ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of food enzymology

دانلود کتاب راهنمای آنزیم شناسی مواد غذایی

Handbook of food enzymology

مشخصات کتاب

Handbook of food enzymology

ویرایش:  
نویسندگان: , ,   
سری: Food science and technology (Marcel Dekker, Inc.), 122 
ISBN (شابک) : 0824706862, 9780824706869 
ناشر: Marcel Dekker  
سال نشر: 2003 
تعداد صفحات: 1052 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Handbook of food enzymology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای آنزیم شناسی مواد غذایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Handbook Of Food Enzymology......Page 1
Preface......Page 3
Contents......Page 5
Contributors......Page 11
B.Primary Structures of Proteins......Page 16
E.Quaternary Structure......Page 17
H.Protein Crystallization......Page 18
A.Discovery of Enzymes......Page 19
2. Effect of Substrate Concentration on Velocity......Page 20
4. Further Refinements of Kinetics......Page 21
A. Tools for Purification of Enzymes......Page 22
REFERENCES......Page 23
II. THE EARLY PERIOD TO 1880......Page 26
A. Findings and Empirical Results......Page 27
B. Technology......Page 29
A. Growing Interest......Page 30
B. Technical Development......Page 31
IV. DEVELOPMENTS SINCE 1940......Page 33
REFERENCES......Page 34
II. THE THREE-TIER CLASSIFICATION......Page 36
1. Oxidoreductases......Page 37
5. Isomerases......Page 38
4. In Summary......Page 40
A. How Efficient Are Enzymes as Catalysts?......Page 41
1. Nature of the Binding Site......Page 42
2. Catalysis......Page 43
3. Summary......Page 44
REFERENCES......Page 45
B. Pathway of Enzymatic Reactions......Page 46
C. Concept of Initial Velocity in Enzymology......Page 47
A. Initial Velocity vs. Substrate Concentration......Page 48
1. Determination of Km and Vmax for One-Substrate Reactions......Page 49
2. Determination of Km and Vmax for Two-2. Substrate Reactions......Page 50
III. EFFECT OF ENZYME CONCENTRATION ON RATE OF ENZYME- CATALYZED REACTIONS......Page 51
C. Presence of Irreversible Inhibitor in Reaction System......Page 52
A. Nature and Essentially of Cofactors......Page 53
B. Unique Features of Cofactors......Page 54
A. Nature and Essentially of Cofactors......Page 55
B. Reversible Inhibitors......Page 56
B. Why Do Enzyme- Catalyzed Reaactions Have pH Optima?......Page 58
A. General Discussion......Page 60
D. Effect of Catalyst on Ea and Relative Rates......Page 61
E. Factors Accounting for Catalytic Efficiency of Enzymes......Page 62
REFERENCES......Page 63
II. A GENERAL SCHEME FOR ENZYME......Page 64
IV. MODELING ENZYME INACTIVATION KINETICS......Page 65
1. First- Order Model......Page 66
2. Distinct Isozyme Model......Page 67
4. Consecutive Step Model......Page 68
2. Pressure Dependence at Constant Temperature......Page 69
C. Selection of a Regression Model and Method for Kinetic Parameter Estimation......Page 70
2. Selection Between Two- Step Versus One- Step Regression......Page 71
REFERENCES......Page 72
II. OVERVIEW OF APPLICABLE LAWS......Page 74
A. Horizontal Harmonized Laws......Page 75
A. Horizontal Enzyme Regulations......Page 76
3. National Enzyme Regulation in the United Kingdom......Page 77
A. Consequences of Present Regulatory Situation......Page 78
B. Wishes of the European Enzyme Industry for the Future......Page 79
REFERENCES......Page 80
I. INTRODUCTION......Page 81
A. Origin......Page 82
B. Role of the FDA in Regulation of Enzymes in Food......Page 83
C. GRAS Petitions to FDA......Page 84
B. § 173— Secondary Direct Food Additives......Page 85
C. § 184— Direct Food Substances Affirmed as Generally Recognized as Safe ( GRAS)......Page 87
2. § 184.1685– Rennet ( Animal Derived) and Chymosin ( Fermentation Derived) Preparation......Page 88
REFERENCES......Page 90
I. INTRODUCTION......Page 91
II. EFFECT OF TEMPERATURE ON STABILITY AND FUNCTION OF......Page 92
III. THERMODYNAMIC ASPECTS OF TEMPERATURE ADAPTATION......Page 94
A. Proteins from ( Hyper-) thermophiles......Page 96
1. Enzyme Activity at Low Temperatures......Page 101
2. Relationship Between Cold Activity and Protein Stability......Page 103
