دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Valentina Emilia Balas, Brojo Kishore Mishra, Raghvendra Kumar سری: ISBN (شابک) : 9780128230145 ناشر: سال نشر: 2021 تعداد صفحات: [307] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Deep Learning in Biomedical Engineering: Techniques and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای یادگیری عمیق در مهندسی پزشکی: تکنیک ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یادگیری عمیق (DL) یک روش یادگیری ماشینی است که روی شبکه های عصبی مصنوعی اجرا می شود و از چندین لایه برای استخراج ویژگی های سطح بالا از مقادیر زیادی داده خام استفاده می کند. روشهای DL سطوح یادگیری را برای تبدیل دادههای ورودی به اطلاعات انتزاعی و ترکیبیتر اعمال میکنند. کتابچه راهنمای یادگیری عمیق در مهندسی زیست پزشکی: تکنیک ها و کاربردها به خوانندگان یک دید کلی از مفاهیم اساسی DL و کاربردهای آن در زمینه مهندسی پزشکی ارائه می دهد. DL در سال های اخیر به سرعت توسعه یافته است، هم از نظر ساختارهای روش شناختی و هم از نظر کاربردهای عملی. DL مدلهای محاسباتی لایههای پردازشی چندگانه را برای یادگیری و نمایش دادهها با سطوح بالاتر انتزاع ارائه میکند. این می تواند به طور ضمنی ساختارهای پیچیده ای از داده های در مقیاس بزرگ را ضبط کند و به طور ایده آل برای بسیاری از معماری های سخت افزاری که در حال حاضر در دسترس هستند مناسب است. حجم روزافزون داده ای که می تواند از طریق دستگاه های سنجش اطلاعات زیست پزشکی و بالینی جمع آوری شود، توسعه تکنیک های یادگیری ماشین و هوش مصنوعی مانند DL و شبکه های عصبی کانولوشنال را برای پردازش و ارزیابی داده ها ضروری می کند. برخی از نمونههای دستگاههای حسگر زیستپزشکی و بالینی که از DL استفاده میکنند شامل توموگرافی کامپیوتری (CT)، تصویربرداری تشدید مغناطیسی (MRI)، سونوگرافی، توموگرافی کامپیوتری با انتشار تک فوتون (SPECT)، توموگرافی انتشار پوزیترون (PET)، تصویربرداری ذرات مغناطیسی، الکتروانسفالوگرافی/مگنتوآنسفالوگرافی است. (EE/MEG)، میکروسکوپ نوری و توموگرافی، توموگرافی فوتوآکوستیک، توموگرافی الکترونی و میکروسکوپ نیروی اتمی. کتابچه راهنمای یادگیری عمیق در مهندسی زیست پزشکی: تکنیک ها و کاربردها کامل ترین پوشش کاربردی DL در مهندسی پزشکی موجود را ارائه می دهد، از جمله برنامه های کاربردی دقیق در دنیای واقعی در زمینه هایی مانند علوم اعصاب محاسباتی، تصویربرداری عصبی، ترکیب داده ها، پردازش تصویر پزشکی، تشخیص اختلالات عصبی برای بیماری هایی مانند آلزایمر، اختلال بیش فعالی کمبود توجه (ADHD) و اختلال طیف اوتیسم (ASD)، پیش بینی تومور، و تجزیه و تحلیل تصویربرداری چندوجهی ترجمه ای. یک کتاب راهنمای جامع از کاربردهای مهندسی زیست پزشکی DL، از جمله علوم اعصاب محاسباتی، تصویربرداری عصبی، داده های سری زمانی مانند MRI، MRI عملکردی، CT، EEG، MEG، و ترکیب داده های داده های تصویربرداری زیست پزشکی از منابع متفاوت، مانند X-Ray ارائه می کند. /CT. به خوانندگان کمک می کند مفاهیم کلیدی در برنامه های کاربردی DL برای مهندسی زیست پزشکی و مراقبت های بهداشتی، از جمله یادگیری چندگانه، طبقه بندی، خوشه بندی، و رگرسیون در تجزیه و تحلیل داده های تصویربرداری عصبی را درک کنند. تکنیکهای کلیدی توسعه DL مانند ایجاد الگوریتمها و کاربرد DL از طریق شبکههای عصبی مصنوعی و شبکههای عصبی کانولوشنال را در اختیار خوانندگان قرار میدهد. شامل پوشش حوزههای کاربردی کلیدی DL مانند تشخیص زودهنگام بیماریهای خاص مانند آلزایمر، ADHD و ASD، و پیشبینی تومور از طریق MRI و تصویربرداری چندوجهی ترجمه و کاربردهای زیستپزشکی مانند تشخیص، تجزیه و تحلیل تشخیصی، اندازهگیریهای کمی و راهنمایی تصویری سونوگرافی ~
Deep learning (DL) is a method of machine learning, running over artificial neural networks, that uses multiple layers to extract high-level features from large amounts of raw data. DL methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of DL and its applications in the field of biomedical engineering. DL has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. DL provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and artificial intelligence techniques such as DL and convolutional neural networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use DL include computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic particle imaging, electroencephalography/magnetoencephalography (EE/MEG), optical microscopy and tomography, photoacoustic tomography, electron tomography, and atomic force microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of DL applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), tumor prediction, and translational multimodal imaging analysis. Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT. Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis. Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks. Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography. ~
