ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Carbon Nanotubes

دانلود کتاب کتاب راهنمای نانولوله های کربنی

Handbook of Carbon Nanotubes

مشخصات کتاب

Handbook of Carbon Nanotubes

ویرایش:  
نویسندگان: , ,   
سری: Springer Nature Reference 
ISBN (شابک) : 9783030913458 
ناشر: Springer Nature Switzerland AG 
سال نشر: 2022 
تعداد صفحات: 2098
[2099] 
زبان: english 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 62 Mb 

قیمت کتاب (تومان) : 46,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Handbook of Carbon Nanotubes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای نانولوله های کربنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهنمای نانولوله های کربنی

این هندبوک اصول نانولوله های کربنی (CNT)، کامپوزیت های آنها با مواد پلیمری مختلف (اعم از طبیعی و مصنوعی) و کاربردهای بالقوه پیشرفته آنها را پوشش می دهد. سه بخش مختلف اختصاص داده شده به هر یک از این جنبه ها، با فصل هایی که توسط متخصصان جهانی در این زمینه نوشته شده است، ارائه شده است. این اطلاعات عمیق در مورد این مواد ارائه می دهد که به عنوان یک کتاب مرجع برای طیف گسترده ای از دانشمندان، متخصصان صنایع، دانشجویان فارغ التحصیل و کارشناسی، و سایر متخصصان در زمینه های علوم و مهندسی پلیمر، علم مواد، علوم سطح، مهندسی زیستی و شیمی عمل می کند. مهندسی. بخش 1 شامل 22 فصل است که مراحل اولیه توسعه CNT، تکنیک‌های سنتز، مکانیسم رشد، فیزیک و شیمی CNT، تکنیک‌های مختلف شناسایی نوآورانه، نیاز به عامل‌سازی و انواع مختلف روش‌های عامل‌سازی و همچنین خواص مختلف CNT را پوشش می‌دهد. . یک فصل کامل به جنبه های تئوری و شبیه سازی اختصاص داده شده است. علاوه بر این، مقدار قابل توجهی کار روی تجزیه و تحلیل چرخه زندگی CNT و جنبه های سمیت دنبال می کند. بخش 2 نانوکامپوزیت های پلیمری مبتنی بر CNT را در حدود 23 فصل پوشش می دهد. این مقاله با مقدمه‌ای کوتاه در مورد نانوکامپوزیت‌های پلیمری با تأکید ویژه بر نانوکامپوزیت‌های پلیمری مبتنی بر CNT، تکنیک‌های مختلف ساخت و همچنین مسائل مهم در مورد نانوکامپوزیت‌های پلیمری مبتنی بر CNT آغاز می‌شود. این متن به طور عمیق کلاس های مختلفی از پلیمرها مانند ترموست، الاستومر، لاتکس، ترموپلاستیک آمورف، گرمانرم کریستالی و الیاف پلیمری مورد استفاده برای تهیه کامپوزیت های پلیمری مبتنی بر CNT را بررسی می کند. این آگاهی دقیق در مورد خصوصیات کامپوزیت های پلیمری را فراهم می کند. خواص محافظ مورفولوژیکی، رئولوژیکی، مکانیکی، ویسکوالاستیک، حرارتی، الکتریکی، الکترومغناطیسی به تفصیل مورد بحث قرار گرفته است. فصلی که به شبیه‌سازی و مدل‌سازی چندمقیاسی نانوکامپوزیت‌های پلیمری اختصاص دارد، یکی از جذابیت‌های اضافی این بخش از هندبوک است. بخش 3 کاربردهای بالقوه مختلف CNT را در حدود 27 فصل پوشش می دهد. بر روی کاربردهای جداگانه CNT از جمله کاربردهای مکانیکی، تبدیل و ذخیره انرژی، سلول‌های سوختی و تقسیم آب، سلول‌های خورشیدی و فتوولتائیک، کاربردهای حسگر، نانوسیالات، نانوالکترونیک و دستگاه‌های میکروالکترونیک، نانو اپتیک، نانوفوتونیک و نانو اپتوالکترونیک، غیر کاربردهای خطی نوری، کاربردهای پیزو الکتریک، کاربردهای کشاورزی، کاربردهای زیست پزشکی، مواد حرارتی، کاربردهای اصلاح محیطی، خواص ضد میکروبی و ضد باکتریایی و سایر کاربردهای متفرقه و کاربردهای چند منظوره نانوکامپوزیت‌های پلیمری مبتنی بر CNT. یک فصل به طور کامل بر روی پیشرفت‌های تحقیقاتی نانولوله‌های کربنی متمرکز است: مقالات منتشر شده و پتنت‌ها. خطرات مرتبط با نانولوله‌های کربنی و تجزیه و تحلیل رقابتی نانولوله‌های کربنی با سایر آلوتروپ‌های کربنی نیز در این کتابچه مورد بررسی قرار گرفته‌اند.


توضیحاتی درمورد کتاب به خارجی

This Handbook covers the fundamentals of carbon nanotubes (CNT), their composites with different polymeric materials (both natural and synthetic) and their potential advanced applications. Three different parts dedicated to each of these aspects are provided, with chapters written by worldwide experts in the field. It provides in-depth information about this material serving as a reference book for a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering. Part 1 comprises 22 chapters covering early stages of the development of CNT, synthesis techniques, growth mechanism, the physics and chemistry of CNT, various innovative characterization techniques, the need of functionalization and different types of functionalization methods as well as the different properties of CNT. A full chapter is devoted to theory and simulation aspects. Moreover, it pursues a significant amount of work on life cycle analysis of CNT and toxicity aspects. Part 2 covers CNT-based polymer nanocomposites in approximately 23 chapters. It starts with a short introduction about polymer nanocomposites with special emphasis on CNT-based polymer nanocomposites, different manufacturing techniques as well as critical issues concerning CNT-based polymer nanocomposites. The text deeply reviews various classes of polymers like thermoset, elastomer, latex, amorphous thermoplastic, crystalline thermoplastic and polymer fibers used to prepare CNT based polymer composites. It provides detailed awareness about the characterization of polymer composites. The morphological, rheological, mechanical, viscoelastic, thermal, electrical, electromagnetic shielding properties are discussed in detail. A chapter dedicated to the simulation and multiscale modelling of polymer nanocomposites is an additional attraction of this part of the Handbook. Part 3 covers various potential applications of CNT in approximately 27 chapters. It focuses on individual applications of CNT including mechanical applications, energy conversion and storage applications, fuel cells and water splitting, solar cells and photovoltaics, sensing applications, nanofluidics, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, non-linear optical applications, piezo electric applications, agriculture applications, biomedical applications, thermal materials, environmental remediation applications, anti-microbial and antibacterial properties and other miscellaneous applications and multi-functional applications of CNT based polymer nanocomposites. One chapter is fully focussed on carbon nanotube research developments: published papers and patents. Risks associated with carbon nanotubes and competitive analysis of carbon nanotubes with other carbon allotropes are also addressed in this Handbook.