V. TEMPERATURE ADAPTATION BY SITE- DIRECTED MUTAGENESIS AND DIRECTED EVOLUTION......Page 105
A. Thermophilic Enzymes......Page 107
B. Psychrophilic Enzymes......Page 108
REFERENCES......Page 109
II. NITROGEN- FIXING ORGANISMS AND CROP PLANTS......Page 115
A. Molybdenum Nitrogenase......Page 117
C. Streptomyces thermoautotrophicus Nitrogenase......Page 118
D. Mechanism of Nitrogenase Action......Page 119
E. Role of MgATP in Nitrogenase Catalysis......Page 120
F. Electron Transport to Nitrogenase......Page 121
V. MATURATION OF NITROGENASE......Page 122
VI. REGULATION OF NITROGENASE EXPRESSION......Page 123
VII. SUMMARY AND OUTLOOK......Page 124
REFERENCES......Page 125
II. THE STARCH BIOSYNTHETIC PATHWAY......Page 131
III. STARCH BIOSYNTHETIC ENZYMES AND THEIR ISOFORMS......Page 132
2. Soluble Starch Synthases......Page 133
C. Starch Branching Enzymes......Page 134
D. Starch Debranching Enzyme......Page 135
REFERENCES......Page 136
II. FATTY ACIDS AND COMPLEX LIPIDS......Page 139
A. Carbon Source......Page 141
C. Fatty Acid Synthase......Page 142
D. Chain Termination......Page 144
E. Unsaturated and Polyunsaturated Fatty Acids......Page 145
A. Assembly......Page 147
B. Desaturation and Its Relationship to Oil Assembly......Page 149
C. Transacylation......Page 150
A. Autoxidation and Antioxidants......Page 151
B. Oxylipin Biosynthesis ( Fig. 4)......Page 152
REFERENCES......Page 154
References Added in Proof......Page 159
I. PLANT PHOSPHOLIPIDS......Page 160
II. BIOSYNTHESIS OF CDP-DIACYLGLYCEROL IN PLANTS......Page 161
B. Phosphatidylinositols......Page 162
C. Phosphatidylserine and Phosphatidylethanolamine......Page 164
V. SYNTHESIS OF PHOSPHATIDYLETHANOLAMINE AND PHOSPHATIDYLCHOLINE FROM DIACYLGLYCEROL......Page 165
VI. PHOSPHOLIPID MODIFYING ENZYMES......Page 168
REFERENCES......Page 169
II. TASTE......Page 174
A. Lipoxygenases......Page 176
E. Polyphenol Oxidases......Page 177
C. Peroxidases......Page 178
E. Hexose Oxidases......Page 179
B. ( Poly) phenol Oxidases and Peroxidases......Page 180
B. Xanthine Oxidases......Page 181
VII. CONCLUDING REMARKS......Page 182
REFERENCES......Page 183
I. INTRODUCTION......Page 187
B. Expression of Enzymes in Plants......Page 188
D. Exploitation of Plant Characteristics......Page 189
IV. COMPARISON OF HOSTS FOR ENZYME PRODUCTION......Page 190
B. Process- Dependent Conversion ( Fig. 1b)......Page 192
C. Seed- Formulated Enzymes ( Fig. 1c)......Page 194
B. Phytase......Page 196
D. PhytaSeed......Page 197
E. Application of Transgenic Seeds Containing Phytase......Page 198
REFERENCES......Page 199
I. INTRODUCTION......Page 204
II. HISTORICAL BACKGROUND......Page 205
1. Transcription Phase......Page 206
2. Translation Phase......Page 209
A. Nonhydrolytic Posttranslational Enzymatic Modification......Page 211
B. Hydrolytic Posttranslational Enzymatic Modification......Page 214
C. In Vivo Turnover of Proteins......Page 217
V. COMMERCIAL UTILIZATION OF KNOWLEDGE FROM IN VIVO PROTEIN BIOSYNTHESIS......Page 218
REFERENCES......Page 219
II. UNWINDING......Page 221
B. NTP Binding and ATP Hydrolysis......Page 222
III. PRIMING......Page 223
B. Molecular Structure......Page 224
C. Reaction Mechanism......Page 226
REFERENCES......Page 227
I. INTRODUCTION......Page 230
II. PROTEINS, PROTEIN HYDROLYSIS, AND PROTEIN HYDROLYSATES......Page 231
B. The Enzymes......Page 232
C. Protein Raw Materials......Page 233
3. Determination of the Amount of Amino Nitrogen......Page 234
IV. APPLICATIONS......Page 236
2. Reduced Allergenicity......Page 237
1. Surface Properties......Page 238
3. Solubility......Page 240
C. Organoleptic Properties......Page 241
V. CONCLUDING REMARKS......Page 242
REFERENCES......Page 243
I. INTRODUCTION......Page 246
A. General Properties......Page 247
B. Lipase Specificities......Page 248
C. Effect of the Thermodynamic Water Activity......Page 249
B. Immobilization of Lipase on Inert Carriers......Page 250
D. Process Modeling......Page 251
E. Stability of Immobilized Lipases......Page 252
B. Melting Properties of Triglycerides......Page 253
