact on Water Table 9.6 Other Environmental Effects 9.6.1 Soil Quality/Erosion 9.6.2 Eutrophication and Acidification 9.6.3 Biodiversity 9.7 Bioethanol Made from Lignocellulose 9.8 Fuel Standards 9.9 Fuel Properties 9.9.1 Octane Number 9.9.1.1 Volatility and Distillation 9.9.1.2 Heat of Vaporization 9.9.1.3 Energy Content 9.9.1.4 Water Content 9.9.1.5 Corrosion Protection 9.9.1.6 Denaturant and Denaturant Content 9.9.1.7 Material Compatibility 9.9.1.8 Lubricity 9.9.1.9 Emissions 9.10 Well‐to‐Wheels Analysis for Fuel Ethanol and Ethanol Gasoline Blends 9.10.1 Pathways 9.10.1.1 Sugar Beet to Ethanol 9.10.1.2 Wheat to Ethanol 9.10.1.3 Straw to Ethanol 9.11 WTT Analysis for Bioethanol 9.12 WTW Analysis References Chapter 10 Methanol 10.1 Introduction 10.2 Physical and Chemical Properties 10.3 Production of Methanol 10.3.1 Methanol Production Capacities and Markets 10.3.2 Conventional Methanol Production Processes 10.3.2.1 Synthesis Gas Generation 10.3.2.2 Methanol Synthesis 10.3.2.3 Liquid Phase Methanol Synthesis (LPMEOH®) 10.3.2.4 Methanol Distillation 10.3.3 Renewable Methanol Production Processes 10.3.3.1 CO2 – Hydrogenation 10.4 Methanol as Fuel 10.4.1 History 10.4.2 Uses 10.4.2.1 Methanol as a Fuel for Otto Engines 10.4.2.2 Vehicle Developments 10.4.2.3 Conclusions 10.4.2.4 Methanol as Marine Fuel 10.4.3 Safety Aspects 10.4.3.1 Explosion and Fire Control 10.4.3.2 Fire Prevention 10.4.3.3 Fire Fighting 10.4.3.4 Small‐scale Storage 10.4.3.5 Large‐scale Storage 10.4.3.6 Large‐scale Transportation 10.4.3.7 Safety Regulations Governing Transportation 10.4.3.8 Methanol as a Hazard 10.5 Methanol‐based Derivatives as Fuels and Fuel Additives 10.5.1 Methanol‐to‐Gasoline (MTG) 10.5.2 Methyl tert‐Butyl Ether (MTBE) 10.5.3 tert‐Amyl Methyl Ether (TAME) 10.5.4 Dimethyl Ether (DME) 10.5.5 Oxymethylene Ether (OME) 10.5.6 Dimethyl Carbonate (DMC) and Methyl Formate (MF) 10.6 Economic Aspects 10.6.1 Gas‐based Methanol 10.6.2 Coal‐based Methanol 10.6.3 Biomass‐based Methanol 10.6.4 Renewable Methanol Based on the Recycle of Carbon Dioxide 10.7 Outlook References Chapter 11 2,5‐Dimethylfuran (DMF) and 2‐Methylfuran (MF) 11.1 Synthesis of Dimethylfuran 11.2 Properties of 2,5‐Dimethylfuran and Methylfuran 11.3 Combustion and Emissions References Chapter 12 Alternative Biofuel Options – Diesel 12.1 Biomass‐to‐Liquids (BTL) 12.2 Biodiesel (FAME) 12.2.1 Production 12.2.1.1 Introduction 12.2.1.2 Industrial Process 12.2.1.3 Feedstock 12.2.1.4 Microalgae 12.2.2 Analytical Methods 12.2.2.1 Ester Content and Fatty Acid Composition 12.2.2.2 Polyunsaturated Methyl Esters Content 12.2.2.3 Glycerol and Glyceride Content 12.2.3 Fuel Standards 12.2.3.1 United States 12.2.3.2 Europe 12.2.4 Fuel Properties 12.2.4.1 Cetane Number 12.2.4.2 Density and Energy Content 12.2.4.3 Kinematic Viscosity 12.2.4.4 Cold Temperature Properties 12.2.4.5 