فهرست مطالب

Cover
Half Title
Handbook of Carbon Nanotubes
Copyright
Preface
Contents
About the Editors
Contributors
Part I. Carbon Nanotube: Fundamentals and Fascinating Attributes
	1. History of Carbon Nanotubes
		Introduction
		Discovery and History of Carbon Nanotubes
		Pre-History of Carbon Nanotubes
		Classification of Carbon Nanotubes
			Single Walled CNTs
			Multi Walled CNTs
		Synthesis of Carbon Nanotubes
		Production of Carbon Nanotubes from Bio-hydrocarbon Sources
		Characterization, Properties, and Applications of CNTs
		Disadvantages of CNT
			Environmental Effects
			Health Effects
		Conclusions
		References
	2. Synthesis Methods of Carbon Nanotubes
		Introduction
		CNT Synthesis Methods
			Arc Discharge
			Laser Ablation
			Electrolysis
			Sonochemical/Hydrothermal Synthesis
			Liquid Phase Synthesis
			Flame Synthesis of CNTs
			Plastic Pyrolysis Method
			Chemical Vapor Deposition (CVD)
				Catalytic CVD (CCVD)
					Floating Catalyst Chemical Vapor Deposition (FCCVD)
					Alcohol Catalyst Chemical Vapor Deposition (ACCVD)
				Thermal CVD
				Plasma-Enhanced CVD (PECVD)
				Oxygen-Assisted CVD
				Water-Assisted CVD
				Microwave Plasma-Enhanced CVD (MPECVD)
				Radiofrequency CVD (RF-CVD)
				Hot-Filament CVD (HFCVD)
				Fluidized-Bed CVD (FBCVD)
				Fixed-Bed CVD (FBCVD)
				Cold-Wall CVD
				Electron Cyclotron Resonance CVD (ECR-CVD)
				Polymer Pyrolysis CVD (PP-CVD)
				Direct Liquid Injection CVD (DLI-CVD)
				Template-Based CVD
		Conclusion
		References
	3. Carbon Nanotube Growth Mechanisms
		Introduction
		Synthesis Methods
			Brief History of Synthesis Methods
			Chemical Vapor Deposition
		Growth Models
			Early Growth Models
			Growth Modes
		Growth Processes
			Overview
			Growth Process from Catalyst Particle
			Catalyst Particle Behavior
			Catalyst Metal
		Growth Mechanisms
			Overview
			Theoretical Simulation
			In Situ Analysis
			Comparison Between Theory and Experiment
		Selective Growth
			Conductive Type
			Chirality Control
		Topics Related to Growth
			Vertically Aligned CNTs
			Horizontally Aligned CNTs
			Support Layer
		Summary
		References
	4. Chemistry and Physics of Carbon Nanotube Structures
		Introduction
		Methodology
		Nitrogen Doping and Nitrogen-Vacancy Complexes
			Substitutional Doping with Nitrogen
			Growth Process to Nitrogen-Vacancy Complexes
			Energy Band Structure
			Scanning Tunneling Microscopy Images
		Carbon Nanotube and Graphene-Based Molecular Sensors
			Adsorption Properties of Hydrogen Atoms
				Adsorption Energy and Atomic Structure
				Electronic Band Structure
			Adsorption Properties of Environmentally Polluting and Toxic Molecules
				Energetics and Structure
				Electron Transport
		Summary
		References
	5. Innovative Approaches in Characterization of Carbon Nanotube
		Introduction
		CNTs Synthesis Methods
			Electric-Arc Discharge Technique
			Laser Ablation
			Chemical Vapor Deposition (CVD) Technique
		Structures of CNTs
		Novel Characterization Techniques for Carbon Nanotubes
			Electron Microscopic Techniques
			Transmission Electron Microscopy (TEM)
			Scanning Electron Microscopy (SEM)
			Scanning Probe Microscopies (SPMs)
		Diffraction
			X-Ray Diffraction (XRD)
			Neutron Diffraction
		Spectroscopic Techniques
			Energy-Dispersive X-Ray Spectroscopy (EDX)
			XPS (X-Ray Photoelectron Spectroscopy)
			Photoluminescence (PL) Spectroscopy
			Ultraviolent-Visible (UV-Vis) and Near-Infrared (NIR) Spectroscopies
			Atomic Emission and Absorption Spectroscopy (AEAS)
		Thermal Properties of Carbon Nanotubes
			Thermogravimetric Analyses
			Differential Scanning Calorimetry (DSC)
		Raman Spectroscopy
		Fourier Transform Infrared (FTIR)
		Conclusion
		References
	6. Optical Properties of Carbon Nanotubes
		Introduction
		Optical Absorption
			Saturable Absorption
		Photoluminescence
		Raman Scattering
		Applications
			Defects
			Quantum Computing and Communications
			Biomedical Applications
			Molecular Sensors
		Conclusion
		References
	7. Thermal Properties of Carbon Nanotube
		Introduction
		Thermal Conductivity of CNTs
			Experimental Methods for the Measurement of the Thermal Conductivity
				T-Type Probe Technique
				3ω Technique
			Molecular Dynamics Simulations
			Different Parameters Affecting Thermal Conductivity of CNTs
				Morphology and Structure
					Nanotube Morphology
					Atomic Arrangement
					Defects in the Topology
				Dimensional Factor
					The Length of Carbon Nanotubes
					The Diameter of CNTs
				Temperature
				Density
		Thermal Diffusivity
			Experimental Methods for Measuring Thermal Diffusivity of CNTs
				Laser Flash Technique
				The Transient Electrothermal (TET) Method
				Photothermal Resistance Method
			The Influence of Temperature on Thermal Diffusivity
		Specific Heat
			Experimental Techniques for Measuring Heat Capacity of CNTs
				Thermal Relaxation Method
				3ω Method
				AC-Calorimetric Technique
			Effect of Temperature on Heat Capacity
		Conclusion
		References
	8. Electronic Transport and Electrical Properties of Carbon Nanotubes
		Introduction
		The Electronic Attributes of Single-Walled Nanotubes (SWNTs)
			Wrapping of a Graphene Sheet to Form Metallic or Semiconducting SWNTs
			Armchair (AC) and Zigzag (ZZ) Modalities for SWNTs
			Doping Characteristics of Nanotubes
			Electric Field Profiles in Doped NTs
		Electrical Conductivity and Resistance in Nanotubes: Applications to Devices
			Electrical Contacts to Carbon Nanotubes
			Characteristic Features of Electrical Contacts to CNTs
			CNT-Based Field Effect Transistors (FETs)
			Control of CNT Device Electrical Conductance Characteristics
			Device to Device Variability in Measured Electrical Characteristics of the CNTs
		Electrical Capacitance and Inductance in Nanotubes
			Electrostatic and Quantum Capacitance
			Electromagnetic and Quantum/Kinetic Inductance
		Experimental Measurements of the Electrical Characteristics
			Low Frequency Measurements
			High Frequency Electrical Characteristics
		Multiwalled CNTs
			The Relation of MWNTs to Individual Nanotubes
			Electrical Transport Characteristics of MWNTs
			Magnetoresistance in MWNTs
		Superconductivity
		Applications of CNT-Based Electronics: Advantages and Issues to Be Overcome for Broad-Scale Utilization
			CNT-Based Interconnect
			CNT-Based Transistors
			Electrochemical Sensing and Biosensors
		Conclusion and Outlook for the Future
		References
	9. Electrical Properties of Carbon Nanotubes
		Introduction
		Structure of Carbon Nanotubes
		Intrinsic Electrical Conductivity of Carbon Nanotubes
			Electrical Conductivity as a Function of CNT Structure
			Methods for Measuring the Electrical Conductivity
			Typical Values of Electrical Conductivity
		Contact Resistance in Carbon Nanotubes
		Electromechanical Behavior of Carbon Nanotubes
			Theoretical Estimations of Intrinsic CNT Piezoresistivity
			Effect of the Type of Strain Induced in the CNTs
		Electrical and Electromechanical of CNT Yarns
		Electrical Properties of CNT Nanocomposites
			Electrical Percolation Threshold
			Critical Parameters for Electrical Conductivity of CNT Nanocomposites
				Morphology of CNTs
				CNT/Matrix Interphase Modification
				CNT Dispersion
				CNT Orientation
		Applications of CNTs
			CNT for Electrical Applications
			CNT/Polymer-Based Strain Sensors
				Structural Health Monitoring Applications
				Flexible Wearable Sensors
				CNTs as Resistive Heaters
		Conclusions
		References