D. Fatty Acid Enrichment......Page 254
2. Enrichment of Long- Chain Polyunsaturated Fatty Acids......Page 255
A. Monoglycerides......Page 256
VI. FUTURE PERSPECTIVE......Page 257
REFERENCES......Page 258
I. INTRODUCTION......Page 263
A. Plasmin......Page 265
3. Significance of Plasmin Activity in Milk......Page 268
4. Proteinase Inhibitors in Milk......Page 269
III. LIPASES AND ESTERASES......Page 270
B. Significance of Lipase......Page 271
A. Assay Methods......Page 272
C. Reactivation of Phosphatase......Page 273
A. Isolation and Characterization......Page 274
VI. LYSOZYME......Page 275
A. Assay......Page 276
B. Isolation......Page 277
X. SULFHYDRYL OXIDASE......Page 278
XII. CATALASE......Page 279
B. Significance......Page 280
XV. SUMMARY......Page 281
REFERENCES......Page 282
II. PROTEINASES......Page 286
1. Enzymatic Coagulation of Milk......Page 287
b. Rennets.......Page 288
c. Factors Affecting the Hydrolysis of k-Casein......Page 289
a. Significance of Proteolysis.......Page 290
c. Contribution of Coagulant to Proteolysis in Cheese......Page 291
3. Acceleration of Cheese Ripening......Page 292
3. Modification of Protein Functionality......Page 294
A. Lipases in Cheese Production......Page 295
IV. BETA-GALACTOSIDASE......Page 296
VI. GLUCOSE OXIDASE......Page 300
VII. SUPEROXIDE DIMUTASE......Page 301
X. LACTOPEROXIDASE......Page 302
XII. BETA-LACTAMASE......Page 303
REFERENCES......Page 304
II. STRUCTURE AND OCCURRENCE OF GLYCOCONJUGATED FLAVOR COMPOUNDS......Page 309
A. Sequential Hydrolysis......Page 311
A. Plant- Originated Glycosidases......Page 312
2. Yeast......Page 313
3. Filamentous Fungi......Page 314
A. Effect of pH on Activity and Stability......Page 315
C. Aglycone and Sugar Specificity of Glycosidases......Page 317
1. Glucose Inhibition......Page 318
2. Glucono- Lactone......Page 319
A. Wine Flavor Enhancement......Page 320
B. Fruit Juices......Page 324
A. Off- flavor Formation......Page 325
B. Decolorization Effect......Page 327
REFERENCES......Page 328
I. INTRODUCTION......Page 336
2. Prepolymers......Page 337
3. Procedures......Page 338
C. Miscellaneous......Page 339
A. Enzymes......Page 340
B. Cells......Page 341
1. Microbial Cells......Page 342
A. Chain Length......Page 343
REFERENCES......Page 344
II. PRINCIPLES OF GENETIC IMMOBILIZATION OF ENZYME ON YEAST CELL SURFACE......Page 347
III. GENETIC IMMOBILIZATION OF AMYLOLYTIC ENZYMES ON YEAST CELL SURFACE......Page 348
2. Detection of Glucoamylase Activity......Page 349
4. Assimilation of Starch......Page 351
2. Stability of the Strain Harboring the Integrative Plasmid......Page 353
1. Construction of an Integrative Plasmid......Page 354
IV. GENETIC IMMOBILIZATION OF CELLULOLYTIC ENZYMES ON YEAST CELL SURFACE......Page 355
1. Construction of a Multicopy Plasmid......Page 356
3. Analysis of Saccharides......Page 358
3. Assimilation of Cello- oligosaccharides......Page 359
REFERENCES......Page 360
II. WHY USE AN IMMOBILIZED ENZYME?......Page 362
III. ECONOMIC CONSIDERATIONS FOR AN IMMOBILIZED ENZYME BIOPROCESS......Page 363
B. Production of Hydrolyzed Whey Syrups Using Immobilized b- Galactosidase......Page 364
D. Production of Specific Amino Acids......Page 365
H. Production of Modified Triacyglycerols ( Fats)......Page 366
V. FUTURE OPPORTUNITIES......Page 367
REFERENCES......Page 368
II. METHODOLOGIES AND TOOLS AVAILABLE......Page 370
B. Covalent Binding......Page 371
III. TYPES OF ANALYSIS POSSIBLE......Page 372
1. Simple Substrates Analysis......Page 373
5. Substrate Recycling......Page 374
2. Induced Bioluminescence......Page 375
V. QUALITY CONTROL......Page 376
REFERENCES......Page 377
A. Search of Enzymes from Exotic Environments......Page 381
1. Immobilization......Page 383
III. CREATING NOVEL ENZYMES BY DIRECTED EVOLUTION......Page 384
IV. METABOLIC ENGINEERING......Page 385
V. ARTIFICIAL ENZYMES......Page 386
REFERENCES......Page 387
A. Reactions Catalyzed: Behavioral Anomalies......Page 391
B. Historical Aspects......Page 392
II. IMPORTANCE OF CATALASE IN FOOD SCIENCE AND TECHNOLOGY......Page 393
