دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Abraham J., Thomas S., Kalarikkal N. (ed.) سری: Springer Nature Reference ISBN (شابک) : 9783030913458 ناشر: Springer Nature Switzerland AG سال نشر: 2022 تعداد صفحات: 2098 [2099] زبان: english فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 62 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Carbon Nanotubes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای نانولوله های کربنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این هندبوک اصول نانولوله های کربنی (CNT)، کامپوزیت های آنها با مواد پلیمری مختلف (اعم از طبیعی و مصنوعی) و کاربردهای بالقوه پیشرفته آنها را پوشش می دهد. سه بخش مختلف اختصاص داده شده به هر یک از این جنبه ها، با فصل هایی که توسط متخصصان جهانی در این زمینه نوشته شده است، ارائه شده است. این اطلاعات عمیق در مورد این مواد ارائه می دهد که به عنوان یک کتاب مرجع برای طیف گسترده ای از دانشمندان، متخصصان صنایع، دانشجویان فارغ التحصیل و کارشناسی، و سایر متخصصان در زمینه های علوم و مهندسی پلیمر، علم مواد، علوم سطح، مهندسی زیستی و شیمی عمل می کند. مهندسی. بخش 1 شامل 22 فصل است که مراحل اولیه توسعه CNT، تکنیکهای سنتز، مکانیسم رشد، فیزیک و شیمی CNT، تکنیکهای مختلف شناسایی نوآورانه، نیاز به عاملسازی و انواع مختلف روشهای عاملسازی و همچنین خواص مختلف CNT را پوشش میدهد. . یک فصل کامل به جنبه های تئوری و شبیه سازی اختصاص داده شده است. علاوه بر این، مقدار قابل توجهی کار روی تجزیه و تحلیل چرخه زندگی CNT و جنبه های سمیت دنبال می کند. بخش 2 نانوکامپوزیت های پلیمری مبتنی بر CNT را در حدود 23 فصل پوشش می دهد. این مقاله با مقدمهای کوتاه در مورد نانوکامپوزیتهای پلیمری با تأکید ویژه بر نانوکامپوزیتهای پلیمری مبتنی بر CNT، تکنیکهای مختلف ساخت و همچنین مسائل مهم در مورد نانوکامپوزیتهای پلیمری مبتنی بر CNT آغاز میشود. این متن به طور عمیق کلاس های مختلفی از پلیمرها مانند ترموست، الاستومر، لاتکس، ترموپلاستیک آمورف، گرمانرم کریستالی و الیاف پلیمری مورد استفاده برای تهیه کامپوزیت های پلیمری مبتنی بر CNT را بررسی می کند. این آگاهی دقیق در مورد خصوصیات کامپوزیت های پلیمری را فراهم می کند. خواص محافظ مورفولوژیکی، رئولوژیکی، مکانیکی، ویسکوالاستیک، حرارتی، الکتریکی، الکترومغناطیسی به تفصیل مورد بحث قرار گرفته است. فصلی که به شبیهسازی و مدلسازی چندمقیاسی نانوکامپوزیتهای پلیمری اختصاص دارد، یکی از جذابیتهای اضافی این بخش از هندبوک است. بخش 3 کاربردهای بالقوه مختلف CNT را در حدود 27 فصل پوشش می دهد. بر روی کاربردهای جداگانه CNT از جمله کاربردهای مکانیکی، تبدیل و ذخیره انرژی، سلولهای سوختی و تقسیم آب، سلولهای خورشیدی و فتوولتائیک، کاربردهای حسگر، نانوسیالات، نانوالکترونیک و دستگاههای میکروالکترونیک، نانو اپتیک، نانوفوتونیک و نانو اپتوالکترونیک، غیر کاربردهای خطی نوری، کاربردهای پیزو الکتریک، کاربردهای کشاورزی، کاربردهای زیست پزشکی، مواد حرارتی، کاربردهای اصلاح محیطی، خواص ضد میکروبی و ضد باکتریایی و سایر کاربردهای متفرقه و کاربردهای چند منظوره نانوکامپوزیتهای پلیمری مبتنی بر CNT. یک فصل به طور کامل بر روی پیشرفتهای تحقیقاتی نانولولههای کربنی متمرکز است: مقالات منتشر شده و پتنتها. خطرات مرتبط با نانولولههای کربنی و تجزیه و تحلیل رقابتی نانولولههای کربنی با سایر آلوتروپهای کربنی نیز در این کتابچه مورد بررسی قرار گرفتهاند.
This Handbook covers the fundamentals of carbon nanotubes (CNT), their composites with different polymeric materials (both natural and synthetic) and their potential advanced applications. Three different parts dedicated to each of these aspects are provided, with chapters written by worldwide experts in the field. It provides in-depth information about this material serving as a reference book for a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering. Part 1 comprises 22 chapters covering early stages of the development of CNT, synthesis techniques, growth mechanism, the physics and chemistry of CNT, various innovative characterization techniques, the need of functionalization and different types of functionalization methods as well as the different properties of CNT. A full chapter is devoted to theory and simulation aspects. Moreover, it pursues a significant amount of work on life cycle analysis of CNT and toxicity aspects. Part 2 covers CNT-based polymer nanocomposites in approximately 23 chapters. It starts with a short introduction about polymer nanocomposites with special emphasis on CNT-based polymer nanocomposites, different manufacturing techniques as well as critical issues concerning CNT-based polymer nanocomposites. The text deeply reviews various classes of polymers like thermoset, elastomer, latex, amorphous thermoplastic, crystalline thermoplastic and polymer fibers used to prepare CNT based polymer composites. It provides detailed awareness about the characterization of polymer composites. The morphological, rheological, mechanical, viscoelastic, thermal, electrical, electromagnetic shielding properties are discussed in detail. A chapter dedicated to the simulation and multiscale modelling of polymer nanocomposites is an additional attraction of this part of the Handbook. Part 3 covers various potential applications of CNT in approximately 27 chapters. It focuses on individual applications of CNT including mechanical applications, energy conversion and storage applications, fuel cells and water splitting, solar cells and photovoltaics, sensing applications, nanofluidics, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, non-linear optical applications, piezo electric applications, agriculture applications, biomedical applications, thermal materials, environmental remediation applications, anti-microbial and antibacterial properties and other miscellaneous applications and multi-functional applications of CNT based polymer nanocomposites. One chapter is fully focussed on carbon nanotube research developments: published papers and patents. Risks associated with carbon nanotubes and competitive analysis of carbon nanotubes with other carbon allotropes are also addressed in this Handbook.