	10. Field Emission from Carbon Nanotube Systems: Material Properties to Device Applications
		Introduction
			Field Emission
			History of Field Emitters
			CNT-Based Field Emitters
		Methods Used to Enhance the Field Emission Properties of Carbon Nanotubes
			Various Synthesis Methods
			Pattern Substrates
			Low Work Function Material Coating
			Interlayer Between Substrate and CNTs
		CNT Field Emitter-Based Device Applications
		Conclusions
		References
	11. Physical Properties of Carbon Nanotubes
		Introduction
		Elastic Behavior of CNTs
			Young´s Modulus (E) of CNTs
			Shear Modulus and Poisson´s Ratio
		Strength of CNTs
		Conclusion
		References
	12. Functionalization of Carbon Nanotube
		Introduction to Carbon Nanotubes (CNTs) and Their Properties
		Dispersion of CNTs
			Nature of Difficulties for CNTs Dispersion
			CNTs Dispersion Through Mechanical Methods
				High Shear Stirring
				Ultrasonication
				Ball Milling
				Calendering Process
				Extrusion
			CNTs Dispersion Through Functionalization
				Covalent Functionalization
			Noncovalent Functionalization
		Alignment of CNTs
			CNTs Alignment Using Van der Waals Interaction
			CNTs Alignment Using Magnetic Field
			CNTs Alignment Using Electric Field
			CNTs Alignment Using Shear Force
			CNTs Alignment Using Extrusion
			CNTs Alignment Using Pulling Method
		Mechanical Properties of CNTs-Embedded Polymer Composite
			The Role of Dispersion Technique on Mechanical Properties
			The Role of Alignment Technique on Mechanical Properties
		Future Perspective
		Conclusion
		References
	13. Carbon Nanotubes: Dispersion Challenge and How to Overcome It
		Introduction
			CNT Properties and Its Potential to Be Commercially Utilized
			Dispersibility: The Major Shortcoming of CNTs
		Fundamentals
			Hansen Solubility Parameters
			Theory of Dispersion
				Wetting
				Desagglomeration of Particles
				Distribution of the Dispersed Particles
				Stabilization
		Surface Modification of Carbon Nanotubes
			Covalent Functionalization
				Direct Functionalization
					Fluorination and Derivatization of Fluorinated Carbon Nanotubes
					Cycloaddition
					Reductive Hydrogenation, Alkylation, and Arylation
					Radical Addition
				Indirect Functionalization
					Oxidation
					Derivatization of the Oxidized CNT
			Noncovalent Approach
				Surfactant Modification
				Polymer Modification
				Bioinspired Modification
				Ionic Liquids
		Physical Processes for Dispersion of Carbon Nanotube
			Dispersion by Cavitation: Ultrasonication
			Dispersion by Mechanical Force
				Calendering
				Ball/Bead Milling
				High Shear Mixing
				Extrusion
			Dispersion by Turbulent Flow: Jet Milling
		Conclusion
		References
	14. Covalent Functionalization of Carbon Nanotube
		Introduction
		Overview of the Structure and Importance of Carbon Nanotubes
			Classification of Carbon Nanotubes
				Synthesis of Carbon Nanotubes
				Toxicity in Carbon Nanotubes
				Functionalization of Carbon Nanotubes
				Covalent Functionalization of Carbon Nanotubes
				Covalent Functionalization of CNTs by Incorporating Oxygen-Containing Functionalities
				Covalent Functionalization of Carbon Nanotubes by Incorporating Nitrogen-Containing Functionalities
				Covalent Functionalization of Carbon Nanotubes by Incorporating Halogen-Containing Functionalities
				Various Functional Groups Incorporation Via Chemical Bond Formation in Carbon Nanotubes
			Defect Group Functionalization of Carbon Nanotubes
			Applications of Covalently Functionalized Carbon Nanotubes in Polymer Science
			Application of Covalently Functionalized CNTs in Enzyme Immobilization
				Effect of f-MWCNTs on the Structural and Thermal Stability of Various Proteins
				Effect of f-SWCNTs on the Structural and Thermal Stability of Various Proteins
				Predominant Interaction Involved in Protein Immobilization on f-CNTs
		Conclusion
		References
	15. Noncovalent Functionalization of Carbon Nanotubes
		Introduction
		Noncovalent Surface Chemistry of Carbon Nanotubes
		Driving Forces for Noncovalent Functionalization of Carbon Nanotubes
			Van der Waals Interactions/Hydrophobic Interaction
			π-π Interactions
		Different Approaches for Noncovalent Functionalization of Carbon Nanotubes
			Endohedral Approach
			Exohedral Approach
				Aromatic Small Molecule-Based Noncovalent Functionalization
				Polymer-Based Noncovalent Functionalization
				Surfactants-Based Noncovalent Functionalization
				Biological Compound-Based Noncovalent Functionalization
		Applications of Noncovalently Functionalized Carbon Nanotubes (CNTs)
			Noncovalently Functionalized CNTs for Energy Applications
			Noncovalently Functionalized CNTs for Biomedical Applications
			Noncovalently Functionalized CNTs for Electrochemical Biosensor Development
			Noncovalently Functionalized CNTs for Bioimaging Applications
		Conclusion
		References
	16. Double-Walled Carbon Nanotubes: Synthesis, Sorting, and Applications
		Introduction
		Techniques for DWCNTs Synthesis
			Catalytic Chemical Vapor Deposition (CCVD)
			Arc Discharge
			Peapod Growth
		Sorting Techniques
			Purification
			Suspension
			Reversible Covalent Chemistry
			Biofunctionalization
			Molecular Nanocalipers
			Aqueous Two-Phase Extraction
		Application of DWCNTs
			Capacitors, Batteries, and Fuel Cells
			Hydrogen Storage
			Nano Sensors
			Nano-Motors and Nano-Actuators
			Field Effect Transistors
		Conclusion and Future Outlook
		References
	17. Heteroatoms-Doped Carbon Nanotubes for Energy Applications
		Introduction
		Nonmetal Heteroatoms-Doped CNTs
			Physical and Chemical Properties of Heteroatoms-Doped CNTs
			Synthesis of Heteroatoms-Doped CNTs
		Heteroatoms-Doped CNTs for Energy Conversion and Storage
			Heteroatoms-Doped CNTs for Energy Storage
				Heteroatoms-Doped CNTs for Supercapacitors
				Heteroatoms-Doped CNTs for Batteries
		Heteroatoms-Doped CNTs for Energy Conversion Applications
			Heteroatoms-Doped CNTs for ORR Electrocatalysis
				Nitrogen-Doped CNTs for ORR
				Boron-Doped CNTs for ORR
				Oxygen- and Sulfur-Doped CNTs for ORR
				Phosphorus-Doped CNTs for ORR
				Heteroatom-Doped CNTs Supported Metallic Sites for ORR
			Heteroatoms-Doped CNTs for Electrocatalytic Water Splitting
			Heteroatoms-Doped CNTs for HER
			Heteroatoms-Doped CNTs for OER
			Heteroatoms-Doped CNTs for Zn-Air Batteries
		Conclusions
		References
	18. Carbon Nanotube-Based Hybrid Materials
		Introduction
		Synthesis of CNT Hybrid Materials
			Hydrothermal Method
			Chemical Vapor Deposition Method
			Sol-Gel Method
		Hybrid Materials Based on CNT
			CNT-Inorganic Material Hybrids
			CNT-Two Dimensional (2D) Material Hybrids
			CNT-Biomaterial Hybrids
			Other CNT Hybrids
		Applications
			Electronic Applications
			Energy Storage Application
				Supercapacitor
				Batteries
			Sensing Applications
				Sensors for Environmental Monitoring
				Sensors for Food and Agriculture
				Sensors for Biological Field
				Sensors for Glucose Sensing
				Sensors for DNA Sensing
				Other CNT-Hybrid Sensors
			Biological Applications
				Drug Delivery and Targeting
				Cancer Diagnosis and Treatment
				Antibacterial and Antifungal Activity
			Other Applications
		Conclusion and Future Perspectives
		References
	19. Growth Mechanisms in Carbon Nanotube Formation
		Introduction
		Theoretical Investigations
			Chemical Kinetic Models
			Molecular Dynamics Simulation of CNT Growth
		Molecular Dynamics Simulation: Ongoing Investigation
			A Brief Introduction: Molecular Dynamics
			Chemical Kinetic Model
