دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: C. S. Adjiman, C. A. Schweiger, C. A. Floudas (auth.), Ding-Zhu Du, Panos M. Pardalos (eds.) سری: ISBN (شابک) : 9781461379874, 9781461303039 ناشر: Springer US سال نشر: 1999 تعداد صفحات: 2410 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 87 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب کتاب بهینه سازی ترکیبی: دوره 1-3: ترکیبات، ریاضیات گسسته در علوم کامپیوتر، نظریه محاسبات، اطلاعات و ارتباطات، مدارها
در صورت تبدیل فایل کتاب Handbook of Combinatorial Optimization: Volume1–3 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب بهینه سازی ترکیبی: دوره 1-3 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics).
Front Matter....Pages i-xxiv
Mixed-Integer Nonlinear Optimization in Process Synthesis....Pages 1-76
Approximate Algorithms and Heuristics for MAX-SAT ....Pages 77-148
Connections between Nonlinear Programming and Discrete Optimization....Pages 149-188
Interior Point Methods for Combinatorial Optimization....Pages 189-297
Knapsack Problems....Pages 299-428
Fractional Combinatorial Optimization....Pages 429-478
Reformulation-Linearization Techniques for Discrete Optimization Problems....Pages 479-532
Gröbner Bases in Integer Programming....Pages 533-572
Applications of Set Covering, Set Packing and Set Partitioning Models: A Survey....Pages 573-746
Efficient Algorithms for Geometric Shortest Path Query Problems....Pages 747-779
Computing Distances between Evolutionary Trees....Pages 781-822
Combinatorial Optimization and Coalition Games....Pages 823-849
Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work....Pages 851-903
Resource Allocation Problems....Pages 905-1006
Combinatoral Optimization in Clustering....Pages 1007-1075
The Graph Coloring Problem: A Bibliographic Survey....Pages 1077-1141
Steiner Minimal Trees in E 3 : Theory, Algorithms, and Applications....Pages 1143-1216
Dynamical System Approaches to Combinatorial Optimization....Pages 1217-1270
On-line Dominating Set Problems for Graphs....Pages 1271-1288
Optimization Problems in Optical Networks....Pages 1289-1334
Shortest Networks on Surfaces....Pages 1335-1362
Minimum Weight Triangulations....Pages 1363-1380
Optimization Applications in the Airline Industry....Pages 1381-1472
Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics....Pages 1473-1491
A Review of Machine Scheduling: Complexity, Algorithms and Approximability....Pages 1493-1641
Routing and Topology Embedding in Lightwave Networks....Pages 1643-1711
The Quadratic Assignment Problem....Pages 1713-1809
Algorithmic Aspects of Domination in Graphs....Pages 1811-1877
Selected Algorithmic Techniques for Parallel Optimization....Pages 1879-1928
Multispace Search for Combinatorial Optimization....Pages 1929-2013
The Equitable Coloring of Graphs....Pages 2015-2038
Randomized Parallel Algorithms for Combinatorial Optimization....Pages 2039-2092
Tabu Search....Pages 2093-2229
Back Matter....Pages 2233-2403