Cover Half Title Handbook of Carbon Nanotubes Copyright Preface Contents About the Editors Contributors Part I. Carbon Nanotube: Fundamentals and Fascinating Attributes 1. History of Carbon Nanotubes Introduction Discovery and History of Carbon Nanotubes Pre-History of Carbon Nanotubes Classification of Carbon Nanotubes Single Walled CNTs Multi Walled CNTs Synthesis of Carbon Nanotubes Production of Carbon Nanotubes from Bio-hydrocarbon Sources Characterization, Properties, and Applications of CNTs Disadvantages of CNT Environmental Effects Health Effects Conclusions References 2. Synthesis Methods of Carbon Nanotubes Introduction CNT Synthesis Methods Arc Discharge Laser Ablation Electrolysis Sonochemical/Hydrothermal Synthesis Liquid Phase Synthesis Flame Synthesis of CNTs Plastic Pyrolysis Method Chemical Vapor Deposition (CVD) Catalytic CVD (CCVD) Floating Catalyst Chemical Vapor Deposition (FCCVD) Alcohol Catalyst Chemical Vapor Deposition (ACCVD) Thermal CVD Plasma-Enhanced CVD (PECVD) Oxygen-Assisted CVD Water-Assisted CVD Microwave Plasma-Enhanced CVD (MPECVD) Radiofrequency CVD (RF-CVD) Hot-Filament CVD (HFCVD) Fluidized-Bed CVD (FBCVD) Fixed-Bed CVD (FBCVD) Cold-Wall CVD Electron Cyclotron Resonance CVD (ECR-CVD) Polymer Pyrolysis CVD (PP-CVD) Direct Liquid Injection CVD (DLI-CVD) Template-Based CVD Conclusion References 3. Carbon Nanotube Growth Mechanisms Introduction Synthesis Methods Brief History of Synthesis Methods Chemical Vapor Deposition Growth Models Early Growth Models Growth Modes Growth Processes Overview Growth Process from Catalyst Particle Catalyst Particle Behavior Catalyst Metal Growth Mechanisms Overview Theoretical Simulation In Situ Analysis Comparison Between Theory and Experiment Selective Growth Conductive Type Chirality Control Topics Related to Growth Vertically Aligned CNTs Horizontally Aligned CNTs Support Layer Summary References 4. Chemistry and Physics of Carbon Nanotube Structures Introduction Methodology Nitrogen Doping and Nitrogen-Vacancy Complexes Substitutional Doping with Nitrogen Growth Process to Nitrogen-Vacancy Complexes Energy Band Structure Scanning Tunneling Microscopy Images Carbon Nanotube and Graphene-Based Molecular Sensors Adsorption Properties of Hydrogen Atoms Adsorption Energy and Atomic Structure Electronic Band Structure Adsorption Properties of Environmentally Polluting and Toxic Molecules Energetics and Structure Electron Transport Summary References 5. Innovative Approaches in Characterization of Carbon Nanotube Introduction CNTs Synthesis Methods Electric-Arc Discharge Technique Laser Ablation Chemical Vapor Deposition (CVD) Technique Structures of CNTs Novel Characterization Techniques for Carbon Nanotubes Electron Microscopic Techniques Transmission Electron Microscopy (TEM) Scanning Electron Microscopy (SEM) Scanning Probe Microscopies (SPMs) Diffraction X-Ray Diffraction (XRD) Neutron Diffraction Spectroscopic Techniques Energy-Dispersive X-Ray Spectroscopy (EDX) XPS (X-Ray Photoelectron Spectroscopy) Photoluminescence (PL) Spectroscopy Ultraviolent-Visible (UV-Vis) and Near-Infrared (NIR) Spectroscopies Atomic Emission and Absorption Spectroscopy (AEAS) Thermal Properties of Carbon Nanotubes Thermogravimetric Analyses Differential Scanning Calorimetry (DSC) Raman Spectroscopy Fourier Transform Infrared (FTIR) Conclusion References 6. Optical Properties of Carbon Nanotubes Introduction Optical Absorption Saturable Absorption Photoluminescence Raman Scattering Applications Defects Quantum Computing and Communications Biomedical Applications Molecular Sensors Conclusion References 7. Thermal Properties of Carbon Nanotube Introduction Thermal Conductivity of CNTs Experimental Methods for the Measurement of the Thermal Conductivity T-Type Probe Technique 3ω Technique Molecular Dynamics Simulations Different Parameters Affecting Thermal Conductivity of CNTs Morphology and Structure Nanotube Morphology Atomic Arrangement Defects in the Topology Dimensional Factor The Length of Carbon Nanotubes The Diameter of CNTs Temperature Density Thermal Diffusivity Experimental Methods for Measuring Thermal Diffusivity of CNTs Laser Flash Technique The Transient Electrothermal (TET) Method Photothermal Resistance Method The Influence of Temperature on Thermal Diffusivity Specific Heat Experimental Techniques for Measuring Heat Capacity of CNTs Thermal Relaxation Method 3ω Method AC-Calorimetric Technique Effect of Temperature on Heat Capacity Conclusion References 8. Electronic Transport and Electrical Properties of Carbon Nanotubes Introduction The Electronic Attributes of Single-Walled Nanotubes (SWNTs) Wrapping of a Graphene Sheet to Form Metallic or Semiconducting SWNTs Armchair (AC) and Zigzag (ZZ) Modalities for SWNTs Doping Characteristics of Nanotubes Electric Field Profiles in Doped NTs Electrical Conductivity and Resistance in Nanotubes: Applications to Devices Electrical Contacts to Carbon Nanotubes Characteristic Features of Electrical Contacts to CNTs CNT-Based Field Effect Transistors (FETs) Control of CNT Device Electrical Conductance Characteristics Device to Device Variability in Measured Electrical Characteristics of the CNTs Electrical Capacitance and Inductance in Nanotubes Electrostatic and Quantum Capacitance Electromagnetic and Quantum/Kinetic Inductance Experimental Measurements of the Electrical Characteristics Low Frequency Measurements High Frequency Electrical Characteristics Multiwalled CNTs The Relation of MWNTs to Individual Nanotubes Electrical Transport Characteristics of MWNTs Magnetoresistance in MWNTs Superconductivity Applications of CNT-Based Electronics: Advantages and Issues to Be Overcome for Broad-Scale Utilization CNT-Based Interconnect CNT-Based Transistors Electrochemical Sensing and Biosensors Conclusion and Outlook for the Future References 9. Electrical Properties of Carbon Nanotubes Introduction Structure of Carbon Nanotubes Intrinsic Electrical Conductivity of Carbon Nanotubes Electrical Conductivity as a Function of CNT Structure Methods for Measuring the Electrical Conductivity Typical Values of Electrical Conductivity Contact Resistance in Carbon Nanotubes Electromechanical Behavior of Carbon Nanotubes Theoretical Estimations of Intrinsic CNT Piezoresistivity Effect of the Type of Strain Induced in the CNTs Electrical and Electromechanical of CNT Yarns Electrical Properties of CNT Nanocomposites Electrical Percolation Threshold Critical Parameters for Electrical Conductivity of CNT Nanocomposites Morphology of CNTs CNT/Matrix Interphase Modification CNT Dispersion CNT Orientation Applications of CNTs CNT for Electrical Applications CNT/Polymer-Based Strain Sensors Structural Health Monitoring Applications Flexible Wearable Sensors CNTs as Resistive Heaters Conclusions References 10. Field Emission from Carbon Nanotube Systems: Material Properties to Device Applications Introduction Field Emission History of Field Emitters CNT-Based Field Emitters Methods Used to Enhance the Field Emission Properties of Carbon Nanotubes Various Synthesis Methods Pattern Substrates Low Work Function Material Coating Interlayer Between Substrate and CNTs CNT Field Emitter-Based Device Applications Conclusions References 11. Physical Properties of Carbon Nanotubes Introduction Elastic Behavior of CNTs Young´s Modulus (E) of CNTs Shear Modulus and Poisson´s Ratio Strength of CNTs Conclusion References 12. Functionalization of Carbon Nanotube Introduction to Carbon Nanotubes (CNTs) and Their Properties Dispersion of CNTs Nature of Difficulties for CNTs Dispersion CNTs Dispersion Through Mechanical Methods High Shear Stirring Ultrasonication Ball Milling Calendering Process Extrusion CNTs Dispersion Through