			Discrete Computational Simulations
			Influence of Catalyst Film Thickness on the Cluster Diameter
			Influence of the Catalyst Film Thickness on the Growth Mode
			Influence of Temperature on the Growth Mode
		Conclusion
		References
	20. Experimental and Theoretical Aspects of the Fragmentation of Carbon´s Single- and Multiwalled Nanotubes
		Introduction to the Fragmentation of sp2-Bonded Carbon Structures
		The Fragmenting Multiwalled CNTs
			Cumulative Cs+-Induced Damage in MWCNTs
		Fragmentation Profiles of the Irradiated SWCNTs
			Normalized Yields of the Sputtered Cx from Irradiated SWCNTs
		Thermal Origin of the Emitted C Clusters
			Localized Thermal Spike (LTS) Model
			LTS Temperature Ts
		CCs and LTSs as Information-Generating Dynamical Systems
			The Probability Distribution Function
			Information Theoretic Entropy and Fractal Dimension
			Kullback-Leibler Divergence or Relative Entropy
			Spatially Coherent and Temporally Divergent CCs and LTSs
		Conclusions
		References
	21. The Current Market for Carbon Nanotube Materials and Products
		Introduction
		Carbon Nanotubes Current Markets
			Production Volumes of Carbon Nanotubes
			General Characteristics of CNT Products
			Global Market for Carbon Nanotubes Products Based on Type, Application, and Regional Market
				Market by Type
					Single-Walled Carbon Nanotubes (SWCNTs)
					Multi-Walled Carbon Nanotubes (MWCNTs)
				Market by End Users
					Electricals and Electronics
					Energy
					Aerospace and Defense
				Current CNTs Market by Region
					North America
					Asia
					Europe
		Conclusion
		Perspective
		References
	22. Novel Approaches to Synthesis of Double-Walled Carbon Nanotubes
		Introduction
		Synthesis of DWCNTs
			Arc-Discharge Method
			Chemical Vapor Deposition Method
				CVD Using Hydrocarbons as Carbon Source
					Methane as Carbon Source
					Acetylene as Carbon Source
					Organic Solvent as Carbon Source
				CVD Using Alcohols as Carbon Source
			Synthesis of DWCNTs from Filled SWCNTs
				The Growth from Fullerene-Filled SWCNTs
				The growth from metallocene-filled SWCNTs
				The Growth from Acetylacetonate-Filled SWCNTs
				The Growth from SWCNTs Filled with Other Precursors
		Conclusions
		References
Part II. Carbon Nanotube based Polymer composites- Fabrication and Characterisation
	23. Structure-Property Relationships in Polymer Nanocomposites
		Introduction
		Basics of Polymer Nanocomposites
			The Approach in Terms of Mechanical Properties
			The Approach in Terms of Thermal Conductivity
			The Approach in Terms of Electrical Conductivity
			The Approach in Terms of Crystallization
		Matrix Structure of Polymer Nanocomposites
		Nano-Reinforcements Used in Polymer Nanocomposites and Their Effect on Compact Structure
			Particle Type Reinforcements
			Reinforcements Having Nanotube or Fiber Structures
			Reinforcements Having a Layered Structure
		Surface Energy and Interfaces in Composite Materials
		Synergistic Effect of Matrix and Reinforcement
		References
	24. Manufacturing Techniques for Carbon Nanotube-Polymer Composites
		Introduction
		Factors Influencing the Properties of the CNT-Polymer Composite
			Modification of CNTs by Non-covalent Methods
			Modification of CNTs by Covalent Methods
				Grafting to Method
				Grafting from Method
		Manufacturing Techniques for CNT-Polymer Composites
			Solution Mixing
				Solid Phase Molding
				Electrospinning
				Layer-by-Layer Assembly
			Melt Mixing
				Bulk Mixing
				In Situ Polymerization
		Manufacturing Methods for Thermoplastic Polymers
			Synthesis of MWCNT/Waterborne Polyurethane Nanocomposites
		Manufacturing Methods for Thermosetting Polymers
			Manufacturing Technique for MWCNT/Epoxy Composite with a Loading Range of 10-68%
		Metal Nanoparticles Incorporated CNT Nanocomposites
			Decoration of CNTs with Cu
			Development of Cu-CNT Mixed PLA/ESO Nanocomposite
		Full on-Line Preparation of CNT-Polymer Composites with Aligned Carbon Nanotubes
		Development of Aligned CNT/Polymer Composite
		Conclusion
		References
	25. Carbon Nanotube Composites: Critical Issues
		Introduction
		Structure and Properties of Carbon Nanotubes
		Carbon Nanotube-Polymer Composites
		Preparation of Carbon Nanotube-Polymer Composites
			Processing Techniques
				Preprocessing
					Purification to Eliminate Nonnanotube Material
					Deagglomeration for Dispersing Individual Nanotubes
					Chemical Functionalization for Improving Nanotube/Matrix Interactions for Processability and Property Enhancement
				Melt-Mixing
				In Situ Polymerization
				Solution Processing
				Other Fabrication Methods
		Carbon Nanotube Composites: Critical Issues
			Carbon Nanotube/Polymer Interfaces
			Nanocomposite Morphology
			Influence of Matrix Stiffness on Mechanical Response
		Properties of Carbon Nanotube-Polymer Composites
			Mechanical Behavior
				Thermoplastic Nanocomposites
				Thermoset Nanocomposites
		Limitations and Challenges
			Influence of Functionalization on Polymer-CNT Composites
			Fundamental Aspects of Dispersion
		Discussion
		Carbon Nanotube-Polymer Composites: Summary, Outlook, and Future Prospective
		Conclusion
		References
	26. Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix
		Introduction
		CNTs Dispersion in Polymer Matrix
			Fabricating Processes
				Stir Mixing Process
				Ultrasonication
				Calendering Process
				Ball Milling
				Melt Extrusion Process
			Surface Functionalization
				Noncovalent Functionalization
				Covalent Functionalization
		Alignment of CNTs in Polymer Matrix
			Magnetic Field-Induced Alignment of CNTs
			Electric Field-Induced Alignment of CNTs
			Mechanical Stress-Induced Alignment of CNTs
		Conclusion
		Reference
	27. Semi-crystalline Thermoplastic/Carbon Nanotube-Based Composites
		Introduction
		Carbon Nanotubes (CNTs)
			Preparation Methods
			CNT Properties
		Carbon Nanotube Polymer Composites
			CNTs-Composites Production Methods
				In Situ Polymerization
				Solution Mixing
				Melt-Blending Technique
			CNT Dispersion
		Properties of CNT Polymer Composites
			Thermal Properties
				Thermal Conductivity
				Thermal Transitions and Crystallinity
			Fire Behavior
			Mechanical Properties
			Electrical Properties
			Optical Properties
		Future Challenges and Opportunities
		Conclusion
		References
	28. Thermoset/Carbon Nanotube-Based Composites
		Introduction
		Thermoset Polymeric Composites
			Conventional Fillers
			Nanofillers
		Carbon Nanotube-Reinforced Thermosetting Polymers
			Preparation and Processing Methods
		Polyester/CNT Composites
		Epoxy/CNT Composites
		Vinyl Ester/CNT Composites
		Bismaleimide/CNT Composites
		Cyanate Ester/CNT Composites
		Polyimide/CNT Composites
		Phenolic Resin/CNT Composites
		Thermoset Polyurethane/CNT Composites
		Conclusions
		References
	29. Phase Selective Wetting of Carbon Nanotubes (CNTs) and Their Hybrid Filler System in Natural Rubber Blends
		Introduction
		Selective Wetting of CNTs in Natural Rubber Blends
			Control Preparation of CNT/Rubber Composites in an Internal Mixer
				Ionic Liquids as Dispersing Agent
			Ethanol as Dispersing Agent
		Phase Selective Wetting of CNTs in Binary Rubber Blends Based on Natural Rubber
			Theoretical Prediction of the Selective Filler Wetting
			Experimental Determination of the Selective Filler Wetting in Rubber Blends
			Evidence of the Role of the Phospholipids in the Interaction Between CNTs and Natural Rubber (NR)
				Wetting Behavior of CNTs in Different Rubber Compounds
