ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Fuels: Energy Sources for Transportation

دانلود کتاب کتاب راهنمای سوخت: منابع انرژی برای حمل و نقل

Handbook of Fuels: Energy Sources for Transportation

مشخصات کتاب

Handbook of Fuels: Energy Sources for Transportation

ویرایش: [2 ed.] 
نویسندگان: ,   
سری:  
ISBN (شابک) : 9783527813490, 3527813497 
ناشر: Wiley-VCH 
سال نشر: 2022 
تعداد صفحات: [579] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 Mb 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Handbook of Fuels: Energy Sources for Transportation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای سوخت: منابع انرژی برای حمل و نقل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright
Contents
Preface to the Second Edition
Preface to the First Edition
Chapter 1 Introduction
	1.1 History of the Spark Ignited “Otto” Engine and of Gasoline
	1.2 History of the Diesel Engine and of Diesel Fuel
	1.3 History of Alternative Fuels
		1.3.1 Ethanol
		1.3.2 Methanol
		1.3.3 Vegetable Oils and Hydrotreated Vegetable Oils (HVOs)
		1.3.4 Biodiesel/FAME
		1.3.5 Liquefied Petroleum Gas (LPG)
		1.3.6 Natural Gas
	1.4 Emission Regulations Worldwide
		1.4.1 Europe
		1.4.2 United States
		1.4.3 Japan
		1.4.4 China
	1.5 Well‐to‐Wheel Analysis of Alternative Fuels
		1.5.1 Life‐cycle Assessment
		1.5.2 Well‐to‐Wheel
		1.5.3 Boundary Conditions of the JRC Study
		1.5.4 Summary of Results of the JRC Study
			1.5.4.1 Alternative Liquid Fuels
			1.5.4.2 Alternative Gaseous Fuels
			1.5.4.3 Electricity and Hydrogen
			1.5.4.4 2020+ Horizon
	References
Part I Automotive Fuels
	Chapter 2 Engine Technology
		2.1 Otto Engines
		2.2 Diesel Engines
		References
	Chapter 3 Fuel Composition and Engine Efficiency
		3.1 Fuel Composition and Engine Efficiency
			3.1.1 Quality Aspects of Gasoline
				3.1.1.1 Octane Quality
				3.1.1.2 Volatility
				3.1.1.3 Fuel Composition to Reduce Toxicity and Exhaust Emissions
				3.1.1.4 Stability, Cleanliness, etc.
				3.1.1.5 Performance Additives
			3.1.2 Quality Aspects of Diesel Fuels
				3.1.2.1 Ignition Quality
				3.1.2.2 Density
				3.1.2.3 Sulfur Content
				3.1.2.4 Cold Flow Properties
				3.1.2.5 Lubricity
				3.1.2.6 Viscosity
				3.1.2.7 Volatility
				3.1.2.8 Diesel Fuel Stability, Cleanliness, and Safety
				3.1.2.9 Diesel Fuel Effects on Exhaust Emissions
				3.1.2.10 Performance Additives
		References
	Chapter 4 Fuel Components: Petroleum‐derived Fuels
		4.1 Petroleum‐derived Fuels
			4.1.1 Gasoline Components
				4.1.1.1 Straight‐run Gasoline
				4.1.1.2 Thermally Cracked Gasoline
				4.1.1.3 Catalytically Cracked Gasoline
				4.1.1.4 Catalytic Reformate (Platformate)
				4.1.1.5 Isomerate
				4.1.1.6 Alkylate
				4.1.1.7 Polymer Gasoline
				4.1.1.8 Oxygenates
			4.1.2 Diesel Fuel Components
				4.1.2.1 Straight‐run Middle Distillate
				4.1.2.2 Thermally Cracked Gas Oil
				4.1.2.3 Catalytically Cracked Gas Oil
				4.1.2.4 Hydrocracked Gas Oil
				4.1.2.5 Kerosene
				4.1.2.6 Biofuel Components
				4.1.2.7 Synthetic Diesel Fuel
			4.1.3 Storage and Transportation
		References
	Chapter 5 Liquefied Petroleum Gas
		5.1 Introduction
		5.2 Properties
		5.3 Production and Processing