Functionalization Covalent Functionalization Noncovalent Functionalization Alignment of CNTs CNTs Alignment Using Van der Waals Interaction CNTs Alignment Using Magnetic Field CNTs Alignment Using Electric Field CNTs Alignment Using Shear Force CNTs Alignment Using Extrusion CNTs Alignment Using Pulling Method Mechanical Properties of CNTs-Embedded Polymer Composite The Role of Dispersion Technique on Mechanical Properties The Role of Alignment Technique on Mechanical Properties Future Perspective Conclusion References 13. Carbon Nanotubes: Dispersion Challenge and How to Overcome It Introduction CNT Properties and Its Potential to Be Commercially Utilized Dispersibility: The Major Shortcoming of CNTs Fundamentals Hansen Solubility Parameters Theory of Dispersion Wetting Desagglomeration of Particles Distribution of the Dispersed Particles Stabilization Surface Modification of Carbon Nanotubes Covalent Functionalization Direct Functionalization Fluorination and Derivatization of Fluorinated Carbon Nanotubes Cycloaddition Reductive Hydrogenation, Alkylation, and Arylation Radical Addition Indirect Functionalization Oxidation Derivatization of the Oxidized CNT Noncovalent Approach Surfactant Modification Polymer Modification Bioinspired Modification Ionic Liquids Physical Processes for Dispersion of Carbon Nanotube Dispersion by Cavitation: Ultrasonication Dispersion by Mechanical Force Calendering Ball/Bead Milling High Shear Mixing Extrusion Dispersion by Turbulent Flow: Jet Milling Conclusion References 14. Covalent Functionalization of Carbon Nanotube Introduction Overview of the Structure and Importance of Carbon Nanotubes Classification of Carbon Nanotubes Synthesis of Carbon Nanotubes Toxicity in Carbon Nanotubes Functionalization of Carbon Nanotubes Covalent Functionalization of Carbon Nanotubes Covalent Functionalization of CNTs by Incorporating Oxygen-Containing Functionalities Covalent Functionalization of Carbon Nanotubes by Incorporating Nitrogen-Containing Functionalities Covalent Functionalization of Carbon Nanotubes by Incorporating Halogen-Containing Functionalities Various Functional Groups Incorporation Via Chemical Bond Formation in Carbon Nanotubes Defect Group Functionalization of Carbon Nanotubes Applications of Covalently Functionalized Carbon Nanotubes in Polymer Science Application of Covalently Functionalized CNTs in Enzyme Immobilization Effect of f-MWCNTs on the Structural and Thermal Stability of Various Proteins Effect of f-SWCNTs on the Structural and Thermal Stability of Various Proteins Predominant Interaction Involved in Protein Immobilization on f-CNTs Conclusion References 15. Noncovalent Functionalization of Carbon Nanotubes Introduction Noncovalent Surface Chemistry of Carbon Nanotubes Driving Forces for Noncovalent Functionalization of Carbon Nanotubes Van der Waals Interactions/Hydrophobic Interaction π-π Interactions Different Approaches for Noncovalent Functionalization of Carbon Nanotubes Endohedral Approach Exohedral Approach Aromatic Small Molecule-Based Noncovalent Functionalization Polymer-Based Noncovalent Functionalization Surfactants-Based Noncovalent Functionalization Biological Compound-Based Noncovalent Functionalization Applications of Noncovalently Functionalized Carbon Nanotubes (CNTs) Noncovalently Functionalized CNTs for Energy Applications Noncovalently Functionalized CNTs for Biomedical Applications Noncovalently Functionalized CNTs for Electrochemical Biosensor Development Noncovalently Functionalized CNTs for Bioimaging Applications Conclusion References 16. Double-Walled Carbon Nanotubes: Synthesis, Sorting, and Applications Introduction Techniques for DWCNTs Synthesis Catalytic Chemical Vapor Deposition (CCVD) Arc Discharge Peapod Growth Sorting Techniques Purification Suspension Reversible Covalent Chemistry Biofunctionalization Molecular Nanocalipers Aqueous Two-Phase Extraction Application of DWCNTs Capacitors, Batteries, and Fuel Cells Hydrogen Storage Nano Sensors Nano-Motors and Nano-Actuators Field Effect Transistors Conclusion and Future Outlook References 17. Heteroatoms-Doped Carbon Nanotubes for Energy Applications Introduction Nonmetal Heteroatoms-Doped CNTs Physical and Chemical Properties of Heteroatoms-Doped CNTs Synthesis of Heteroatoms-Doped CNTs Heteroatoms-Doped CNTs for Energy Conversion and Storage Heteroatoms-Doped CNTs for Energy Storage Heteroatoms-Doped CNTs for Supercapacitors Heteroatoms-Doped CNTs for Batteries Heteroatoms-Doped CNTs for Energy Conversion Applications Heteroatoms-Doped CNTs for ORR Electrocatalysis Nitrogen-Doped CNTs for ORR Boron-Doped CNTs for ORR Oxygen- and Sulfur-Doped CNTs for ORR Phosphorus-Doped CNTs for ORR Heteroatom-Doped CNTs Supported Metallic Sites for ORR Heteroatoms-Doped CNTs for Electrocatalytic Water Splitting Heteroatoms-Doped CNTs for HER Heteroatoms-Doped CNTs for OER Heteroatoms-Doped CNTs for Zn-Air Batteries Conclusions References 18. Carbon Nanotube-Based Hybrid Materials Introduction Synthesis of CNT Hybrid Materials Hydrothermal Method Chemical Vapor Deposition Method Sol-Gel Method Hybrid Materials Based on CNT CNT-Inorganic Material Hybrids CNT-Two Dimensional (2D) Material Hybrids CNT-Biomaterial Hybrids Other CNT Hybrids Applications Electronic Applications Energy Storage Application Supercapacitor Batteries Sensing Applications Sensors for Environmental Monitoring Sensors for Food and Agriculture Sensors for Biological Field Sensors for Glucose Sensing Sensors for DNA Sensing Other CNT-Hybrid Sensors Biological Applications Drug Delivery and Targeting Cancer Diagnosis and Treatment Antibacterial and Antifungal Activity Other Applications Conclusion and Future Perspectives References 19. Growth Mechanisms in Carbon Nanotube Formation Introduction Theoretical Investigations Chemical Kinetic Models Molecular Dynamics Simulation of CNT Growth Molecular Dynamics Simulation: Ongoing Investigation A Brief Introduction: Molecular Dynamics Chemical Kinetic Model Discrete Computational Simulations Influence of Catalyst Film Thickness on the Cluster Diameter Influence of the Catalyst Film Thickness on the Growth Mode Influence of Temperature on the Growth Mode Conclusion References 20. Experimental and Theoretical Aspects of the Fragmentation of Carbon´s Single- and Multiwalled Nanotubes Introduction to the Fragmentation of sp2-Bonded Carbon Structures The Fragmenting Multiwalled CNTs Cumulative Cs+-Induced Damage in MWCNTs Fragmentation Profiles of the Irradiated SWCNTs Normalized Yields of the Sputtered Cx from Irradiated SWCNTs Thermal Origin of the Emitted C Clusters Localized Thermal Spike (LTS) Model LTS Temperature Ts CCs and LTSs as Information-Generating Dynamical Systems The Probability Distribution Function