HANDBOOK OF DEEPLEARNING IN BIOMEDICAL ENGINEERING Copyright Contributors About the editors Preface Key features About the book 1 . Congruence of deep learning in biomedical engineering: future prospects and challenges 1. Introduction 1.1 SqueezeNet (image classification) 1.1.1 Strategies of architectural design 2. Fire module 3. Background study 3.1 Need of security 3.1.1 Types of security methods 3.1.1.1 Steganography 3.1.1.2 Watermarking 3.1.1.3 Cryptography 3.2 Advantages of steganography over cryptography 3.2.1 Resolution of steganography 3.2.2 Types of steganography 3.2.3 Image steganography 3.2.4 Image steganography method 3.3 Steganography techniques 3.3.1 Spatial domain technique 3.3.1.1 Least significant bit technique 3.3.2 Transform domain technique 3.4 Advantages of transform domain over spatial domain 3.5 Related study 3.5.1 DWT based 3.5.2 IWT based 3.6 Advantages of IWT over DWT 4. Study of various types of model 5. Proposed method by the authors 5.1 2D Haar wavelet transform 5.2 Huffman encoding technique 5.3 Embedding algorithm 6. Conclusion and future work References 2 . Deep convolutional neural network in medical image processing 1. Introduction 2. Medical image analysis 2.1 Segmentation 2.2 Detection or diagnosis by computer-aided system 2.3 Detection and classification of abnormality 2.4 Registration 3. Convolutional neural network and its architectures 3.1 Architectures of deep convolutional neural network 3.1.1 General classification architectures 3.1.2 Multistream architectures 3.1.3 Segmentation architectures 4. Application of deep convolutional neural network in medical image analysis 4.1 Brain 4.2 Eye 4.3 Breast 4.4 Chest 4.5 Cardiac 4.6 Abdomen 5. Critical discussion: inferences for future work and limitations 6. Conclusion References 3 . Application, algorithm, tools directly related to deep learning 1. Introduction 2. Tools used in deep learning 2.1 TensorFlow 2.1.1 Tensor data structure 2.1.2 Rank 2.1.3 Shape 2.1.4 Type 2.1.5 One-dimensional Tensor 2.1.6 Two-dimensional Tensor 2.2 Keras 2.2.1 Backend in Keras 2.2.2 Installing keras: Amazon Web Service 2.3 CAFFE 2.3.1 The main features of CAFFE 2.4 Torch tool 2.5 Theano 3. Algorithms 3.1 Deep belief networks 3.1.1 Architecture of Deep belief network 3.1.2 Working of deep belief network 3.2 Convolutional neural network 3.2.1 Input image 3.2.2 Convolution layer—the kernel 3.3 Recurrent neural network 3.3.1 How recurrent neural network works 3.4 Long short-term memory networks 3.4.1 Structure of long short-term memory 3.5 Stacked autoencoders 3.6 Deep Boltzmann Machine 4. Applications of deep learning 5. Conclusion References 4 . A critical review on using blockchain technology in education domain 1. Introduction 2. Consortium blockchain and its suitability for e-governance 3. Consensus 3.1 Proof approaches 3.2 Vote-based approaches 3.3 Directed acyclic graph approaches 4. Attacks on blockchain 5. Blockchain in education domain 6. Scalability challenges 7. Security challenges 8. Conclusion References Further reading 5 . Depression discovery in cancer communities using deep learning 1. Introduction 2. Related work 2.1 Lexicon-based approaches 2.2 Machine learning–based approaches 2.2.1 Supervised machine learning 2.2.2 Sentiment analysis using supervised machine learning 2.2.3 Metaclassifiers 2.3 Hybrid approaches 2.4 Other techniques 2.5 Sentiment analysis for online depression detection 3. Proposed system architecture 3.1 Continuous bag of words 3.1.1 Skip-gram model 3.1.2 Word embedding optimization 4. Models 4.1 Convolutional neural network 4.1.1 Variants of convolutional neural network 4.2 Recurrent neural network 4.3 Long short-term memory 4.3.1 Bidirectional long short-term memory 5. Conclusion References Further reading 6 . Plant leaf disease classification based on feature selection and deep neural network 1. Introduction 2. Literature review 2.1 Plant diseases recognition using convolutional neural networks 2.2 Plant diseases recognition with artificial neural network 2.3 Feature selection 3. Our proposed framework 3.1 Data set 3.2 Image preprocessing 3.3 Convolutional neural network 3.3.1 AlexNet (2012) 3.3.2 VGG16 (2014) 3.3.3 ResNet (2015) 4. Results 4.1 Conventional models 4.2 Models with transfer learning 4.3 Multilayer perceptron approach 4.3.1 Feature extraction 4.3.2 Feature selection 4.3.2.1 Particle swarm optimization 4.3.2.2 Gray wolf optimization 4.3.2.3 Proposed adaptive particle–gray wolf optimization heuristic 4.3.2.4 Wrapper-based adaptive particle–gray wolf optimization 5. Conclusion