				Wetting Concept: A New Test Strategy for Direct Comparison of CNT Interaction with NR and IR
				Determination of the Surface Tension of NR Under Consideration of the Effect of Phospholipids Using the Z-Model
				Effect of Different Ionic Liquids on the Selective Wetting of CNTs in Rubber Blends
		Selective Wetting Behavior of CNTs in Ternary Rubber Blends
			Modification of the Wetting Concept for Experimental Determination of Filler Wetting in Ternary Rubber Blends
			Selective Wetting of CNTs in Ternary Rubber Blends
		Self-Healing Property of CNT-Filled NR/Bromo Butyl Rubber (BIIR) Blends
		Selective Wetting of Hybrid Fillers CNT/Silica in Self-Healing BIIR/NR Blends
		Conclusion
		References
	30. Latex-Based Carbon Nanotube Composites
		Introduction
		Structure and Properties of Latex Matrix
			Natural Latex
			Synthetic Latex
				Butadiene Rubber (Polybutadiene)
				Chloroprene Rubber (Polychloroprene)
				Ethylene Propylene Diene Monomer (EPDM)
				Silicone Rubber
				Styrene-Butadiene Rubber (SBR)
				Nitrile Butadiene Rubber (NBR)
		Reinforcement Types
			Polymer Composites
			Synthesis Methods of Polymer Composites
				Mixing by Solution
				Mixing by Melting
				In Situ Polymerization
			Carbon Nanotubes
				Properties of Carbon Nanotubes
				Functionalization of Carbon Nanotubes
				Dispersion of Carbon Nanotubes
			Reinforcement of CNT in the Latex Matrix
		Properties and Applications of Latex-Based Carbon Nanotubes Composites
		Conclusion and Perspectives
		References
	31. Morphological Characterizations Carbon Nanotube-Polymer Composites
		Introduction
		Morphological Characterization
			Optical Microscopy
			Scanning Electron Microscopy (SEM)
			Transmission Electron Microscopy
			Atomic Force Microscopy (AFM)
			Energy Dispersive X-ray Analysis
			Raman Spectroscopy
			X-ray Diffraction
			Dynamic Light Scattering (DLS)
			Porosimetry
			White Light Interferometry
		Conclusion
		References
	32. Carbon Nanotube-Based Nano-Composites: Introduction, Mechanism, and Finite Element Analysis
		Introduction
			Composites
			Nanocomposites
				Polymer Matrix Nanocomposites
				Ceramic Matrix Nanocomposites
				Metal Matrix Nanocomposites
			Polymers Used for Aerospace and Ballistic Applications
				Thermoplastics
				Thermosets
				Kevlar
				Polyimide
				PAN Polymer
			Nanofillers Used for Such Applications
				Carbon Nanotubes
			Motivation
			Science Behind Polymer Nanocomposites
			Classification of Nanofillers
			Design of Polymer Nanocomposites
			Important Design Parameters
				Aspect Ratio (AR)
				Interface
			Interfacial Area
			Composites and Blends
		Status of Research Work
		Methodology: Finite Element Method
			Element Description
			Material Modeling
			Methodologies
				Geometry Creation
				Creating the 3D Model
				Meshing
				Geometry Setup and Solve
		Conclusion
		References
	33. Carbon Nanotubes Embedded in Polymer Nanofibers by Electrospinning
		Introduction
		Electrospinning Technique
			Basic Electrospinning Mechanisms
			Characteristics of Electrospun Fibers
		Theory of Electrospinning
			Formation of Taylor Cone
			Electrospinning Model for Composite Nanofiber
		Synthesis of Carbon Nanotubes Embedded Polymer Nanofiber Composites by Electrospinning
		Properties of Carbon Nanotubes Embedded Polymer Nanofiber Composites Prepared by Electrospinning
			Morphological Studies
			Mechanical Properties
			Thermal Properties
		Applications of Carbon Nanotubes Embedded Polymer Nanofiber Composites Prepared by Electrospinning
		Conclusion and Future Perspectives
		References
	34. X-Ray Scattering Investigation of Carbon-Nanotube-Based Polymer Composites
		Introduction
		Strain-Induced Crystallization of Carbon-Nanotube-Filled Rubbers
		Unit Cells, Scattering Vectors, and Scattering Angles
			Unit Cell Parameters for Natural Rubber and Synthetic Cis-1,4-Polyisoprene
			Unit Cell Parameters of Multiwalled Carbon Nanotubes
		Small-Angle X-Ray Scattering (SAXS) and Wide-Angle X-Ray Diffraction (WAXD)
		WAXD Characterization of Strain-Induced Crystallization of Natural Rubber and Synthetic Polyisoprene
			Effect of Carbon Nanotubes on Strain-Induced Crystallization and Width of Diffraction Peaks
			Effect of Carbon Nanotubes on Crystallization Onset and Crystallinity Index
		Small-Angle X-Ray Scattering in Polyisoprene-MWCNT Nanocomposites
			Nanovoids or Polymer Crystallites in SAXS Patterns?
		Orientational Order of Carbon Nanotubes
		The P2 Orientational Order Parameter
		MWCNT and Semicrystalline Aromatic-Polyester-Based Polyurethane Nanocomposites
		MWCNT and Triisocyanate-Crosslinked Polytetrahydrofuran Nanocomposites
		WAXD Analysis of Strain-Induced Crystallization and CNTs on Crack Growth in Rubber
		SAXS Investigation of SEBS Block Copolymer and MWCNT Composites
		X-Scattering of Polymer Nanocomposites Containing MWCNT and Clay Nanoparticles
		Conclusion
		References
	35. Neutron Scattering Investigation of Carbon Nanotube-Polymer Composites
		Introduction
		Basic Concept of Scattering (X-Ray and Neutron Scattering)
		Neutron Scattering
			Basics
			Instrumentation
			Analysis of Single (Polymer, Nanoparticles, Etc.) System
			Analysis of Multicomponent System (Polymer Nanocomposites)
		Neutron Scattering in CNT and Its Dispersions
		Neutron Scattering in CNT-Polymer Nanocomposites
		Conclusions
		References
	36. Structural Investigation of Carbon Nanotube-Polymer Composites by FTIR, UV, NMR, and Raman Spectroscopy
		Introduction
		Structural Characterization
		Fourier Transformed Infrared Spectroscopy (FTIR)
			FTIR as a Tool for Characterization
			Sample Preparation
			FTIR Analysis of CNT/Polymer Composite
		Ultraviolet Visible (UV-Vis) Spectroscopy
			UV-Vis as a Tool for Characterization
			Sample Preparation
			UV-Vis Spectroscopy for Characterization of CNT/Polymer Composites
		Nuclear Magnetic Resonance (NMR)
			NMR as a Tool for Characterization
			Sample Preparation
			NMR Spectroscopy for Characterization of CNT/Polymer Composites
		Raman Spectroscopic Technique
			Raman Spectroscopy as a Tool for Characterization
			Sample Preparation
			Raman Spectroscopy for Characterization of CNT/Polymer Composites
		Conclusion
		References
	37. Mechanical Properties of Carbon Nanotube-Polymer Composites
		Introduction and Background
		Advantages and Drawbacks of CNTs
			Advantages
			Disadvantages
		Carbon Nanotubes Structures
		Classification of CNT/Polymer Nanocomposites
		Processing and Manufacture of Carbon Nanotube-Reinforced Composites (CNRCs)
			Solution Processing
			Melt Processing of Bulk Nanocomposites
			Melt Processing of Nanocomposite Fibers
			Processing of Thermoset-Based Nanocomposites
			In Situ Polymerization Processing
			Covalent Functionalization and Polymer Grafting of CNTs
		Key Mechanical Properties of CNTs
		Factors Affecting Mechanical Performance of Carbon Nanotube-Reinforced Composites (CNRCs)
			Dispersion
			Alignment
			Interfacial Stress Transfer
			Polymer-Nanotube Interactions
		Damage Mechanisms of CNTs
		Applications of CNTs
		Summary and Future Perspectives
		References
	38. Crystallization Behavior of Carbon Nanotube Polymer Nanocomposites
		Introduction
		Special Crystallization Behavior in PCN
			Nanohybrid Shish-Kebab Structure (NHSK)
			Fractionated Crystallization in Polymer Blends
			Crystallization in Polymer Blend with MWCNT in Droplet Phase
		Conclusions
		References
	39. Self-Healing and Shape Memory Effects of Carbon Nanotube-Based Polymer Composites