Information Theoretic Entropy and Fractal Dimension Kullback-Leibler Divergence or Relative Entropy Spatially Coherent and Temporally Divergent CCs and LTSs Conclusions References 21. The Current Market for Carbon Nanotube Materials and Products Introduction Carbon Nanotubes Current Markets Production Volumes of Carbon Nanotubes General Characteristics of CNT Products Global Market for Carbon Nanotubes Products Based on Type, Application, and Regional Market Market by Type Single-Walled Carbon Nanotubes (SWCNTs) Multi-Walled Carbon Nanotubes (MWCNTs) Market by End Users Electricals and Electronics Energy Aerospace and Defense Current CNTs Market by Region North America Asia Europe Conclusion Perspective References 22. Novel Approaches to Synthesis of Double-Walled Carbon Nanotubes Introduction Synthesis of DWCNTs Arc-Discharge Method Chemical Vapor Deposition Method CVD Using Hydrocarbons as Carbon Source Methane as Carbon Source Acetylene as Carbon Source Organic Solvent as Carbon Source CVD Using Alcohols as Carbon Source Synthesis of DWCNTs from Filled SWCNTs The Growth from Fullerene-Filled SWCNTs The growth from metallocene-filled SWCNTs The Growth from Acetylacetonate-Filled SWCNTs The Growth from SWCNTs Filled with Other Precursors Conclusions References Part II. Carbon Nanotube based Polymer composites- Fabrication and Characterisation 23. Structure-Property Relationships in Polymer Nanocomposites Introduction Basics of Polymer Nanocomposites The Approach in Terms of Mechanical Properties The Approach in Terms of Thermal Conductivity The Approach in Terms of Electrical Conductivity The Approach in Terms of Crystallization Matrix Structure of Polymer Nanocomposites Nano-Reinforcements Used in Polymer Nanocomposites and Their Effect on Compact Structure Particle Type Reinforcements Reinforcements Having Nanotube or Fiber Structures Reinforcements Having a Layered Structure Surface Energy and Interfaces in Composite Materials Synergistic Effect of Matrix and Reinforcement References 24. Manufacturing Techniques for Carbon Nanotube-Polymer Composites Introduction Factors Influencing the Properties of the CNT-Polymer Composite Modification of CNTs by Non-covalent Methods Modification of CNTs by Covalent Methods Grafting to Method Grafting from Method Manufacturing Techniques for CNT-Polymer Composites Solution Mixing Solid Phase Molding Electrospinning Layer-by-Layer Assembly Melt Mixing Bulk Mixing In Situ Polymerization Manufacturing Methods for Thermoplastic Polymers Synthesis of MWCNT/Waterborne Polyurethane Nanocomposites Manufacturing Methods for Thermosetting Polymers Manufacturing Technique for MWCNT/Epoxy Composite with a Loading Range of 10-68% Metal Nanoparticles Incorporated CNT Nanocomposites Decoration of CNTs with Cu Development of Cu-CNT Mixed PLA/ESO Nanocomposite Full on-Line Preparation of CNT-Polymer Composites with Aligned Carbon Nanotubes Development of Aligned CNT/Polymer Composite Conclusion References 25. Carbon Nanotube Composites: Critical Issues Introduction Structure and Properties of Carbon Nanotubes Carbon Nanotube-Polymer Composites Preparation of Carbon Nanotube-Polymer Composites Processing Techniques Preprocessing Purification to Eliminate Nonnanotube Material Deagglomeration for Dispersing Individual Nanotubes Chemical Functionalization for Improving Nanotube/Matrix Interactions for Processability and Property Enhancement Melt-Mixing In Situ Polymerization Solution Processing Other Fabrication Methods Carbon Nanotube Composites: Critical Issues Carbon Nanotube/Polymer Interfaces Nanocomposite Morphology Influence of Matrix Stiffness on Mechanical Response Properties of Carbon Nanotube-Polymer Composites Mechanical Behavior Thermoplastic Nanocomposites Thermoset Nanocomposites Limitations and Challenges Influence of Functionalization on Polymer-CNT Composites Fundamental Aspects of Dispersion Discussion Carbon Nanotube-Polymer Composites: Summary, Outlook, and Future Prospective Conclusion References 26. Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix Introduction CNTs Dispersion in Polymer Matrix Fabricating Processes Stir Mixing Process Ultrasonication Calendering Process Ball Milling Melt Extrusion Process Surface Functionalization Noncovalent Functionalization Covalent Functionalization Alignment of CNTs in Polymer Matrix Magnetic Field-Induced Alignment of CNTs Electric Field-Induced Alignment of CNTs Mechanical Stress-Induced Alignment of CNTs Conclusion Reference 27. Semi-crystalline Thermoplastic/Carbon Nanotube-Based Composites Introduction Carbon Nanotubes (CNTs) Preparation Methods CNT Properties Carbon Nanotube Polymer Composites CNTs-Composites Production Methods In Situ Polymerization Solution Mixing Melt-Blending Technique CNT Dispersion Properties of CNT Polymer Composites Thermal Properties Thermal Conductivity Thermal Transitions and Crystallinity Fire Behavior Mechanical Properties Electrical Properties Optical Properties Future Challenges and Opportunities Conclusion References 28. Thermoset/Carbon Nanotube-Based Composites Introduction Thermoset Polymeric Composites Conventional Fillers Nanofillers Carbon Nanotube-Reinforced Thermosetting Polymers Preparation and Processing Methods Polyester/CNT Composites Epoxy/CNT Composites Vinyl Ester/CNT Composites Bismaleimide/CNT Composites Cyanate Ester/CNT Composites Polyimide/CNT Composites Phenolic Resin/CNT Composites Thermoset Polyurethane/CNT Composites Conclusions References 29. Phase Selective Wetting of Carbon Nanotubes (CNTs) and Their Hybrid Filler System in Natural Rubber Blends Introduction Selective Wetting of CNTs in Natural Rubber Blends Control Preparation of CNT/Rubber Composites in an Internal Mixer Ionic Liquids as Dispersing Agent Ethanol as Dispersing Agent Phase Selective Wetting of CNTs in Binary Rubber Blends Based on Natural Rubber Theoretical Prediction of the Selective Filler Wetting Experimental Determination of the Selective Filler Wetting in Rubber Blends Evidence of the Role of the Phospholipids in the Interaction Between CNTs and Natural Rubber (NR) Wetting Behavior of CNTs in Different Rubber Compounds Wetting Concept: A New Test Strategy for Direct Comparison of CNT Interaction with NR and IR Determination of the Surface Tension of NR Under Consideration of the Effect of Phospholipids Using the Z-Model Effect of Different Ionic Liquids on the Selective Wetting of CNTs in Rubber Blends Selective Wetting Behavior of CNTs in Ternary Rubber Blends Modification of the Wetting Concept for Experimental Determination of Filler Wetting in Ternary Rubber Blends Selective Wetting of CNTs in Ternary Rubber Blends Self-Healing Property of CNT-Filled NR/Bromo Butyl Rubber (BIIR) Blends Selective Wetting