III. MOLECULAR STRUCTURE......Page 394
A. Formation of Compound I......Page 396
C. Formation of Compound II......Page 397
5. Calculation of Results......Page 398
5. Procedure......Page 399
VI. PURIFICATION OF CATALASE......Page 400
REFERENCES......Page 401
III. PEROXIDASE FAMILIES AND SUPERFAMILIES......Page 404
A. Specific Mechanism of Action......Page 405
B. Substrate Specificity......Page 406
VI. DETERMINATION OF HRP ACTIVITY......Page 407
4. Calculation......Page 408
A. Initial Extraction......Page 409
C. Reverse Micellar Purification of HRP......Page 410
REFERENCES......Page 411
II. BIOLOGICAL DISTRIBUTION OF GPX......Page 413
A. Molecular Weight and Physical Properties......Page 414
B. Protein Structure......Page 415
A. Kinetics of GPX......Page 416
C. Substrate Specificity......Page 417
1. pH Effects......Page 418
1. Method 1: Coupled Enzymatic Assay......Page 419
VII. PURIFICATION......Page 420
REFERENCES......Page 422
II. REACTION CATALYZED......Page 425
B. Determination of GOX Activity......Page 426
C. Specific Activity......Page 427
G. Protein Properties......Page 428
A. Removal of glucose ( 10)......Page 429
1. Toothpaste......Page 430
REFERENCES......Page 431
II. IMPORTANCE TO QUALITY OF FOOD......Page 433
V. STRUCTURES AND STRUCTURE– FUNCTION RELATIONSHIP......Page 434
VI. CATALYTIC PROPERTIES AND MECHANISMS......Page 436
VII. QUALITATIVE AND QUANTITATIVE DETERMINATION OF ACTIVITY......Page 438
VIII. PURIFICATION......Page 439
REFERENCES......Page 440
I. INTRODUCTION......Page 443
II. PROPERTIES AS PROTEIN......Page 444
III. PROPERTIES AS ENZYMES......Page 446
IV. ENZYMATIC ASSAY......Page 448
V. PURIFICATION......Page 449
REFERENCES......Page 450
II. SOME UTILIZATION OF ADH IN FOOD TECHNOLOGY......Page 452
2. Coenzyme- Binding Domain......Page 454
4. Substrate- Binding Site......Page 455
B. Alcohol Dehydrogenase from Yeast ( YADH)......Page 456
A. Substrate Specificity and Activity......Page 457
3. Effect of Pressure on Activities of YADH and HLADH......Page 459
C. Reaction Mechanism of HLADH......Page 460
A. Specific Activity with Assay Conditions......Page 461
VI. PURIFICATION OF ADH......Page 462
REFERENCES......Page 463
A. Properties as Protein......Page 465
1. Kynuramine Oxidation Method......Page 466
2. Radiochemical Method......Page 467
A. Properties as Protein......Page 468
B. Properties as Enzyme......Page 469
REFERENCES......Page 471
C. Enzyme Commission Designation......Page 475
A. Substrates......Page 476
A. Substrate Preparation......Page 477
B. Assay for Prolyl Hydroxylase......Page 478
VIII. PROLYL 4- HYDROXYLASE PURIFICATION......Page 479
REFERENCES......Page 480
II. PHYSIOLOGICAL IMPORTANCE......Page 482
A. Molecular Weight......Page 483
C. Proposed Mechanism......Page 484
B. Decarboxylation of 2- Oxo-CGlutarate......Page 485
VIII. LYSYL HYDROXYLASE PURIFICATION......Page 486
REFERENCES......Page 487
III. LOCATION IN TISSUES......Page 489
A. Substrates......Page 490
C. Proposed Mechanism......Page 491
D. Inhibitors......Page 492
B. Simple Amine Substrates......Page 493
A. Purification Steps ( Table 2)......Page 494
REFERENCES......Page 496
II. DISTRIBUTION OF SOD......Page 498
III. PROPERTIES OF SOD PROTEINS......Page 499
V. QUALITATIVE AND QUANTITATIVE DETERMINATION......Page 500
1. Reagents......Page 501
REFERENCES......Page 502
I. INTRODUCTION......Page 504
II. IMPORTANCE TO FOOD QUALITY AND FOOD PROCESSING......Page 505
C. Secondary, Tertiary, and Quaternary Structure......Page 506
IV. ENZYMATIC PROPERTIES OF POLYPHENOL OXIDASES......Page 507
V. MEASUREMENT OF POLYPHENOL OXIDASE ACTIVITY......Page 511
1. Use of Tritium- Labeled Substrate......Page 512
4. Use of Diphenol Conversion Rates to o- Benzoquinone......Page 513
2. Polarographic Method......Page 514
VI. PURIFICATION OF POLYPHENOL OXIDASES......Page 515
REFERENCES......Page 516
II. IMPORTANCE TO QUALITY OF FOOD......Page 519
B. Methods for Determining Location......Page 520
B. Structure......Page 522
B. Effect of Environmental Factors......Page 523
D. Mechanism of Action......Page 525