Filterability 12.2.4.6 Distillation 12.2.4.7 Fuel Stability 12.2.4.8 Water Content and Sediment 12.2.4.9 Lubricity 12.2.4.10 Material Compatibility4 12.2.4.11 Engine Deposits 12.2.4.12 Emissions 12.3 Vegetable Oils (VO) 12.3.1 Production 12.3.2 Fuel Properties 12.3.2.1 Kinematic Viscosity 12.3.2.2 Cetane Number 12.3.2.3 Flash Point 12.3.2.4 Carbon Residue 12.3.2.5 Heating Value 12.3.2.6 Density 12.3.2.7 Iodine Number 12.3.2.8 Fuel Stability 12.3.2.9 Calcium, Magnesium, and Phosphorus 12.3.2.10 Total Contamination and Water Content 12.3.2.11 Acid Value 12.3.3 Fuel Standards 12.4 Hydrotreated Vegetable Oils 12.4.1 Production 12.4.1.1 Process 12.4.1.2 Production Plants 12.4.2 Fuel Standard and Properties 12.4.2.1 Density and Energy Content 12.4.2.2 Distillation Characteristics 12.4.2.3 Cold Temperature Properties 12.4.2.4 Cetane Number 12.4.2.5 Fuel Stability 12.4.2.6 Lubricity 12.4.2.7 Material Compatibility 12.4.2.8 Emissions and Combustion 12.5 Well‐to‐Wheel Analysis of FAME and HVO Fuels [86, 87] 12.5.1 FAME Fuels 12.5.1.1 WTT Analysis 12.5.1.2 WTW Analysis 12.5.2 HVO Fuels 12.5.2.1 WTT Analysis 12.5.2.2 WTW Analysis References Chapter 13 Hydrogen 13.1 Introduction 13.2 Life Cycle Analysis 13.3 Hydrogen Production 13.4 Historical Overview of Hydrogen Engine: Research and Development 13.5 Properties of Hydrogen which Influence Engine Combustion 13.6 Undesirable Combustion Phenomena 13.7 Design Criteria for Hydrogen Engines 13.8 Hydrogen‐fueled Wankel Engine 13.9 Performance Characteristic of a Hydrogen‐fueled SI Engine 13.10 Exhaust Emissions 13.11 Combustion Characteristics 13.12 Hydrogen Use in CI Engines 13.13 Hydrogen‐CNG Blend 13.14 Safety Criteria for Hydrogen Engines 13.15 Hydrogen Detection 13.16 Storage of Hydrogen 13.17 Hydrogen Transportation and Distribution 13.18 Hydrogen Vehicles based on Internal Combustion Engine 13.19 Conclusion References Chapter 14 Octane Enhancers 14.1 Introduction 14.2 Technical Information 14.2.1 Combustion in Otto Engines 14.2.2 Knock Phenomena 14.2.3 Octane Number 14.3 Types of Octane Enhancers 14.4 Metal‐containing Additives 14.4.1 Alkyl Lead Compounds 14.4.2 Methylcyclopentadienyl Manganese Tricarbonyl 14.5 Ashless Octane Enhancers 14.5.1 Heteroatom‐based Components 14.5.1.1 History of Fuel Oxygenates 14.5.1.2 Properties of Oxygenates 14.5.1.3 Production 14.5.1.4 Toxicology 14.5.2 Pure Hydrocarbon Components References Further Reading Chapter 15 Hybrid and Electrified Powertrains 15.1 Introduction 15.2 Classification 15.2.1 Topologies 15.2.1.1 Serial Hybrids 15.2.1.2 Parallel Hybrids 15.2.1.3 Power‐split Hybrids 15.2.2 Degree of Hybridization 15.3 Functionalities 15.3.1 Regenerative Braking 15.3.2 Load Point Shift/Boosting 15.3.3 E‐drive and Sailing 15.4 Battery 15.4.1 NiMH Batteries 15.4.2 Li‐ion Batteries 15.5 Energy Management 15.6 Market Situation and Outlook References