of Hybrid Fillers CNT/Silica in Self-Healing BIIR/NR Blends Conclusion References 30. Latex-Based Carbon Nanotube Composites Introduction Structure and Properties of Latex Matrix Natural Latex Synthetic Latex Butadiene Rubber (Polybutadiene) Chloroprene Rubber (Polychloroprene) Ethylene Propylene Diene Monomer (EPDM) Silicone Rubber Styrene-Butadiene Rubber (SBR) Nitrile Butadiene Rubber (NBR) Reinforcement Types Polymer Composites Synthesis Methods of Polymer Composites Mixing by Solution Mixing by Melting In Situ Polymerization Carbon Nanotubes Properties of Carbon Nanotubes Functionalization of Carbon Nanotubes Dispersion of Carbon Nanotubes Reinforcement of CNT in the Latex Matrix Properties and Applications of Latex-Based Carbon Nanotubes Composites Conclusion and Perspectives References 31. Morphological Characterizations Carbon Nanotube-Polymer Composites Introduction Morphological Characterization Optical Microscopy Scanning Electron Microscopy (SEM) Transmission Electron Microscopy Atomic Force Microscopy (AFM) Energy Dispersive X-ray Analysis Raman Spectroscopy X-ray Diffraction Dynamic Light Scattering (DLS) Porosimetry White Light Interferometry Conclusion References 32. Carbon Nanotube-Based Nano-Composites: Introduction, Mechanism, and Finite Element Analysis Introduction Composites Nanocomposites Polymer Matrix Nanocomposites Ceramic Matrix Nanocomposites Metal Matrix Nanocomposites Polymers Used for Aerospace and Ballistic Applications Thermoplastics Thermosets Kevlar Polyimide PAN Polymer Nanofillers Used for Such Applications Carbon Nanotubes Motivation Science Behind Polymer Nanocomposites Classification of Nanofillers Design of Polymer Nanocomposites Important Design Parameters Aspect Ratio (AR) Interface Interfacial Area Composites and Blends Status of Research Work Methodology: Finite Element Method Element Description Material Modeling Methodologies Geometry Creation Creating the 3D Model Meshing Geometry Setup and Solve Conclusion References 33. Carbon Nanotubes Embedded in Polymer Nanofibers by Electrospinning Introduction Electrospinning Technique Basic Electrospinning Mechanisms Characteristics of Electrospun Fibers Theory of Electrospinning Formation of Taylor Cone Electrospinning Model for Composite Nanofiber Synthesis of Carbon Nanotubes Embedded Polymer Nanofiber Composites by Electrospinning Properties of Carbon Nanotubes Embedded Polymer Nanofiber Composites Prepared by Electrospinning Morphological Studies Mechanical Properties Thermal Properties Applications of Carbon Nanotubes Embedded Polymer Nanofiber Composites Prepared by Electrospinning Conclusion and Future Perspectives References 34. X-Ray Scattering Investigation of Carbon-Nanotube-Based Polymer Composites Introduction Strain-Induced Crystallization of Carbon-Nanotube-Filled Rubbers Unit Cells, Scattering Vectors, and Scattering Angles Unit Cell Parameters for Natural Rubber and Synthetic Cis-1,4-Polyisoprene Unit Cell Parameters of Multiwalled Carbon Nanotubes Small-Angle X-Ray Scattering (SAXS) and Wide-Angle X-Ray Diffraction (WAXD) WAXD Characterization of Strain-Induced Crystallization of Natural Rubber and Synthetic Polyisoprene Effect of Carbon Nanotubes on Strain-Induced Crystallization and Width of Diffraction Peaks Effect of Carbon Nanotubes on Crystallization Onset and Crystallinity Index Small-Angle X-Ray Scattering in Polyisoprene-MWCNT Nanocomposites Nanovoids or Polymer Crystallites in SAXS Patterns? Orientational Order of Carbon Nanotubes The P2 Orientational Order Parameter MWCNT and Semicrystalline Aromatic-Polyester-Based Polyurethane Nanocomposites MWCNT and Triisocyanate-Crosslinked Polytetrahydrofuran Nanocomposites WAXD Analysis of Strain-Induced Crystallization and CNTs on Crack Growth in Rubber SAXS Investigation of SEBS Block Copolymer and MWCNT Composites X-Scattering of Polymer Nanocomposites Containing MWCNT and Clay Nanoparticles Conclusion References 35. Neutron Scattering Investigation of Carbon Nanotube-Polymer Composites Introduction Basic Concept of Scattering (X-Ray and Neutron Scattering) Neutron Scattering Basics Instrumentation Analysis of Single (Polymer, Nanoparticles, Etc.) System Analysis of Multicomponent System (Polymer Nanocomposites) Neutron Scattering in CNT and Its Dispersions Neutron Scattering in CNT-Polymer Nanocomposites Conclusions References 36. Structural Investigation of Carbon Nanotube-Polymer Composites by FTIR, UV, NMR, and Raman Spectroscopy Introduction Structural Characterization Fourier Transformed Infrared Spectroscopy (FTIR) FTIR as a Tool for Characterization Sample Preparation FTIR Analysis of CNT/Polymer Composite Ultraviolet Visible (UV-Vis) Spectroscopy UV-Vis as a Tool for Characterization Sample Preparation UV-Vis Spectroscopy for Characterization of CNT/Polymer Composites Nuclear Magnetic Resonance (NMR) NMR as a Tool for Characterization Sample Preparation NMR Spectroscopy for Characterization of CNT/Polymer Composites Raman Spectroscopic Technique Raman Spectroscopy as a Tool for Characterization Sample Preparation Raman Spectroscopy for Characterization of CNT/Polymer Composites Conclusion References 37. Mechanical Properties of Carbon Nanotube-Polymer Composites Introduction and Background Advantages and Drawbacks of CNTs Advantages Disadvantages Carbon Nanotubes Structures Classification of CNT/Polymer Nanocomposites Processing and Manufacture of Carbon Nanotube-Reinforced Composites (CNRCs) Solution Processing Melt Processing of Bulk Nanocomposites Melt Processing of Nanocomposite Fibers Processing of Thermoset-Based Nanocomposites In Situ Polymerization Processing Covalent Functionalization and Polymer Grafting of CNTs Key Mechanical Properties of CNTs Factors Affecting Mechanical Performance of Carbon Nanotube-Reinforced Composites (CNRCs) Dispersion Alignment Interfacial Stress Transfer Polymer-Nanotube Interactions Damage Mechanisms of CNTs Applications of CNTs Summary and Future Perspectives References 38. Crystallization Behavior of Carbon Nanotube Polymer Nanocomposites Introduction Special Crystallization Behavior in PCN Nanohybrid Shish-Kebab Structure (NHSK) Fractionated Crystallization in Polymer Blends Crystallization in Polymer Blend with MWCNT in Droplet Phase Conclusions References 39. Self-Healing and Shape Memory Effects of Carbon Nanotube-Based Polymer Composites Introduction Carbon Nanotubes as a Conductive Filler Methods for Enhancement of Interfacial Bonding Between CNT and Shape-Memory/Self-Healing Polymer Matrices Shape Memory Polymers CNT Reinforced Shape Memory Polymer Composites Polyurethane Polyvinyl Alcohol Polystyrene Epoxy Potential Applications, Limitations, and Future Directions Self-Healing Polymers CNT Reinforced Self-Healing Polymer