References Further reading 7 . Early detection and diagnosis using deep learning 1. Introduction 1.1 Introduction to deep learning 1.1.1 Applications 1.1.2 Challenges faced by deep learning 1.2 Introduction to biomedical engineering 1.2.1 Branches of biomedical engineering 1.2.2 Challenges faced by biomedical engineering 2. Diagnostics using deep learning 2.1 Motivation for use of deep learning in diagnostics 2.2 Challenges and solutions 2.2.1 Retroactive versus forthcoming trainings 2.2.2 Metric cannot be used for medical applicability 2.2.3 Trouble associating dissimilar algorithms 2.2.4 Hominoid barricades to artificial intelligence acceptance in medical sector 2.2.5 Vulnerability to confrontational occurrence or management 2.3 Future of diagnostics using deep learning 3. Early detection of diseases using deep learning 3.1 Rheumatic diseases 3.2 Alzheimer's disease 3.3 Autism spectrum disorder 3.4 Attention deficit hyperactivity disorder 4. Conclusion and further advancements References 8 . A review on plant diseases recognition through deep learning 1. Introduction 2. Plant diseases 3. Traditional methods to treat plant diseases 3.1 Serological assays 3.1.1 Modern serological methods 3.1.1.1 Enzyme-linked immunosorbent assay 3.1.1.2 Dot blot immunobinding assay 3.1.1.3 Tissue blotting immunoassay 3.2 Nuclei acid–based methods 3.2.1 Polymerase chain reaction 3.2.2 Restriction fragment length polymorphisms 3.2.3 Amplified fragment length polymorphism 4. Innovative detection method 4.1 Lateral flow microarrays 4.2 Methods based on the analysis of volatile compounds as biomarkers 5. Remote sensing of plant diseases 5.1 Detection of plant impairment using remote sensing systems 5.2 Remote sensing systems for monitoring pests and diseases 5.3 Visible and short-wave infrared monitoring systems 5.4 Fluorescence and thermal sensors 6. Plant disease detection by well-known deep learning architectures 6.1 Evolution of Deep learning 6.2 Without visualization technique 6.3 Visualization techniques 6.4 Hyperspectral imaging with deep learning models 7. Conclusions References 9 . Applications of deep learning in biomedical engineering 1. Introduction 2. Biomedical engineering 3. Deep learning 4. Most popular deep neural networks architectures used in biomedical applications 5. Convolutional neural network 6. Convolution layer 7. Pooling layer 8. Fully convolutional layer 9. Applications of convolutional neural network in biomedicine 10. Recurrent neural network 11. Applications of recurrent neural network in biomedicine 12. Generative adversarial networks 12.1 Generator network 12.2 Discriminator network 13. Applications of generative adversarial network in biomedicine 14. Deep belief network 15. Pretraining stage 16. Fine-tuning stage 17. Applications of deep learning in biomedicine 18. Biomedical image analysis 19. Image detection and recognition 20. Image acquisition and image interpretation 21. Image segmentation 22. Cytopathology and histopathology 23. Brain, body, and machine interface 23.1 Brain–machine interface 24. Classification of the brain–machine interfaces 25. Invasive techniques 26. Noninvasive techniques 27. Body–machine interface 28. Drug infusion system 29. Rehabilitation system 30. Diseases diagnosis 31. Omics 32. Around the genome 33. Protein-binding prediction 34. DNA–RNA-binding proteins 35. Gene expression 36. Alternative splicing 37. Gene expression prediction 38. Genomic sequencing 39. Around the protein 40. Protein Structure Prediction 41. Protein secondary structure prediction 41.1 Protein tertiary structure prediction 41.2 Protein quality assessment 41.3 Protein loop modeling and disorder prediction 42. Protein Interaction Prediction 42.1 Protein–protein interactions 42.2 Drug–target interactions 43. Public and medical health management 44. Conclusion References 10 . Deep neural network in medical image processing 1. Literature review 2. Digital image and computer vision 2.1 Introduction 2.2 What is an image? 2.3 Digital representation of an image 2.4 Medical image formats 2.5 Steps in image processing 2.6 Machine learning and its types 2.7 Unlabeled data set 2.8 Labeled data set 2.9 Supervised learning 2.10 Unsupervised learning 2.11 Reinforcement learning 2.12 Artificial neural network 3. Deep learning 3.1 Deep learning architectures 4. Segmentation techniques in image processing 4.1 Different approaches for segmentation 4.2 Edge-based segmentation methods 4.3 Threshold segmentation 5. Conclusion References Index