		Introduction
		Carbon Nanotubes as a Conductive Filler
		Methods for Enhancement of Interfacial Bonding Between CNT and Shape-Memory/Self-Healing Polymer Matrices
		Shape Memory Polymers
		CNT Reinforced Shape Memory Polymer Composites
			Polyurethane
			Polyvinyl Alcohol
			Polystyrene
			Epoxy
			Potential Applications, Limitations, and Future Directions
		Self-Healing Polymers
		CNT Reinforced Self-Healing Polymer Composites
			Polyurethane
			Polyvinylidenefluoride (PVDF)
			Rubber
			Other Self-Healing Polymer Systems
			Potential Applications, Current Limitations, and Future Directions
		Summary
		References
	40. Thermal Characterizations Carbon Nanotube-Polymer Composites
		Introduction
		Functionalization of Carbon Nanotubes
			Covalent Functionalization
			Non-Covalent Functionalization
			Endohedral Functionalization
				Filling of CNTs from Solutions
				Filling of CNTs from Melted Phases
		Thermal Characterization of CNTs/Polymer Composites
			Thermal Conductivity
				Thermal Conductivity: Measurement and Modeling
		Thermal Analysis
			Types of Thermal Analysis
				Thermogravimetric Analysis (TGA)
				Differential Scanning Calorimetry (DSC)
				Thermomechanical Analysis (TMA)
				Dynamic Mechanical Analysis (DMA)
				Differential Thermal Analysis (DTA)
		Factors Effecting Thermal Conductivity
			Effect of Interfaces on Thermal Transfer
			Contact Resistance
			Dispersion
			Alignment
			The Effects of Radius and Chirality on the Thermal Conductivity
			The Effects of Stone-Wales and Vacancy on the Thermal Conductivity
			The Thermal Conductivity of CNTS with Intramolecular Junction (IMJs)
		Thermal Properties of CNT/Polymer Composites
			Thermal Properties of Carbon Nanotubes/Poly Vinyl Alcohol (CNTs/PVA) Composite
			Thermal Characterization of Carbon Nanotube Bukypaper Interlayer/Glass Fiber-Reinforced Epoxy Polymer Composite
			Thermal Characterization of Carbon Nanotube/Epoxy Composites
			Thermal Conductivity of Glass Fiber/Polymer CNT Composites
		Conclusions
		References
	41. Nanocomposites Based on Polymer Blends and CNT
		Introduction
		Nanocomposites
			Types of Nanocomposites
				Ceramic Matrix Nanocomposites
				Metal Matrix Nanocomposites
				Polymer Matrix Nanocomposites
				Magnetic Nanocomposites
				Heat Resistant Nanocomposites
		Carbon Nanotubes
			History of CNTs
			Structure of CNTs
			Variants of CNTs
				Single-Walled CNT
				Multiwalled CNT
			Synthesis of CNTs
				By Direct Current Plasma Torch
				Arc Discharge
				Chemical Vapor Deposition
			Chemistry of Carbon Nanotubes
				Covalent Modifications
					Oxidation
					Amidation or Esterification
				Non-Covalent Modifications
					Polynuclear Aromatic Compound
					Biomolecules
			Nanocomposites with Polymer Blend
			Synthesis Processes of CNT-Polymer Nanocomposite
				Solution Processing
				Melt Processing
				In Situ Polymerization
			Properties of CNT Nanocomposites
				Electrical Properties
				Thermal Properties
				Dielectric Properties
				Mechanical Properties
			Industrial Implementation of CNT Nanocomposite
				Radio Frequency Interference (EMI) Shielding
		Conclusion
		References
	42. Dielectric and Electrical Conductivity Studies of Carbon Nanotube-Polymer Composites
		Introduction
		Dielectric Properties
			What Is a Dielectric Material
			Factors Affecting Dielectric Properties
			Applications of Dielectric Material
		Electrical Conductivity of Polymer Nanocomposites
			Conductivity
			AC Conductivity
			Factors Affecting Electrical Conductivity of Polymer Nanocomposites
				Aspect Ratio of CNTs
				Distribution/Dispersion
				Orientation of the CNTs
				Preparation Methods
				Polymer Matrix Properties
		Dielectric and Electrical Properties of Polymer Nanocomposites
			CNT-Rubber Nanocomposites
			CNT-Thermoplastic Nanocomposites
			CNT-Thermoset Nanocomposites
		Dielectric and Electrical Applications of CNT-Polymer Nanocomposites
		References
	43. EMI Shielding Studies of Carbon Nanotube-Polymer Composites
		Introduction
		Principle of EMI Shielding Measurement
		EMI Shielding Studies of Different CNT-Based Polymer Composites
			EMI Shielding Studies of SWCNT-Based Polymer Composites
			EMI Shielding Studies of MWCNT-Based Polymer Composites
		Conclusion
		References
	44. Characterization of the Dynamic Response of CNT-Reinforced-Polymer-Composite (CNTRPC) Materials Based on a Multiscale Appro...
		Introduction
		Representative Volume Element (RVE)
		Multiscale Modeling Using Finite Element Method
			Space Frame Model of Single-Walled-Carbon-Nanotube (SWCNT)
			Thin Shell Model of SWCNT
			Polymer Matrix
			Interface Modeling
		Stiffness of CNTRPC Material
		Viscous Damping of CNTRPC Material
		Structural Damping of CNTRPC Material
		Natural Frequencies of CNTRPC Material
		Mechanical Behavior of (16, 0) and (9, 9) SWCNT Nanocomposites
			Comparison and Validation of Material Models
			Stiffness of CNTRPC Material with (16, 0) and (9, 9) SWCNTs
			Viscous Damping of CNTRPC Material with (16, 0) and (9, 9) SWCNTs
			Structural Damping of CNTRPC Material with (16, 0) and (9, 9) SWCNTs
			Comparison Between Viscous and Structural Damping Properties of CNTRPC Material
			Natural Frequencies of CNTRPC Material with (16, 0) and (9, 9) SWCNTs
		Conclusion
		References
	45. Biomedical Applications and Biosafety Profile of Carbon Nanotubes-Based Composites
		Introduction
		Carbon Nanotubes (CNTs)
			Types and Structure of CNTs
		Biomedical Applications of CNTs
			Antimicrobial Applications
			Biosensors
			Tissue Engineering
			Neural Applications
		Toxicity/Biosafety Profile of CNTs Composites
		Conclusion
		References
Part III. Recent Advances in Carbon Nanotube Structures for Potential Applications
	46. Carbon Nanotubes: General Introduction
		Introduction and Overview
		Fundamentals, Synthesis, and Properties
		Potential Material for Commercial Applications
			Biomedical Applications
			Material for Engineering and Functional Applications
			Potential Material for Green Energy Conversion
			CNTs for Next-Generation Energy Storage Systems
			Other Promising Applications
		Conclusions
		References
	47. Carbon Nanotubes for Mechanical Applications
		Introduction
		Carbon Nano Tubes
		Mechanical Characteristics of Carbon Nanotubes
			The Elasticity of Carbon Nanotubes
				Strength of Carbon Nanotubes
				CNT-Based Nanocomposites
				Polymer/CNT Composites
				Preparation of Polymer/CNT Composites
				CNT-Reinforced Metal and Steel Nanocomposites
			Preparation of CNT-Reinforced Metal and Steel Nanocomposites
				Carbon Fibers/CNTs
		Applications Concerning the Mechanical Characteristics of CNTs
			Carbon Nanotube-Based Actuators
			CNT Sensing Replications
				Structural Reinforcement
				Carbon Nanotubes for the Fabrication of Wind Turbine Blades
				Carbon Nanotube Coatings
		Conclusion
		References
	48. Carbon Nanotubes for Energy Conversion and Storage
		Introduction
		Carbon-Nanotubes (CNTs)
		CNTs for Improving Efficiency in Solar Cells
		Carbon Nanotubes in Energy Storage Applications
			Lithium-Ion Batteries
			Supercapacitors
		Conclusion
		References
	49. Carbon Nanotube for Water Splitting and Fuel Cell
		Introduction
			Carbon Nanotubes (CNTs) Structures and Properties
			Morphology of Carbon Nanotube (CNT)
			Properties and Structures of Carbon Nanotube
		Water Splitting Application
			Working Principle of Water Splitting
			Hydrogen Evolution Reaction (HER)
			Oxygen Evolution Reaction (OER)