A. Assay Conditions......Page 526
C. Unique Factors That Affect Enzyme Activity......Page 527
A. Methods......Page 528
REFERENCES......Page 529
II. IMPORTANCE TO FOOD QUALITY AND UTILIZATION IN FOOD PROCESSING......Page 532
IV. ENZYMATIC PROPERTIES......Page 534
VI. PURIFICATION PROCEDURES......Page 536
REFERENCES......Page 538
A. Reactions Catalyzed......Page 540
B. Historical Aspects......Page 541
A. Protein Nature of Xanthine Oxidase......Page 542
B. Mechanism of Action of Xanthine Oxidase......Page 543
4. M4......Page 545
1. Enzyme Assays......Page 546
2. Enzyme Purification......Page 547
REFERENCES......Page 548
A. Reactions Catalyzed......Page 550
C. Classification According to Enzyme Commission......Page 551
B. Location of LOXs......Page 552
A. Specific Mechanism of Action......Page 553
C. Effect of pH, Inhibitors, and Surfactants......Page 554
A. Class Action with Assay Conditions......Page 555
REFERENCES......Page 556
I. INTRODUCTION......Page 561
V. PROPERTIES AS PROTEIN......Page 562
VI. PROPERTIES AS ENZYME......Page 564
VIII. PURIFICATION......Page 566
REFERENCES......Page 567
A. Starch Phosphorylase and the Cold- Induced Sweetening Phenomenon in Potato......Page 569
A. Protein Structure......Page 570
B. Starch Phosphorylase Isoforms......Page 571
C. Starch Phosphorylase Gene Classifications: Significance of the Species Specific Pho 1 Insertion Sequences......Page 572
V. QUANTITATIVE DETERMINATION OF STARCH PHOSPHORYLASE ACTIVITY......Page 573
VII. CONCLUSIONS......Page 574
REFERENCES......Page 575
A. Protein Data......Page 577
III. THE PRODUCT OF THE AMYLOSUCRASE......Page 578
REFERENCES......Page 579
B. Substrates and Acceptors......Page 580
A. Synthesis of Nondigestible Oligosaccharides......Page 581
B. Gene Structure......Page 582
B. Kinetic Characteristics......Page 583
C. Mathematical Modeling and Reaction Engineering Considerations......Page 585
D. Kinetics of Leucrose Formation......Page 586
B. Low- MW Oligosaccharide Synthesis......Page 587
D. Analytical Methods: HPLC......Page 588
VII. IMMOBILIZATION......Page 589
REFERENCES......Page 590
I. INTRODUCTION......Page 595
III. UTILIZATION OF LEVANSUCRASE......Page 596
IV. GENETIC PROPERTIES OF LEVANSUCRASE......Page 597
F. Storage Property......Page 599
B. Procedure......Page 600
B. Purification Procedures......Page 601
REFERENCES......Page 602
I. INTRODUCTION......Page 604
II. APPLICATIONS OF CGTASE......Page 605
III. CGTASE PROTEIN PROPERTIES......Page 607
B. Substrate Binding in CGTases......Page 609
C. Effects of pH and Temperature on CGTase Activity......Page 610
D. Kinetic Analysis of CGTase Transglycosylation Reactions......Page 611
V. DETERMINATION OF CGTASE ACTIVITY......Page 612
REFERENCES......Page 613
A. Chemical Reaction Catalyzed......Page 617
II. IMPORTANCE TO QUALITY OF CITRUS FRUIT AND PROCESSED PRODUCTS......Page 618
V. ISOLATION OF THE LGTase GENE......Page 619
VIII. PURIFICATION......Page 621
REFERENCES......Page 622
B. Reaction Catalyzed by TGase......Page 624
B. Primary Structure of TGase......Page 625
C. Three- Dimensional Structure of TGase......Page 628
III. PROPERTIES AS ENZYME......Page 632
A. TGase, Reinoic Acid, and Induction of Apoptosis......Page 634
V. TRANSGLUTAMINASE STUDY IN FOOD SCIENCE......Page 635
VI. DETERMINATION OF TRANSGLUTAMINASE ACTIVITY......Page 636
VIII. COMMENTS......Page 637
REFERENCES......Page 639
II. IMPORTANCE TO FOOD QUALITY AND UTILIZATION IN FOOD PROCESSING......Page 643
III. PROPERTIES OF THE PROTEIN......Page 644
IV. ENZYMATIC PROPERTIES......Page 646
V. MEASUREMENT OF FERULOYL ESTERASE ACTIVITY......Page 647
VI. PURIFICATION PROCEDURES......Page 650
REFERENCES......Page 651
III. INTERFACIAL ACTIVATION......Page 653
A. Pancreatic Lipases......Page 654
B. Microbial Lipases......Page 655
V. COLIPASE......Page 656
VI. REACTION MECHANISM......Page 657
VII. ACYL TRANSFER REACTIONS......Page 659
VIII. LIPASE SPECIFICITY......Page 660
IX. MEASUREMENT OF LIPASE ACTIVITY......Page 661
X. PURIFICATION OF LIPASE......Page 662
REFERENCES......Page 663