			5.3.1 Recovery from Natural Gas
				5.3.1.1 Recovery and Manufacture in the Refinery
		5.4 Purification
			5.4.1 Adsorptive Purification
			5.4.2 Absorptive Purification
		5.5 Storage and Transportation
			5.5.1 Aboveground Storage
			5.5.2 Underground Storage
			5.5.3 Transportation
		5.6 Uses
			5.6.1 LPG Standards and Regulations
				5.6.1.1 Refueling Infrastructure
				5.6.1.2 Vehicle Conversions to LPG
			5.6.2 Environmental Benefits
				5.6.2.1 Outlook
		5.7 Safety Aspects
			5.7.1 Occupational Health
		References
	Chapter 6 Natural Gas
		6.1 Occurrence
		6.2 Composition
		6.3 Processing
			6.3.1 Oil and Condensate Removal
			6.3.2 Water Removal
			6.3.3 Separation of Natural Gas Liquids
				6.3.3.1 Cryogenic Expansion Process
			6.3.4 Sulfur and Carbon Dioxide Removal
		6.4 Transport/Distribution/Local Blending
		6.5 Properties and Specifications
		6.6 Natural Gas as Automotive Fuel
			6.6.1 Vehicle Refueling Systems
				6.6.1.1 Slow‐Fill Refueling
				6.6.1.2 Fast‐Fill Refueling
			6.6.2 Vehicle and Engine Concepts
				6.6.2.1 Vehicle Technology
			6.6.3 CNG Vehicles in the Market
			6.6.4 Vehicle Fuel Supply System
			6.6.5 Combustion and Emissions
		6.7 Safety Aspects
		6.8 Biomethane
			6.8.1 Production
				6.8.1.1 Anaerobic Fermentation
				6.8.1.2 Biogas from Solids
			6.8.2 Upgrading of Biogas to Natural Gas Quality
				6.8.2.1 Water Scrubbing and Physical Scrubbing
				6.8.2.2 Chemical Absorption
				6.8.2.3 Membrane Separation
				6.8.2.4 Pressure Swing Adsorption (PSA)
				6.8.2.5 Cryogenic Separation
			6.8.3 Storage and Transportation
				6.8.3.1 Storage
				6.8.3.2 Distribution
			6.8.4 Biomethane Regulations
				6.8.4.1 Regulations and Standards
			6.8.5 Well‐to‐wheel Analysis for LPG, CNG, and Biomethane
				6.8.5.1 Well‐to‐Tank Analysis
				6.8.5.2 Compressed Biomethane (CBM)
				6.8.5.3 Well‐to‐Wheels Analysis
		References
	Chapter 7 Synthetic Diesel Fuels
		7.1 XTL Fuels
			7.1.1 History
			7.1.2 XTL Production Process
				7.1.2.1 Fischer–Tropsch Process
				7.1.2.2 IH2 Technology
				7.1.2.3 BTL Fuels
			7.1.3 GTL and BTL Fuel Characteristics
				7.1.3.1 Cold Flow Performance (Figure )
				7.1.3.2 Lubricity Performance
				7.1.3.3 Impact on Injector Cleanliness and Spray Characteristics
				7.1.3.4 Advantages of Synthetic Fuels for Emission Control
			7.1.4 Outlook
		7.2 DME (Dimethyl Ether) and OME Fuels
			7.2.1 Introduction
			7.2.2 Fuel Standards
			7.2.3 Fuel Properties
			7.2.4 Infrastructure and Safety
				7.2.4.1 Use as Fuel
		7.3 Well‐to‐Wheel (WTW) Analysis for XTL and DME Fuels
			7.3.1 Well‐to‐Wheels Analysis for XTL
			7.3.2 Well‐to‐Tank Analysis for DME
		7.4 Well‐to‐Wheel Analysis for XTL and DME
		References
	Chapter 8 Synthetic Gasoline Fuels
		8.1 GTL Naphtha
		8.2 Methanol to Gasoline Process (MTG)
		8.3 Production Process
		8.4 Fuel Properties
		References
	Chapter 9 Ethanol
		9.1 Production
			9.1.1 Milling
			9.1.2 Processing of Starch/Maize Mash
			9.1.3 Fermentation of Glucose
			9.1.4 Distillation and Increase of Ethanol Concentration
		9.2 Feedstock
		9.3 Land Use
			9.3.1 Direct Land Use Change Emissions (DLUC)
			9.3.2 Indirect Land Use Change (ILUC)