Composites Polyurethane Polyvinylidenefluoride (PVDF) Rubber Other Self-Healing Polymer Systems Potential Applications, Current Limitations, and Future Directions Summary References 40. Thermal Characterizations Carbon Nanotube-Polymer Composites Introduction Functionalization of Carbon Nanotubes Covalent Functionalization Non-Covalent Functionalization Endohedral Functionalization Filling of CNTs from Solutions Filling of CNTs from Melted Phases Thermal Characterization of CNTs/Polymer Composites Thermal Conductivity Thermal Conductivity: Measurement and Modeling Thermal Analysis Types of Thermal Analysis Thermogravimetric Analysis (TGA) Differential Scanning Calorimetry (DSC) Thermomechanical Analysis (TMA) Dynamic Mechanical Analysis (DMA) Differential Thermal Analysis (DTA) Factors Effecting Thermal Conductivity Effect of Interfaces on Thermal Transfer Contact Resistance Dispersion Alignment The Effects of Radius and Chirality on the Thermal Conductivity The Effects of Stone-Wales and Vacancy on the Thermal Conductivity The Thermal Conductivity of CNTS with Intramolecular Junction (IMJs) Thermal Properties of CNT/Polymer Composites Thermal Properties of Carbon Nanotubes/Poly Vinyl Alcohol (CNTs/PVA) Composite Thermal Characterization of Carbon Nanotube Bukypaper Interlayer/Glass Fiber-Reinforced Epoxy Polymer Composite Thermal Characterization of Carbon Nanotube/Epoxy Composites Thermal Conductivity of Glass Fiber/Polymer CNT Composites Conclusions References 41. Nanocomposites Based on Polymer Blends and CNT Introduction Nanocomposites Types of Nanocomposites Ceramic Matrix Nanocomposites Metal Matrix Nanocomposites Polymer Matrix Nanocomposites Magnetic Nanocomposites Heat Resistant Nanocomposites Carbon Nanotubes History of CNTs Structure of CNTs Variants of CNTs Single-Walled CNT Multiwalled CNT Synthesis of CNTs By Direct Current Plasma Torch Arc Discharge Chemical Vapor Deposition Chemistry of Carbon Nanotubes Covalent Modifications Oxidation Amidation or Esterification Non-Covalent Modifications Polynuclear Aromatic Compound Biomolecules Nanocomposites with Polymer Blend Synthesis Processes of CNT-Polymer Nanocomposite Solution Processing Melt Processing In Situ Polymerization Properties of CNT Nanocomposites Electrical Properties Thermal Properties Dielectric Properties Mechanical Properties Industrial Implementation of CNT Nanocomposite Radio Frequency Interference (EMI) Shielding Conclusion References 42. Dielectric and Electrical Conductivity Studies of Carbon Nanotube-Polymer Composites Introduction Dielectric Properties What Is a Dielectric Material Factors Affecting Dielectric Properties Applications of Dielectric Material Electrical Conductivity of Polymer Nanocomposites Conductivity AC Conductivity Factors Affecting Electrical Conductivity of Polymer Nanocomposites Aspect Ratio of CNTs Distribution/Dispersion Orientation of the CNTs Preparation Methods Polymer Matrix Properties Dielectric and Electrical Properties of Polymer Nanocomposites CNT-Rubber Nanocomposites CNT-Thermoplastic Nanocomposites CNT-Thermoset Nanocomposites Dielectric and Electrical Applications of CNT-Polymer Nanocomposites References 43. EMI Shielding Studies of Carbon Nanotube-Polymer Composites Introduction Principle of EMI Shielding Measurement EMI Shielding Studies of Different CNT-Based Polymer Composites EMI Shielding Studies of SWCNT-Based Polymer Composites EMI Shielding Studies of MWCNT-Based Polymer Composites Conclusion References 44. Characterization of the Dynamic Response of CNT-Reinforced-Polymer-Composite (CNTRPC) Materials Based on a Multiscale Appro... Introduction Representative Volume Element (RVE) Multiscale Modeling Using Finite Element Method Space Frame Model of Single-Walled-Carbon-Nanotube (SWCNT) Thin Shell Model of SWCNT Polymer Matrix Interface Modeling Stiffness of CNTRPC Material Viscous Damping of CNTRPC Material Structural Damping of CNTRPC Material Natural Frequencies of CNTRPC Material Mechanical Behavior of (16, 0) and (9, 9) SWCNT Nanocomposites Comparison and Validation of Material Models Stiffness of CNTRPC Material with (16, 0) and (9, 9) SWCNTs Viscous Damping of CNTRPC Material with (16, 0) and (9, 9) SWCNTs Structural Damping of CNTRPC Material with (16, 0) and (9, 9) SWCNTs Comparison Between Viscous and Structural Damping Properties of CNTRPC Material Natural Frequencies of CNTRPC Material with (16, 0) and (9, 9) SWCNTs Conclusion References 45. Biomedical Applications and Biosafety Profile of Carbon Nanotubes-Based Composites Introduction Carbon Nanotubes (CNTs) Types and Structure of CNTs Biomedical Applications of CNTs Antimicrobial Applications Biosensors Tissue Engineering Neural Applications Toxicity/Biosafety Profile of CNTs Composites Conclusion References Part III. Recent Advances in Carbon Nanotube Structures for Potential Applications 46. Carbon Nanotubes: General Introduction Introduction and Overview Fundamentals, Synthesis, and Properties Potential Material for Commercial Applications Biomedical Applications Material for Engineering and Functional Applications Potential Material for Green Energy Conversion CNTs for Next-Generation Energy Storage Systems Other Promising Applications Conclusions References 47. Carbon Nanotubes for Mechanical Applications Introduction Carbon Nano Tubes Mechanical Characteristics of Carbon Nanotubes The Elasticity of Carbon Nanotubes Strength of Carbon Nanotubes CNT-Based Nanocomposites Polymer/CNT Composites Preparation of Polymer/CNT Composites CNT-Reinforced Metal and Steel Nanocomposites Preparation of CNT-Reinforced Metal and Steel Nanocomposites Carbon Fibers/CNTs Applications Concerning the Mechanical Characteristics of CNTs Carbon Nanotube-Based Actuators CNT Sensing Replications Structural Reinforcement Carbon Nanotubes for the Fabrication of Wind Turbine Blades Carbon Nanotube Coatings Conclusion References 48. Carbon Nanotubes for Energy Conversion and Storage Introduction Carbon-Nanotubes (CNTs) CNTs for Improving Efficiency in Solar Cells Carbon Nanotubes in Energy Storage Applications Lithium-Ion Batteries Supercapacitors Conclusion References 49. Carbon Nanotube for Water Splitting and Fuel Cell Introduction Carbon Nanotubes (CNTs) Structures and Properties Morphology of Carbon Nanotube (CNT) Properties and Structures of Carbon Nanotube Water Splitting Application Working Principle of Water Splitting Hydrogen Evolution Reaction (HER) Oxygen Evolution Reaction (OER) Water Splitting Performance of CNT or CNT-Supported Composite MOF Derived CNT for Overall Water Splitting Fuel Cell Application Influence of CNT in Fuel Cell Application Non-precious Metal/CNT for Fuel Cell Application Precious Metal/CNT for Fuel Cell Application Conclusion References 