II. MEASUREMENT OF CHLOROPHYLLASE ACTIVITY......Page 667
IV. PROPERTIES......Page 668
VII. SIGNIFICANCE IN FOOD PROCESSING......Page 670
REFERENCES......Page 671
C. Classification According to Enzyme Commission Nomenclature......Page 673
II. NATURAL OCCURRENCE OF PHYTASE......Page 674
A. Molecular Weight......Page 675
B. Primary, Secondary, Tertiary, and Quaternary Structures......Page 676
2. From Posttranslational Modification......Page 678
B. Effect of Environmental Factors......Page 682
C. Specific Mechanism of Action......Page 683
VI. PHYTASE ASSAYS......Page 684
ACKNOWLEDGMENTS......Page 686
REFERENCES......Page 690
II. CLASSIFICATION......Page 693
III. MOLECULAR STRUCTURES......Page 694
B. Oxocarbonium Ion Mechanism......Page 696
C. Ring- Opening Reaction......Page 697
V. Alpha-AMYLASE INHIBITORS......Page 698
VI. MEASUREMENT OF ALPHA- AMYLASE ACTIVITY......Page 699
C. Defined Substrate Method......Page 700
REFERENCES......Page 701
III. MOLECULAR STRUCTURE......Page 705
IV. REACTION MECHANISMS......Page 707
VII. MEASUREMENT OF ACTIVITY......Page 708
VIII. PURIFICATION......Page 709
REFERENCES......Page 710
II. GLUCOAMYLASE IN FOODS......Page 713
A. General Properties and Isoforms......Page 714
B. Catalytic Domain......Page 715
D. Starch- Binding Domain......Page 716
A. Enzyme Mechanism......Page 717
C. Kinetic Properties......Page 719
V. DETERMINATION OF GLUCOAMYLASE KINETIC PROPERTIES AND THERMOSTABILITY......Page 720
VI. PURIFICATION OF GLUCOAMYLASE......Page 721
REFERENCES......Page 722
I. INTRODUCTION......Page 725
III. SOURCES OF PULLULANASE/ LIMIT DEXTRINASE......Page 726
IV. UTILIZATION OF ENZYMES IN FOODS......Page 727
V. PROTEIN PROPERTIES......Page 728
VI. ENZYME PROPERTIES......Page 729
VII. DETERMINATION OF ACTIVITY......Page 731
VIII. PURIFICATION......Page 732
REFERENCES......Page 734
II. IMPORTANCE TO QUALITY AND EFFICIENCY OF ALCOHOLIC BEVERAGE PRODUCTION......Page 736
III. PROPERTIES OF LIMIT DEXTRINASE PROTEIN......Page 737
IV. SUBSTRATES, SPECIFICITY, AND ROLE OF DEBRANCHING ENZYME IN BARLEY......Page 738
B. Extraction......Page 739
3. Measurement in Crude Extracts......Page 740
6. Extraction and Purification of Limit Dextrinase......Page 741
REFERENCES......Page 742
I. INTRODUCTION......Page 745
C. Dyed Avicel ( 6)......Page 746
b. Sampling Using PSC ( 4).......Page 747
4. Filter Paper Method......Page 748
1. HPLC Method......Page 749
c. Procedure.......Page 750
1. Inverting or Retaining— NMR Method ( 22, 23)......Page 751
REFERENCES......Page 752
II. CELLULOSE: A CHEMICALLY SIMPLE BUT STRUCTURALLY COMPLEX SUBSTRATE......Page 754
III. CLASSIFICATION OF CELLULASES......Page 755
IV. METHODS TO ASSAY CELLULASES......Page 757
V. STRUCTURE- FUNCTION RELATIONSHIPS IN CELLULASES......Page 758
VI. FUNGAL CELLULASES......Page 760
C. Other Fungal Cellulases......Page 761
VIII. ENDOGENOUS CELLULASES IN PLANTS......Page 762
IX. ROLE OF DIFFERENT CELLULASES IN THE HYDROLYSIS OF CELLULOSE......Page 763
A. Brewing......Page 764
C. Baking......Page 765
E. Animal Feed Production......Page 766
XI. CONCLUSIONS......Page 767
REFERENCES......Page 768
II. USE OF BETA- GLUCOSIDASES IN FOOD PROCESSING AND QUALITY ENHANCEMENT......Page 774
A. Structure......Page 775
C. Catalytic Site and Machinery......Page 777
D. Substrate Specificity......Page 779
F. Kinetic Constants......Page 780
IV. ASSAYS FOR BETA- GLUCOSIDASE ACTIVITY......Page 781
A. Spectrophotometric Assays......Page 782
C. Detection of Beta- Glucosidase Activity on Polyacrylamide Gels......Page 783
V. PURIFICATION......Page 784
REFERENCES......Page 785
C. Classification According to Enzyme Commission Nomenclature......Page 787
III. RAW- FOODS ENZYMES FOUND......Page 788
B. Primary, Secondary, Tertiary, Quaternary, and Macromolecular Structures......Page 789
1. From Different Genes......Page 792
B. Effect of Environmental Factors......Page 794
A. Assay Conditions......Page 799
VIII. PURIFICATION......Page 800
REFERENCES......Page 802
II. IMPORTANCE TO FOOD QUALITY......Page 805
V. PROPERTIES AS A PROTEIN......Page 806
VII. DETERMINATION OF ACTIVITY......Page 807