Chapter 16 Fuel Cells 16.1 Transportation Applications 16.2 Fundamentals 16.2.1 Auxiliaries 16.2.1.1 Air Supply System 16.2.1.2 Hydrogen Supply System 16.2.1.3 Cooling Circuit 16.2.1.4 HV Architecture 16.2.1.5 Controls 16.2.1.6 Integrated System Design 16.2.2 Onboard Hydrogen Storage 16.3 Costs, Durability, and Reliability 16.4 Cold and Freeze Start 16.5 Efficiency 16.6 Summary References Part II Automobile Exhaust Control Chapter 17 Introduction Reference Chapter 18 Pollutant Formation and Limitation 18.1 Carbon Monoxide 18.2 Hydrocarbons 18.3 Oxides of Nitrogen (NOx) 18.4 Particulate Emissions 18.5 Carbon Dioxide (CO2) 18.6 Sulfur Compounds Reference Chapter 19 Catalytic Exhaust Aftertreatment, General Concepts 19.1 The Physical Design of the Catalytic Converter 19.1.1 Ceramic Monoliths 19.1.2 Metallic Monoliths 19.1.3 Particulate Filters 19.1.4 Extruded Catalysts 19.2 The Washcoat 19.3 The Catalytic Material 19.4 Production of Catalysts References Chapter 20 Catalytic Aftertreatment of Stoichiometric Exhaust Gas 20.1 Three‐way Catalysts 20.2 Oxygen Storage in Three‐way Catalysts 20.3 Precious Metals in Three‐way Catalysis References Chapter 21 Exhaust Aftertreatment for Diesel Vehicles 21.1 The Diesel Oxidation Catalyst 21.1.1 Oxidation of Particulate Emissions 21.1.2 Oxidation of SO2 21.1.3 Oxidation of NO 21.1.4 Particulate Filter Regeneration 21.1.5 Pt/Pd Dispersion 21.2 The Particulate Filter 21.2.1 Soot Oxidation by Oxygen 21.2.2 Soot Oxidation by NO2 21.2.3 Ash Load 21.2.4 Open Filter Systems 21.3 NOx Treatment of Oxygen‐rich Exhaust 21.3.1 HC–DeNOx 21.3.2 The NOx Adsorber Catalyst 21.3.3 Selective Catalytic Reduction (SCR) with Ammonia 21.3.4 NH3 Generation Onboard 21.3.5 Vanadium SCR Catalysts 21.3.6 Zeolite‐based SCR Catalysts 21.3.7 Oxidation Catalyst Upstream of the SCR Catalyst Chapter 22 Exhaust Aftertreatment for Lean‐burn Gasoline Engines Chapter 23 Conclusion and Outlook Part III Aviation Fuels Chapter 24 Aviation Turbine Fuels 24.1 History 24.1.1 Fuel Types and Specifications 24.1.1.1 Specification Requirements 24.1.1.2 Fuel Properties 24.1.1.3 Nonspecification Properties 24.1.2 Production 24.1.2.1 Fuel 24.1.2.2 Additives 24.1.3 Handling, Storage, and Transportation 24.1.3.1 System Descriptions 24.1.3.2 Contamination‐removal Equipment 24.1.4 Legal Aspects 24.1.5 Environmental Aspects 24.1.6 Economic Aspects 24.1.7 Future Trends 24.1.7.1 Petroleum‐Derived Fuels 24.1.7.2 Alternative Fuels References Further Reading Chapter 25 Aviation Gasoline (Avgas) 25.1 History 25.2 Avgas Grades 25.2.1 Avgas 100 25.2.2 Avgas 100LL 25.2.3 Avgas 100VLL 25.2.4 Avgas UL82 25.2.5 Avgas UL87 25.2.6 Avgas UL91 Reference Further Reading Part IV Marine Fuels Chapter 26 Marine Fuels 26.1 History 26.2 Specifications 26.3 Composition 26.4 Properties 26.4.1 Distillate Fuels 26.4.2 Residual Fuels Reference Index EULA