			Water Splitting Performance of CNT or CNT-Supported Composite
			MOF Derived CNT for Overall Water Splitting
		Fuel Cell Application
			Influence of CNT in Fuel Cell Application
			Non-precious Metal/CNT for Fuel Cell Application
			Precious Metal/CNT for Fuel Cell Application
		Conclusion
		References
	50. Carbon Nanotubes for Solar Cells and Photovoltaics
		Introduction
		The Fundamentals of Solar Cells
		Carbon Nanotubes in Solar Cells
			Carbon Nanotubes as an Alternative to ITO
			Carbon Nanotubes as Photocarrier Generator
			Carbon Nanotubes as Carrier Transport Materials
		Carbon Nanotubes in Organic Solar Cells
			Carbon Nanotubes as the Photoactive Layer
			Carbon Nanotubes as Top and Back Electrode
		Carbon Nanotubes in Silicon Solar Cells
		Carbon Nanotubes in Dye-Sensitized Solar Cells (DSSCs)
		Carbon Nanotube in Perovskite Solar Cells (PSCs)
		Conclusion
		References
	51. Carbon Nanotubes for Sensing Applications
		Introduction
		Preparation, Characterization, and Applications of Carbon Nanotubes
			Preparation of Carbon Nanotube-Based Sensors
				Dispersion of CNTs
				Functionalization of CNTs
					Acid Functionalized CNTs
					Plasma Functionalized CNTs
					Radical Addition with Aryl-diazonium Salts
				Modification of CNTs
					Metals/Metal Oxides Modified CNTs
					Polymers Modified CNTs
					Biomolecules Modified CNTs
					Other Molecules Modified CNTs
			Characterizations of Carbon Nanotube-Based Surfaces
				Electrochemical Impedance Spectroscopy
				Scanning Electron Microscopy
				High Resolution Transmission Electron Microscopy
				Atomic Force Microscopy
			Sensing Application of Carbon Nanotube-Based Materials
				Electrochemical Sensors
					Sensing of Small Biologically Important Compounds
					Sensing of Environmental Pollutants
						Phenolic Compounds
						Organophosphorus and Carbamate Pesticides
						Heavy Metal Ions
					Gas Sensing with CNTs
					pH Sensing with CNTs
		Conclusion
		References
	52. Carbon Nanotube-Based Nanofluids
		Introduction
		Thermal Conductivity
			Brownian Motion
			Clustering
			Liquid Layering
			Phonon Transport
			Heat Capacity Physics
		Tribological Properties
		Wettability
		Rheological Properties
		Optical Properties
		Stability
			Stability Enhancement Mechanisms
			Stability Measurement
		Carbon Nanotube-Based Nanofluids in Metal Cutting Processes
		MWCNT-Based Nanofluid Applications in Direct Absorption Solar Collectors
		Conclusion, Challenges, and Future Work
		References
	53. Carbon Nanotubes for Nanoelectronics and Microelectronic Devices
		Introduction
		Carbon Nanotubes in Microelectronic and Nanoelectronic Applications
			Carbon Nanotubes in Transistor Applications
			Carbon Nanotubes as Field Emission Source
			CNT in Interconnect Applications
			Batteries (Lithium Ion Batteries)
			Action of CNTS on Fuel Cells
				Enhancing Catalyst Performance
				Increasing Catalyst Stability and Resistance to Corrosion
				Decreasing Fuel Cell Cost
				Increasing Transmission Capacity
				Utilizing Support to Minimize the Usage of Pt
				Catalysts That Do Not Contain Pt
			Supercapacitors
			CNT for Gas Sensing Applications
		Conclusion
		References
	54. Carbon Nanotubes for Photonics Applications
		Introduction
		Optical Properties of CNT
		Electronic Structure
			Saturable Absorption (SA)
		Third-Order Nonlinearity
		CNT-Based Devices for Enhanced Nonlinear Applications
		Ultrafast Optical Switching by Third-Order Susceptibility of CNT
		Fiber Lasers Based on CNT Saturable Absorbers (SAs)
			Mode-Locking Dynamics
		Conclusion
		References
	55. Carbon Nanotubes Applications in Agriculture
		Introduction
		Structure of Carbon Nanotubes
		Carbon Nanotubes and Wastewater Treatment
		Carbon Nanotubes and Toxicity in Agriculture
		Carbon Nanotubes and Soil Improvement
		Carbon Nanotubes and Plant Growth
		Carbon Nanotubes as Plant Growth Regulators
		Nanofertilizers and Nanopesticides for Agriculture
		Carbon Nanotubes Plant Disease Treatment
		Future Prospective and Conclusion
		References
	56. Carbon Nanotubes for Piezo Electric Applications
		Introduction on Piezoelectricity
			Piezoelectricity in Carbon Nanostructures
		Piezoelectric/Flexoelectric Properties of CNTs
		CNT-Based Nanocomposites for Piezoelectric Applications
			Piezoelectric Polymer-CNT Nanocomposites
			Piezoelectric Metal Oxide-CNT Nanocomposites
		Conclusions
		References
	57. Carbon Nanotubes: Thermal Applications
		Introduction
		Carbon Nanotubes in Thermal Interface
		Carbon Nanotubes for Thermal Insulation
		Carbon Nanotubes for Thermoresponsive Applications
		Carbon Nanotubes in Flame-Retardant Application
		Conclusion
		References
	58. Carbon Nanotubes for Tissue Engineering Scaffold Applications
		Introduction
		Properties of Carbon Nanotubes (CNTs)
		CNTs-Based Scaffolds for Tissue Regeneration and Engineering
			CNTs with Calcium Phosphate (Ca3Po4), HA, Titanium, and CPC Materials
		CNTs with Natural Polymers
		CNTs with Synthetic Polymers
		CNTs with Proteins, Peptides, and Genes
		Conclusion
		References
	59. Carbon Nanotubes for Drug Delivery Applications
		Introduction
		Fringe Benefits of Using CNTs as Drug Delivery Agents
			Advantages of Carbon Nanotubes (CNTs)
			Disadvantages of CNTs
		Drug Delivery Using Carbon Nanotubes
			Delivery of Genes
			Delivery of Small Drug Molecules
			Delivery of Proteins
			Delivery of Drugs in Neurons
				Physiology of Nervous System and Its Regeneration
				Substrate Pattern and Functionalization of CNTs
				CNTs as Substrates for Neuronal Growth
			Delivery of Stem Cells
				Differentiation of Stem Cells on Nanotubes
				Mesenchymal Stem Cells
		Conclusion
		References
	60. Carbon Nanotubes for Bio-imaging Applications
		Introduction
		Applications
			Fluorescence Imaging
			Raman Imaging
			Nuclear Imaging
			Magnetic Resonance Imaging (MRI)
			Photoacoustic Imaging (PAI)
		Conclusion
		References
	61. Carbon Nanotubes in Regenerative Medicine
		Introduction
		CNT on Cellular Function
		Biocompatibility of CNT
		Functionalization of CNT
			Covalent Functionalization
			Non-Covalent Functionalization
			CNT Functionalization with Polymers
			Functionalization with Biomolecules
		Electrospinning of CNT for Tissue Regeneration
			Electrospinning of Natural Polymers with CNTs
			Electrospinning of Synthetic Polymers with CNTs
		CNT Nanocomposites for Tissue Regeneration
		CNT on Muscle Tissue Regeneration
		CNT on Skin Regeneration
		CNT on Bone Regeneration
		CNT on Neural/Nervous Tissue Regeneration
		CNT on Blood Cell Regeneration
		CNT on Liver Regeneration
		CNT on Kidney Regeneration
		References
	62. Carbon Nanotubes in Cancer Therapy
		Introduction
		Essentiality in Functionalizations of CNTs in the Biomedical Field
			Endohedral Modifications of CNTs
			Exohedral Modifications of CNTs
				Covalent Modification
				Noncovalent Modifications
		Cellular Uptake and Fate of CNTs in Biological Milieu
		Carbon Nanotubes as Anticancer Cargo Carriers
			CNTs as Drug Carriers
				Delivery of Platinum-Based Drug Cargoes Using CNTs
				Delivery of Taxane Drugs Using CNTs
				Delivery of Anthracycline Drugs Using CNTs
				Delivery of Other Anticancer Drugs Using CNTs
			CNTs as Gene Carriers
				Delivery of Plasmid DNA/dsDNA Using CNTs
				Delivery of RNAi Components Using CNTs
				Delivery of Oligonucleotides Using CNTs
				Delivery of DNA/RNA Aptamers Using CNTs
			CNTs in Cancer Immune-, Thermal-, and Radiotherapies
				CNTs in Cancer Immunotherapies
				Delivery of Immunogenic Antigen Using CNTs