A. Assay of beta-Galactosidase Activity on Lactose with Neutral- pH Enzyme......Page 808
A. Purification of beta-Galactosidase from Kluyveromyces lactis ( 26)......Page 809
REFERENCES......Page 810
I. INTRODUCTION......Page 811
III. XYLOGALACTURONANS......Page 812
V. RHAMNOGALACTURONAN......Page 813
VI. ARABINANS......Page 814
B. Arabinogalactan Type II......Page 815
VIII. ISOLATION OF POLYSACCHARIDE STRUCTURES......Page 816
A. Substrates......Page 817
B. Assays Using Synthetic or Dyed Substrates......Page 818
3. Acetyl Esterases......Page 819
B. Matrix- Assisted Laser Desorption/ Ionization Time of Flight MS......Page 820
C. Screening Using Plate Assays and Chromogenic Substrates......Page 821
REFERENCES......Page 823
I. INTRODUCTION......Page 826
II. ENDOGENOUS AND EXOGENOUS PECTIC ENZYMES IN FRUIT AND VEGETABLE PROCESSING......Page 827
REFERENCES......Page 828
A. Pectin Methylesterase......Page 830
C. Rhamnogalacturonan Acetylesterase......Page 831
IV. BIOPHYSICAL PROPERTIES OF PECTIC ESTERASES......Page 832
V. BIOCHEMICAL PROPERTIES OF PECTIC ESTERASES......Page 833
C. Subsites in Binding to the Substrate......Page 834
REFERENCES......Page 835
II. ENDOGENOUS POLYGALACTURONASES IN PLANTS......Page 838
B. Isoforms of Polygalacturonases......Page 839
A. A. niger endopolygalacturonases......Page 840
1. Effect of Environmental Factors......Page 841
3. Subsites in Binding to Substrate......Page 842
D. Synthetic Substrates......Page 843
VI. QUALITATIVE AND QUANTITATIVE DETERMINATION OF ACTIVITY......Page 844
REFERENCES......Page 845
I. INTRODUCTION......Page 848
A. Substrate Specificity and Action Pattern......Page 849
B. Properties......Page 850
B. Properties......Page 851
B. Properties......Page 852
VII. Beta D- GALACTOSIDASES......Page 853
VIII. COOPERATIVELY ( SYNERGY) OF THE ENZYMES IN THE DEGRADATION OF POLYMERIC SUBSTRATES......Page 854
REFERENCES......Page 855
C. Application of Xylanolytic Enzymes......Page 859
D. Chemical Structure of Xylan......Page 860
E. Xylanolytic System and Its Components......Page 861
G. Analysis of Xylan Hydrolysates......Page 862
1. EX Families......Page 863
3. Multiple Domains......Page 864
1. Catalytic Properties of EXs Belonging to Two Families......Page 865
2. Mechanism of Substrate Degradation......Page 866
3. Xylan- Degrading Endo-Beta-1,4-Glucanases......Page 867
b. Xylanase Assay Using the Somogyi- Nelson Method ( 120)......Page 868
3. Synthetic Substrates......Page 869
a. Procedures......Page 870
C. Properties as Proteins......Page 871
D. Properties as Enzymes......Page 872
E. Determination of Beta- Xylosidase Activity......Page 873
E. Properties as Enzymes......Page 874
F. Determination of alpha- Glucuronidase Activity......Page 875
b. Procedure.......Page 876
D. Properties as Proteins......Page 877
1. Substrate Specificity......Page 878
2. Specificity for the Position of the Acetyl Group in the Main Chain......Page 879
3. Acetylesterase Assay on 4- Nitrophenyl Acetate ( 202)......Page 880
2. Detection of Acetylesterase in Gels by  - Naphthyl Acetate ( 237)......Page 881
B. Properties as Proteins......Page 882
C. Properties as Enzymes......Page 883
D. Determination of alpha- L- Arabinofuranosidase Activity......Page 884
REFERENCES......Page 885
I. INTRODUCTION......Page 896
II. STRUCTURE AND PROPERTIES OF XYLOGLUCANS......Page 897
A. Endoglucanase......Page 899
B. Glucosidase......Page 901
F. Fucosidase......Page 902
IV. XYLOGLUCAN ENDOTRANSGLYCOSYLASE AND RELATED ENZYMES......Page 903
V. DETERMINATION OF ENZYME ACTIVITY ON XYLOGLUCANS......Page 905
VI. APPLICATIONS IN THE FOOD INDUSTRY......Page 906
REFERENCES......Page 907
I. INTRODUCTION......Page 910
C. Endoxylogalacturonan Hydrolase......Page 912
A. Endoacting Rhamnogalacturonan- Degrading Enzymes......Page 913
V. APPLICATIONS IN THE FOOD INDUSTRY......Page 917
REFERENCES......Page 918
II. STRUCTURE AND PROPERTIES OF CEREAL BETA- GLUCANS......Page 921
C. Physical Properties of Cereal- Beta- Glucans......Page 922
B. Beta-Glucan Endohydrolases......Page 923
C. Hydrolysis of Oligosaccharides......Page 924