50. Carbon Nanotubes for Solar Cells and Photovoltaics Introduction The Fundamentals of Solar Cells Carbon Nanotubes in Solar Cells Carbon Nanotubes as an Alternative to ITO Carbon Nanotubes as Photocarrier Generator Carbon Nanotubes as Carrier Transport Materials Carbon Nanotubes in Organic Solar Cells Carbon Nanotubes as the Photoactive Layer Carbon Nanotubes as Top and Back Electrode Carbon Nanotubes in Silicon Solar Cells Carbon Nanotubes in Dye-Sensitized Solar Cells (DSSCs) Carbon Nanotube in Perovskite Solar Cells (PSCs) Conclusion References 51. Carbon Nanotubes for Sensing Applications Introduction Preparation, Characterization, and Applications of Carbon Nanotubes Preparation of Carbon Nanotube-Based Sensors Dispersion of CNTs Functionalization of CNTs Acid Functionalized CNTs Plasma Functionalized CNTs Radical Addition with Aryl-diazonium Salts Modification of CNTs Metals/Metal Oxides Modified CNTs Polymers Modified CNTs Biomolecules Modified CNTs Other Molecules Modified CNTs Characterizations of Carbon Nanotube-Based Surfaces Electrochemical Impedance Spectroscopy Scanning Electron Microscopy High Resolution Transmission Electron Microscopy Atomic Force Microscopy Sensing Application of Carbon Nanotube-Based Materials Electrochemical Sensors Sensing of Small Biologically Important Compounds Sensing of Environmental Pollutants Phenolic Compounds Organophosphorus and Carbamate Pesticides Heavy Metal Ions Gas Sensing with CNTs pH Sensing with CNTs Conclusion References 52. Carbon Nanotube-Based Nanofluids Introduction Thermal Conductivity Brownian Motion Clustering Liquid Layering Phonon Transport Heat Capacity Physics Tribological Properties Wettability Rheological Properties Optical Properties Stability Stability Enhancement Mechanisms Stability Measurement Carbon Nanotube-Based Nanofluids in Metal Cutting Processes MWCNT-Based Nanofluid Applications in Direct Absorption Solar Collectors Conclusion, Challenges, and Future Work References 53. Carbon Nanotubes for Nanoelectronics and Microelectronic Devices Introduction Carbon Nanotubes in Microelectronic and Nanoelectronic Applications Carbon Nanotubes in Transistor Applications Carbon Nanotubes as Field Emission Source CNT in Interconnect Applications Batteries (Lithium Ion Batteries) Action of CNTS on Fuel Cells Enhancing Catalyst Performance Increasing Catalyst Stability and Resistance to Corrosion Decreasing Fuel Cell Cost Increasing Transmission Capacity Utilizing Support to Minimize the Usage of Pt Catalysts That Do Not Contain Pt Supercapacitors CNT for Gas Sensing Applications Conclusion References 54. Carbon Nanotubes for Photonics Applications Introduction Optical Properties of CNT Electronic Structure Saturable Absorption (SA) Third-Order Nonlinearity CNT-Based Devices for Enhanced Nonlinear Applications Ultrafast Optical Switching by Third-Order Susceptibility of CNT Fiber Lasers Based on CNT Saturable Absorbers (SAs) Mode-Locking Dynamics Conclusion References 55. Carbon Nanotubes Applications in Agriculture Introduction Structure of Carbon Nanotubes Carbon Nanotubes and Wastewater Treatment Carbon Nanotubes and Toxicity in Agriculture Carbon Nanotubes and Soil Improvement Carbon Nanotubes and Plant Growth Carbon Nanotubes as Plant Growth Regulators Nanofertilizers and Nanopesticides for Agriculture Carbon Nanotubes Plant Disease Treatment Future Prospective and Conclusion References 56. Carbon Nanotubes for Piezo Electric Applications Introduction on Piezoelectricity Piezoelectricity in Carbon Nanostructures Piezoelectric/Flexoelectric Properties of CNTs CNT-Based Nanocomposites for Piezoelectric Applications Piezoelectric Polymer-CNT Nanocomposites Piezoelectric Metal Oxide-CNT Nanocomposites Conclusions References 57. Carbon Nanotubes: Thermal Applications Introduction Carbon Nanotubes in Thermal Interface Carbon Nanotubes for Thermal Insulation Carbon Nanotubes for Thermoresponsive Applications Carbon Nanotubes in Flame-Retardant Application Conclusion References 58. Carbon Nanotubes for Tissue Engineering Scaffold Applications Introduction Properties of Carbon Nanotubes (CNTs) CNTs-Based Scaffolds for Tissue Regeneration and Engineering CNTs with Calcium Phosphate (Ca3Po4), HA, Titanium, and CPC Materials CNTs with Natural Polymers CNTs with Synthetic Polymers CNTs with Proteins, Peptides, and Genes Conclusion References 59. Carbon Nanotubes for Drug Delivery Applications Introduction Fringe Benefits of Using CNTs as Drug Delivery Agents Advantages of Carbon Nanotubes (CNTs) Disadvantages of CNTs Drug Delivery Using Carbon Nanotubes Delivery of Genes Delivery of Small Drug Molecules Delivery of Proteins Delivery of Drugs in Neurons Physiology of Nervous System and Its Regeneration Substrate Pattern and Functionalization of CNTs CNTs as Substrates for Neuronal Growth Delivery of Stem Cells Differentiation of Stem Cells on Nanotubes Mesenchymal Stem Cells Conclusion References 60. Carbon Nanotubes for Bio-imaging Applications Introduction Applications Fluorescence Imaging Raman Imaging Nuclear Imaging Magnetic Resonance Imaging (MRI) Photoacoustic Imaging (PAI) Conclusion References 61. Carbon Nanotubes in Regenerative Medicine Introduction CNT on Cellular Function Biocompatibility of CNT Functionalization of CNT Covalent Functionalization Non-Covalent Functionalization CNT Functionalization with Polymers Functionalization with Biomolecules Electrospinning of CNT for Tissue Regeneration Electrospinning of Natural Polymers with CNTs Electrospinning of Synthetic Polymers with CNTs CNT Nanocomposites for Tissue Regeneration CNT on Muscle Tissue Regeneration CNT on Skin Regeneration CNT on Bone Regeneration CNT on Neural/Nervous Tissue Regeneration CNT on Blood Cell Regeneration CNT on Liver Regeneration CNT on Kidney Regeneration References 62. Carbon Nanotubes in Cancer Therapy Introduction Essentiality in Functionalizations of CNTs in the Biomedical Field Endohedral Modifications of CNTs Exohedral Modifications of CNTs Covalent Modification Noncovalent Modifications Cellular Uptake and Fate of CNTs in Biological Milieu Carbon Nanotubes as Anticancer Cargo Carriers CNTs as Drug Carriers Delivery of Platinum-Based Drug Cargoes Using CNTs Delivery of Taxane Drugs Using CNTs Delivery of Anthracycline Drugs Using CNTs Delivery of Other Anticancer Drugs Using CNTs CNTs as Gene Carriers Delivery of Plasmid DNA/dsDNA Using CNTs Delivery of RNAi Components Using CNTs Delivery of Oligonucleotides Using CNTs Delivery of DNA/RNA Aptamers Using CNTs CNTs in Cancer Immune-, Thermal-, and Radiotherapies CNTs in Cancer Immunotherapies Delivery of Immunogenic Antigen Using CNTs Delivery of Adjuvants Using CNTs Delivery of Both Tumor Immunogenic Antigen and Adjuvants Using