		9.4 Nitrogen Oxide Emissions
		9.5 Water Foot Print and Impact on Water Table
		9.6 Other Environmental Effects
			9.6.1 Soil Quality/Erosion
			9.6.2 Eutrophication and Acidification
			9.6.3 Biodiversity
		9.7 Bioethanol Made from Lignocellulose
		9.8 Fuel Standards
		9.9 Fuel Properties
			9.9.1 Octane Number
				9.9.1.1 Volatility and Distillation
				9.9.1.2 Heat of Vaporization
				9.9.1.3 Energy Content
				9.9.1.4 Water Content
				9.9.1.5 Corrosion Protection
				9.9.1.6 Denaturant and Denaturant Content
				9.9.1.7 Material Compatibility
				9.9.1.8 Lubricity
				9.9.1.9 Emissions
		9.10 Well‐to‐Wheels Analysis for Fuel Ethanol and Ethanol Gasoline Blends
			9.10.1 Pathways
				9.10.1.1 Sugar Beet to Ethanol
				9.10.1.2 Wheat to Ethanol
				9.10.1.3 Straw to Ethanol
		9.11 WTT Analysis for Bioethanol
		9.12 WTW Analysis
		References
	Chapter 10 Methanol
		10.1 Introduction
		10.2 Physical and Chemical Properties
		10.3 Production of Methanol
			10.3.1 Methanol Production Capacities and Markets
			10.3.2 Conventional Methanol Production Processes
				10.3.2.1 Synthesis Gas Generation
				10.3.2.2 Methanol Synthesis
				10.3.2.3 Liquid Phase Methanol Synthesis (LPMEOH®)
				10.3.2.4 Methanol Distillation
			10.3.3 Renewable Methanol Production Processes
				10.3.3.1 CO2 – Hydrogenation
		10.4 Methanol as Fuel
			10.4.1 History
			10.4.2 Uses
				10.4.2.1 Methanol as a Fuel for Otto Engines
				10.4.2.2 Vehicle Developments
				10.4.2.3 Conclusions
				10.4.2.4 Methanol as Marine Fuel
			10.4.3 Safety Aspects
				10.4.3.1 Explosion and Fire Control
				10.4.3.2 Fire Prevention
				10.4.3.3 Fire Fighting
				10.4.3.4 Small‐scale Storage
				10.4.3.5 Large‐scale Storage
				10.4.3.6 Large‐scale Transportation
				10.4.3.7 Safety Regulations Governing Transportation
				10.4.3.8 Methanol as a Hazard
		10.5 Methanol‐based Derivatives as Fuels and Fuel Additives
			10.5.1 Methanol‐to‐Gasoline (MTG)
			10.5.2 Methyl tert‐Butyl Ether (MTBE)
			10.5.3 tert‐Amyl Methyl Ether (TAME)
			10.5.4 Dimethyl Ether (DME)
			10.5.5 Oxymethylene Ether (OME)
			10.5.6 Dimethyl Carbonate (DMC) and Methyl Formate (MF)
		10.6 Economic Aspects
			10.6.1 Gas‐based Methanol
			10.6.2 Coal‐based Methanol
			10.6.3 Biomass‐based Methanol
			10.6.4 Renewable Methanol Based on the Recycle of Carbon Dioxide
		10.7 Outlook
		References
	Chapter 11 2,5‐Dimethylfuran (DMF) and 2‐Methylfuran (MF)
		11.1 Synthesis of Dimethylfuran
		11.2 Properties of 2,5‐Dimethylfuran and Methylfuran
		11.3 Combustion and Emissions
		References
	Chapter 12 Alternative Biofuel Options – Diesel
		12.1 Biomass‐to‐Liquids (BTL)
		12.2 Biodiesel (FAME)
			12.2.1 Production
				12.2.1.1 Introduction
				12.2.1.2 Industrial Process
				12.2.1.3 Feedstock
				12.2.1.4 Microalgae
			12.2.2 Analytical Methods
				12.2.2.1 Ester Content and Fatty Acid Composition
				12.2.2.2 Polyunsaturated Methyl Esters Content
				12.2.2.3 Glycerol and Glyceride Content
			12.2.3 Fuel Standards
				12.2.3.1 United States
				12.2.3.2 Europe
			12.2.4 Fuel Properties
				12.2.4.1 Cetane Number
				12.2.4.2 Density and Energy Content
				12.2.4.3 Kinematic Viscosity