B. Problems with Enzyme Classification......Page 925
A. Substrate Specificity and Action Pattern......Page 926
A. Substrate Specificity and Action Pattern......Page 927
A. Substrate Specificity and Action Pattern......Page 929
B. Three- Dimensional Structure......Page 930
B. Beta- Glucosidases......Page 932
A. Malting and Brewing Industries......Page 933
C. Increased Stability of -Beta- Glucan Endohydrolases......Page 934
REFERENCES......Page 935
II. THE SUBSTRATES......Page 939
VI. CATALYTIC MECHANISM AND MANNAN HYDROLYSIS......Page 940
VIII. MODULAR STRUCTURE OF BETA- MANNANASES......Page 941
B. Assays Based on Detection of Reducing Sugars Produced by Hydrolysis......Page 942
XII. APPLICATIONS OF b- MANNANASES......Page 943
REFERENCES......Page 944
III. UTILIZATION OF LYSOZYME IN FOODS......Page 948
IV. PROPERTIES AS PROTEIN......Page 949
V. PROPERTIES AS ENZYME......Page 951
VII. RECENT BREAKTHROUGH STUDIES ON LYSOZYME......Page 953
REFERENCES......Page 954
C. Classification According to Enzyme Commission Nomenclature......Page 956
II. IMPORTANCE OF RIBONUCLEASES TO QUALITY OF FOOD AND IN FOOD DIGESTION......Page 957
A. Digestion of Extracellular RNA......Page 958
B. Role of Pancreatic Ribonucleases as Digestive Enzymes in Mammals......Page 959
C. Intracellular RNA Processing and Turnover......Page 962
VI. PROPERTIES AS ENZYMES......Page 964
VII. PURIFICATION OF A RIBONUCLEASE......Page 965
REFERENCES......Page 966
A. General Aspects, Including Importance for Food Science and Technology......Page 969
B. Specificity......Page 970
II. TYPES OF PROTEOLYTIC ENZYMES......Page 971
1. Binding of Substrates and Inhibitors......Page 972
2. Catalytic Mechanism......Page 973
1. Protein Characteristics of Papain......Page 974
3. Catalytic Mechanism of Papain......Page 975
1. Protein Structure of Chymosin......Page 976
D. Metalloproteases......Page 978
1. Carboxypeptidase A......Page 979
III. MEASUREMENT OF PROTEOLYTIC ACTIVITY......Page 981
A. Casein Hydrolysis Method ( 49)......Page 982
C. Gelatin Digestion Method......Page 983
D. Synthetic Substrates......Page 984
A. General Purification of Proteases as a Class......Page 985
B. Purification of Subtilisin......Page 986
C. Purification of Papain ( 71)......Page 987
1. Affinity Chromatography Method ( 73)......Page 989
2. Purification of Recombinant Calf Chymosin ( 74)......Page 990
E. Purification of Carboxypeptidases A and B ( 79)......Page 991
REFERENCES......Page 992
2. Peptide Synthesis......Page 995
C. Chemical Structure of Substrates......Page 996
2. Domain Structure of Thermolysin......Page 998
A. Substrate Specificity......Page 999
D. Halophilic Properties of Thermolysin......Page 1000
A. Thermolysin Assay......Page 1001
REFERENCES......Page 1002
I. INTRODUCTION......Page 1005
IV. BIOPHYSICAL PROPERTIES OF PECTATE AND PECTIN LYASES......Page 1006
B. Isoforms of Pectate and Pectin Lyases......Page 1007
1. Pectate Lyases......Page 1008
2. Pectin Lyases......Page 1009
C. Specific Mechanism of Action......Page 1010
E. Synthetic Substrates......Page 1011
A. Substrate Preparation......Page 1013
REFERENCES......Page 1014
II. IMPORTANCE TO QUALITY OF FOOD......Page 1018
IV. UTILITY OF THIS ENZYME IN FOODS......Page 1019
V. PROPERTIES AS PROTEIN......Page 1020
2. Pyruvate Determination......Page 1022
VIII. PURIFICATION......Page 1023
REFERENCES......Page 1024
II. IMPORTANCE TO QUALITY OF FOOD......Page 1026
VI. PROPERTIES AS ENZYME......Page 1027
1. Reagents......Page 1028
VIII. PURIFICATION FROM BROCCOLI FLORETS......Page 1029
REFERENCES......Page 1030
C. Classification According to Enzyme Commission Nomenclature......Page 1032
B. Production of High- Fructose Corn Syrups......Page 1033
B. Primary, Secondary, Tertiary, and Quaternary Structures......Page 1036
C. Isoforms......Page 1037
B. Effect of Environmental Factors......Page 1045
C. Specific Mechanism of Action......Page 1046
V. FACILITATION OF ACTIVITY DETERMINATIONS BY OTHER ENZYMES......Page 1047
VI. PURIFICATION......Page 1048
REFERENCES......Page 1049




نظرات کاربران