CNTs CNTs in Cancer Photothermal Therapies CNTs in Cancer Radiotherapy CNT as a Cancer Diagnostic Tool Present Setbacks and Future Prospects of CNTs Safety, Environmental, and Regulatory Issues with CNTs Conclusion References 63. Carbon Nanotube as a Multifunctional Coating Material Introduction CNTs as a Modifier of General Properties of Nanocomposite Coatings CNTs to Improve Anticorrosion Properties and Altering Surface Properties of Nanocomposite Coatings CNTs in Coatings with Improved Optical Properties CNTs in Bio-Medical Coatings CNTs in Coating for Sensors Application Conclusion References 64. Hydrogels and Aerogels of Carbon Nanotubes Introduction Aerogels and Hydrogels: Structure and Properties Structure Structure of Aerogels Structure of Hydrogels Properties Properties of Aerogels Properties of Hydrogels Synthetic Aspects of Aerogels and Hydrogels Aerogels Synthetic Strategy of Aerogels Hydrogels Synthetic Strategy of Hydrogels Carbon Nanotube Hydrogel Composites Carbon Nanotube Aerogel Composites Properties of Hydrogel and Aerogel Composites Properties of Hydrogel Composites Properties of Aerogel Composites Conclusion References 65. Carbon Nanotubes for Environmental Remediation Applications Introduction Kinds of Carbon Nanomaterials Carbon Nanotubes (CNTs) Carbon Nanotubes Applications Environmental Applications of CNTs Treatment of Air Pollution Types of Carbon Nanotube Filters Purification of Water CNTs/Functionalized CNTs-Based Composites as Sorbents Organic Dyes Other Organic Pollutants Removal of Heavy Metal Ions Recovery of Oil Spill Water Remediation via CNTs-Based Catalysis Reactions Photocatalysis Electrocatalysis Other Catalytic Oxidations Remediation of Pesticides Extraction of Mycotoxins Detection of Mycotoxins CNTs Toxicity Conclusions and Future Outlook References 66. Antimicrobial (Antibacterial) Properties and Other Miscellaneous Applications of Carbon Nanotubes (CNTs) Introduction A Brief Overview of Carbon Nanotubes and Their Methods of Synthesis Antimicrobial Properties of CNTs Toxicity Mechanism of CNTs Properties on Antimicrobial Factors Affecting the Mechanism of Toxicity of CNTs Functionalization of Carbon Nanotubes Antimicrobial Properties of Single Walled Carbon Nanotubes (SWCNTs) The Antibacterial Properties of Multi-Walled Carbon Nanotubes (MWCNTs) Miscellaneous Application of Carbon Nanotubes Carbon Nanotube COVID-19 Detector CNTs as Fillers CNTs as Adsorbent CNT-Based Electrodes Catalysis Membranes and Filters Drawbacks of Carbon Nanotubes Production, Its Antimicrobial and Antibacterial Properties, and Future Perspectives Conclusion References 67. Carbon Nanotubes as Antimicrobial Agents: Trends and Perspectives Introduction Antimicrobial Activity Depending on the Physicochemical Properties of CNTs and the Environment CNTs Diameter and Length Number of Layers Shape CNT Surface Modification by Functionalization Doping CNT Impurities CNT Concentration CNT Dispersion Solution Antimicrobial Activity Mechanisms of CNTs Mechanical Damage to Cell Membrane Oxidative Stress Other Mechanisms CNT Toxicity Technical Issues Analysis of the Antimicrobial Activity of Diverse Multiwall Carbon Nanotubes on Opportunistic Fungus of Health Importance Remarks and Research Perspectives References 68. Multifunctional Applications of Carbon Nanotube-Based Polymer Composites Introduction Carbon Nanotubes Properties of Carbon Nanotube-Based Composites Mechanical Electrical Thermal Multifunctional Composite Materials (MFCM) and Applications Conclusions References 69. Carbon Nanotube Research Developments: Published Scientific Documents and Patents, Synthesis, and Production Introduction Carbon Nanotubes: General Aspects Methods for CNT Synthesis, Dispersion, and Functionalization Production of MWCNT by CVD as a Function of Time In Situ Synthesis of Carbon Nanotubes on Macromaterials Techniques for CNT Dispersion and Functionalization Dispersion Functionalization Properties and Applications CNT Electrical Properties and Related Applications CNT Mechanical Properties and Related Applications Carbon Nanotubes and Environment-Friendly Applications Developments in CNT Research: Published Scientific Documents and Patents Using Patent Analyses to Observe the Technological Evolution in Synthesis and Production of Carbon Nanotubes Data and Methodology Methods for the Synthesis of CNT and Their Evolution Through the Years Disposal of Carbon Nanotubes A Brief Contextualization of CNT Research in 2020 Conclusion References 70. Assessment of the Risks Associated with Carbon Nanotubes Introduction Initial Worries Due to Structural Resemblance with Asbestos and Smaller Size Recommended Exposure Levels Routes of Exposure Nanotoxicity of CNTs: Influencing Parameters Nanobiotoxicology: Basic Mechanism of Cellular Uptake and Toxicity of CNTs In Vitro Studies In Vivo Studies Respiratory (Pulmonary) Toxicity Carcinogenicity Central Nervous System (CNS) Toxicity Cardiovascular Toxicity Hepatotoxicity Spleen Toxicity Renal Toxicity Dermal and Subcutaneous Toxicity Reproductive Toxicity Immunotoxicity Ocular (Eye) Toxicity Nanoecotoxicology: Impacts on Environment Studies on Aquatic and Sediment Organisms Studies on Terrestrial Plants Studies on Soil Microorganisms Importance of Safe and Sustainable CNTs Conclusions References 71. Advanced Applications of Carbon Nanotubes in Engineering Technologies Introduction Carbon-Based Filler for Engineering Applications Carbon Nanotubes for Engineering Carbon Nanotubes SWCNTs DWCNTs MWCNTs Functionalized CNTs Applications of CNTs in Engineering Technologies Introduction Materials Electrical Electronic Energy Storage Coating Sensors and Nano Probes Reinforcement Green Engineering Biomedical Other Applications Conclusions References 72. Carbon Nanotube-Based Membranes for Filtration Introduction Filtration Process Mechanism of Filtration Criteria for Selecting a Filter Factors Affecting the Filtration Process Classification of Filtration Process Membrane Filtration Techniques Types of Membranes Used for Filtration Microfiltration Ultrafiltration Reverse Osmosis Nanofiltration Issues of Filtration Using Membrane Technology Fouling Pore Size Distribution Degradation or Membrane Lifetime CNT based membranes for filtration: Different types of CNT membranes Aligned CNT Membranes Surface-modified Membranes Composite Membranes Bucky Papers Synthetic Methods of CNT Membranes Filtration Using CNTs Water Filtration CNT Membranes for Desalination CNT Membranes for Air Filtration Applications Carbon Nanotubes for Heavy Metal Removal Surface Modification of CNTs Removal of Heavy Metals by CNTs Regeneration of CNTs by Desorption of Heavy Metals Bacterial Filtration by CNTs Antifouling by CNTs Conclusions References Index