				12.2.4.4 Cold Temperature Properties
				12.2.4.5 Filterability
				12.2.4.6 Distillation
				12.2.4.7 Fuel Stability
				12.2.4.8 Water Content and Sediment
				12.2.4.9 Lubricity
				12.2.4.10 Material Compatibility4
				12.2.4.11 Engine Deposits
				12.2.4.12 Emissions
		12.3 Vegetable Oils (VO)
			12.3.1 Production
			12.3.2 Fuel Properties
				12.3.2.1 Kinematic Viscosity
				12.3.2.2 Cetane Number
				12.3.2.3 Flash Point
				12.3.2.4 Carbon Residue
				12.3.2.5 Heating Value
				12.3.2.6 Density
				12.3.2.7 Iodine Number
				12.3.2.8 Fuel Stability
				12.3.2.9 Calcium, Magnesium, and Phosphorus
				12.3.2.10 Total Contamination and Water Content
				12.3.2.11 Acid Value
			12.3.3 Fuel Standards
		12.4 Hydrotreated Vegetable Oils
			12.4.1 Production
				12.4.1.1 Process
				12.4.1.2 Production Plants
			12.4.2 Fuel Standard and Properties
				12.4.2.1 Density and Energy Content
				12.4.2.2 Distillation Characteristics
				12.4.2.3 Cold Temperature Properties
				12.4.2.4 Cetane Number
				12.4.2.5 Fuel Stability
				12.4.2.6 Lubricity
				12.4.2.7 Material Compatibility
				12.4.2.8 Emissions and Combustion
		12.5 Well‐to‐Wheel Analysis of FAME and HVO Fuels [86, 87]
			12.5.1 FAME Fuels
				12.5.1.1 WTT Analysis
				12.5.1.2 WTW Analysis
			12.5.2 HVO Fuels
				12.5.2.1 WTT Analysis
				12.5.2.2 WTW Analysis
		References
	Chapter 13 Hydrogen
		13.1 Introduction
		13.2 Life Cycle Analysis
		13.3 Hydrogen Production
		13.4 Historical Overview of Hydrogen Engine: Research and Development
		13.5 Properties of Hydrogen which Influence Engine Combustion
		13.6 Undesirable Combustion Phenomena
		13.7 Design Criteria for Hydrogen Engines
		13.8 Hydrogen‐fueled Wankel Engine
		13.9 Performance Characteristic of a Hydrogen‐fueled SI Engine
		13.10 Exhaust Emissions
		13.11 Combustion Characteristics
		13.12 Hydrogen Use in CI Engines
		13.13 Hydrogen‐CNG Blend
		13.14 Safety Criteria for Hydrogen Engines
		13.15 Hydrogen Detection
		13.16 Storage of Hydrogen
		13.17 Hydrogen Transportation and Distribution
		13.18 Hydrogen Vehicles based on Internal Combustion Engine
		13.19 Conclusion
		References
	Chapter 14 Octane Enhancers
		14.1 Introduction
		14.2 Technical Information
			14.2.1 Combustion in Otto Engines
			14.2.2 Knock Phenomena
			14.2.3 Octane Number
		14.3 Types of Octane Enhancers
		14.4 Metal‐containing Additives
			14.4.1 Alkyl Lead Compounds
			14.4.2 Methylcyclopentadienyl Manganese Tricarbonyl
		14.5 Ashless Octane Enhancers
			14.5.1 Heteroatom‐based Components
				14.5.1.1 History of Fuel Oxygenates
				14.5.1.2 Properties of Oxygenates
				14.5.1.3 Production
				14.5.1.4 Toxicology
			14.5.2 Pure Hydrocarbon Components
		References
		Further Reading
	Chapter 15 Hybrid and Electrified Powertrains
		15.1 Introduction
		15.2 Classification
			15.2.1 Topologies
				15.2.1.1 Serial Hybrids
				15.2.1.2 Parallel Hybrids
				15.2.1.3 Power‐split Hybrids
			15.2.2 Degree of Hybridization
		15.3 Functionalities
			15.3.1 Regenerative Braking
			15.3.2 Load Point Shift/Boosting
			15.3.3 E‐drive and Sailing
		15.4 Battery
			15.4.1 NiMH Batteries
			15.4.2 Li‐ion Batteries
		15.5 Energy Management