				Delivery of Adjuvants Using CNTs
				Delivery of Both Tumor Immunogenic Antigen and Adjuvants Using CNTs
				CNTs in Cancer Photothermal Therapies
				CNTs in Cancer Radiotherapy
			CNT as a Cancer Diagnostic Tool
		Present Setbacks and Future Prospects of CNTs
		Safety, Environmental, and Regulatory Issues with CNTs
		Conclusion
		References
	63. Carbon Nanotube as a Multifunctional Coating Material
		Introduction
		CNTs as a Modifier of General Properties of Nanocomposite Coatings
		CNTs to Improve Anticorrosion Properties and Altering Surface Properties of Nanocomposite Coatings
		CNTs in Coatings with Improved Optical Properties
		CNTs in Bio-Medical Coatings
		CNTs in Coating for Sensors Application
		Conclusion
		References
	64. Hydrogels and Aerogels of Carbon Nanotubes
		Introduction
		Aerogels and Hydrogels: Structure and Properties
			Structure
				Structure of Aerogels
				Structure of Hydrogels
			Properties
				Properties of Aerogels
				Properties of Hydrogels
		Synthetic Aspects of Aerogels and Hydrogels
			Aerogels
				Synthetic Strategy of Aerogels
			Hydrogels
				Synthetic Strategy of Hydrogels
		Carbon Nanotube Hydrogel Composites
		Carbon Nanotube Aerogel Composites
		Properties of Hydrogel and Aerogel Composites
			Properties of Hydrogel Composites
			Properties of Aerogel Composites
		Conclusion
		References
	65. Carbon Nanotubes for Environmental Remediation Applications
		Introduction
		Kinds of Carbon Nanomaterials
		Carbon Nanotubes (CNTs)
		Carbon Nanotubes Applications
		Environmental Applications of CNTs
			Treatment of Air Pollution
				Types of Carbon Nanotube Filters
			Purification of Water
				CNTs/Functionalized CNTs-Based Composites as Sorbents
				Organic Dyes
				Other Organic Pollutants
				Removal of Heavy Metal Ions
				Recovery of Oil Spill
				Water Remediation via CNTs-Based Catalysis Reactions
					Photocatalysis
					Electrocatalysis
					Other Catalytic Oxidations
			Remediation of Pesticides
			Extraction of Mycotoxins
			Detection of Mycotoxins
		CNTs Toxicity
		Conclusions and Future Outlook
		References
	66. Antimicrobial (Antibacterial) Properties and Other Miscellaneous Applications of Carbon Nanotubes (CNTs)
		Introduction
		A Brief Overview of Carbon Nanotubes and Their Methods of Synthesis
		Antimicrobial Properties of CNTs
			Toxicity Mechanism of CNTs Properties on Antimicrobial
				Factors Affecting the Mechanism of Toxicity of CNTs
		Functionalization of Carbon Nanotubes
		Antimicrobial Properties of Single Walled Carbon Nanotubes (SWCNTs)
		The Antibacterial Properties of Multi-Walled Carbon Nanotubes (MWCNTs)
		Miscellaneous Application of Carbon Nanotubes
			Carbon Nanotube COVID-19 Detector
			CNTs as Fillers
			CNTs as Adsorbent
			CNT-Based Electrodes
			Catalysis
			Membranes and Filters
		Drawbacks of Carbon Nanotubes Production, Its Antimicrobial and Antibacterial Properties, and Future Perspectives
		Conclusion
		References
	67. Carbon Nanotubes as Antimicrobial Agents: Trends and Perspectives
		Introduction
		Antimicrobial Activity Depending on the Physicochemical Properties of CNTs and the Environment
			CNTs Diameter and Length
			Number of Layers
			Shape
			CNT Surface Modification by Functionalization
			Doping
			CNT Impurities
			CNT Concentration
			CNT Dispersion
			Solution
		Antimicrobial Activity Mechanisms of CNTs
			Mechanical Damage to Cell Membrane
			Oxidative Stress
			Other Mechanisms
		CNT Toxicity
		Technical Issues
		Analysis of the Antimicrobial Activity of Diverse Multiwall Carbon Nanotubes on Opportunistic Fungus of Health Importance
		Remarks and Research Perspectives
		References
	68. Multifunctional Applications of Carbon Nanotube-Based Polymer Composites
		Introduction
		Carbon Nanotubes
		Properties of Carbon Nanotube-Based Composites
			Mechanical
			Electrical
			Thermal
		Multifunctional Composite Materials (MFCM) and Applications
		Conclusions
		References
	69. Carbon Nanotube Research Developments: Published Scientific Documents and Patents, Synthesis, and Production
		Introduction
		Carbon Nanotubes: General Aspects
		Methods for CNT Synthesis, Dispersion, and Functionalization
			Production of MWCNT by CVD as a Function of Time
			In Situ Synthesis of Carbon Nanotubes on Macromaterials
			Techniques for CNT Dispersion and Functionalization
				Dispersion
				Functionalization
		Properties and Applications
			CNT Electrical Properties and Related Applications
			CNT Mechanical Properties and Related Applications
			Carbon Nanotubes and Environment-Friendly Applications
		Developments in CNT Research: Published Scientific Documents and Patents
			Using Patent Analyses to Observe the Technological Evolution in Synthesis and Production of Carbon Nanotubes
			Data and Methodology
			Methods for the Synthesis of CNT and Their Evolution Through the Years
			Disposal of Carbon Nanotubes
			A Brief Contextualization of CNT Research in 2020
		Conclusion
		References
	70. Assessment of the Risks Associated with Carbon Nanotubes
		Introduction
		Initial Worries Due to Structural Resemblance with Asbestos and Smaller Size
		Recommended Exposure Levels
		Routes of Exposure
		Nanotoxicity of CNTs: Influencing Parameters
		Nanobiotoxicology: Basic Mechanism of Cellular Uptake and Toxicity of CNTs
			In Vitro Studies
			In Vivo Studies
				Respiratory (Pulmonary) Toxicity
				Carcinogenicity
				Central Nervous System (CNS) Toxicity
				Cardiovascular Toxicity
				Hepatotoxicity
				Spleen Toxicity
				Renal Toxicity
				Dermal and Subcutaneous Toxicity
				Reproductive Toxicity
				Immunotoxicity
				Ocular (Eye) Toxicity
		Nanoecotoxicology: Impacts on Environment
			Studies on Aquatic and Sediment Organisms
			Studies on Terrestrial Plants
			Studies on Soil Microorganisms
		Importance of Safe and Sustainable CNTs
		Conclusions
		References
	71. Advanced Applications of Carbon Nanotubes in Engineering Technologies
		Introduction
		Carbon-Based Filler for Engineering Applications
		Carbon Nanotubes for Engineering
			Carbon Nanotubes
			SWCNTs
			DWCNTs
			MWCNTs
			Functionalized CNTs
		Applications of CNTs in Engineering Technologies
			Introduction
			Materials
			Electrical
			Electronic
			Energy Storage
			Coating
			Sensors and Nano Probes
			Reinforcement
			Green Engineering
			Biomedical
			Other Applications
		Conclusions
		References
	72. Carbon Nanotube-Based Membranes for Filtration
		Introduction
			Filtration Process
			Mechanism of Filtration
			Criteria for Selecting a Filter
			Factors Affecting the Filtration Process
			Classification of Filtration Process
		Membrane Filtration Techniques
			Types of Membranes Used for Filtration
				Microfiltration
				Ultrafiltration
				Reverse Osmosis
				Nanofiltration
		Issues of Filtration Using Membrane Technology
			Fouling
			Pore Size Distribution
			Degradation or Membrane Lifetime
		CNT based membranes for filtration: Different types of CNT membranes
			Aligned CNT Membranes
			Surface-modified Membranes
			Composite Membranes
			Bucky Papers
		Synthetic Methods of CNT Membranes
		Filtration Using CNTs
			Water Filtration
			CNT Membranes for Desalination
			CNT Membranes for Air Filtration Applications
			Carbon Nanotubes for Heavy Metal Removal
				Surface Modification of CNTs
				Removal of Heavy Metals by CNTs
				Regeneration of CNTs by Desorption of Heavy Metals
			Bacterial Filtration by CNTs
			Antifouling by CNTs
		Conclusions
		References
Index




نظرات کاربران