		15.6 Market Situation and Outlook
		References
	Chapter 16 Fuel Cells
		16.1 Transportation Applications
		16.2 Fundamentals
			16.2.1 Auxiliaries
				16.2.1.1 Air Supply System
				16.2.1.2 Hydrogen Supply System
				16.2.1.3 Cooling Circuit
				16.2.1.4 HV Architecture
				16.2.1.5 Controls
				16.2.1.6 Integrated System Design
			16.2.2 Onboard Hydrogen Storage
		16.3 Costs, Durability, and Reliability
		16.4 Cold and Freeze Start
		16.5 Efficiency
		16.6 Summary
		References
Part II Automobile Exhaust Control
	Chapter 17 Introduction
		Reference
	Chapter 18 Pollutant Formation and Limitation
		18.1 Carbon Monoxide
		18.2 Hydrocarbons
		18.3 Oxides of Nitrogen (NOx)
		18.4 Particulate Emissions
		18.5 Carbon Dioxide (CO2)
		18.6 Sulfur Compounds
		Reference
	Chapter 19 Catalytic Exhaust Aftertreatment, General Concepts
		19.1 The Physical Design of the Catalytic Converter
			19.1.1 Ceramic Monoliths
			19.1.2 Metallic Monoliths
			19.1.3 Particulate Filters
			19.1.4 Extruded Catalysts
		19.2 The Washcoat
		19.3 The Catalytic Material
		19.4 Production of Catalysts
		References
	Chapter 20 Catalytic Aftertreatment of Stoichiometric Exhaust Gas
		20.1 Three‐way Catalysts
		20.2 Oxygen Storage in Three‐way Catalysts
		20.3 Precious Metals in Three‐way Catalysis
		References
	Chapter 21 Exhaust Aftertreatment for Diesel Vehicles
		21.1 The Diesel Oxidation Catalyst
			21.1.1 Oxidation of Particulate Emissions
			21.1.2 Oxidation of SO2
			21.1.3 Oxidation of NO
			21.1.4 Particulate Filter Regeneration
			21.1.5 Pt/Pd Dispersion
		21.2 The Particulate Filter
			21.2.1 Soot Oxidation by Oxygen
			21.2.2 Soot Oxidation by NO2
			21.2.3 Ash Load
			21.2.4 Open Filter Systems
		21.3 NOx Treatment of Oxygen‐rich Exhaust
			21.3.1 HC–DeNOx
			21.3.2 The NOx Adsorber Catalyst
			21.3.3 Selective Catalytic Reduction (SCR) with Ammonia
			21.3.4 NH3 Generation Onboard
			21.3.5 Vanadium SCR Catalysts
			21.3.6 Zeolite‐based SCR Catalysts
			21.3.7 Oxidation Catalyst Upstream of the SCR Catalyst
	Chapter 22 Exhaust Aftertreatment for Lean‐burn Gasoline Engines
	Chapter 23 Conclusion and Outlook
Part III Aviation Fuels
	Chapter 24 Aviation Turbine Fuels
		24.1 History
			24.1.1 Fuel Types and Specifications
				24.1.1.1 Specification Requirements
				24.1.1.2 Fuel Properties
				24.1.1.3 Nonspecification Properties
			24.1.2 Production
				24.1.2.1 Fuel
				24.1.2.2 Additives
			24.1.3 Handling, Storage, and Transportation
				24.1.3.1 System Descriptions
				24.1.3.2 Contamination‐removal Equipment
			24.1.4 Legal Aspects
			24.1.5 Environmental Aspects
			24.1.6 Economic Aspects
			24.1.7 Future Trends
				24.1.7.1 Petroleum‐Derived Fuels
				24.1.7.2 Alternative Fuels
		References
		Further Reading
	Chapter 25 Aviation Gasoline (Avgas)
		25.1 History
		25.2 Avgas Grades
			25.2.1 Avgas 100
			25.2.2 Avgas 100LL
			25.2.3 Avgas 100VLL
			25.2.4 Avgas UL82
			25.2.5 Avgas UL87
			25.2.6 Avgas UL91
		Reference
		Further Reading
Part IV Marine Fuels
	Chapter 26 Marine Fuels
		26.1 History
		26.2 Specifications
		26.3 Composition
		26.4 Properties
			26.4.1 Distillate Fuels
			26.4.2 Residual Fuels
		Reference
Index
EULA




نظرات کاربران