دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Inamuddin. Tariq Altalhi
سری:
ISBN (شابک) : 9781119160137
ناشر: Wiley
سال نشر: 2023
تعداد صفحات: [683]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Bioplastics and Biocomposites Engineering Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای کاربردهای مهندسی بیوپلاستیک و بیوکامپوزیت ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هندبوک کاربردهای مهندسی بیوپلاستیک و بیوکامپوزیت ها ویرایش دوم این کتابچه راهنمای موفق کاربردهای گسترده و رو به رشد ساخته شده با پلاستیک های زیستی و بیوکامپوزیت ها را برای صنایع بسته بندی، خودروسازی، زیست پزشکی و ساخت و ساز بررسی می کند. پلاستیکهای زیستی موادی هستند که بهعنوان جایگزینی احتمالی برای پلاستیکهای سنتی مبتنی بر نفت به منظور سازگاری بیشتر با محیطزیست در حال تحقیق هستند. آنها از منابع تجدیدپذیر ساخته شده اند و ممکن است به طور طبیعی از طریق فرآیندهای بیولوژیکی، حفظ منابع طبیعی و کاهش انتشار CO2 بازیافت شوند. 30 فصل در هندبوک کاربردهای مهندسی بیوپلاستیک ها و بیوکامپوزیت ها، طیف گسترده ای از فناوری ها و طبقه بندی های مربوط به پلاستیک ها و زیست کامپوزیت ها را با کاربردهای آنها در پارادایم های مختلف از جمله بخش مهندسی مورد بحث قرار می دهد. فصل ها مواد مبتنی بر زیست را پوشش می دهند. بازیافت پلاستیک های زیستی؛ مدل سازی بیوکامپوزیت ها کاربردهای مختلف زیست پزشکی و مهندسی از جمله دستگاه های نوری، مواد هوشمند، لوازم آرایشی، دارورسانی، بالینی، الکتروشیمیایی، صنعتی، بازدارنده شعله، ورزشی، بسته بندی، مواد یکبار مصرف و زیست توده. رویکردهای مختلف به پایداری نیز درمان می شود. مخاطبان کتاب راهنمای مهندسین، دانشمندان و محققانی که در زمینههای پلاستیکهای زیستی، بیوکامپوزیتها، بیومواد برای مهندسی زیستپزشکی، بیوشیمی و علم مواد کار میکنند، مورد توجه محوری قرار خواهد گرفت. این کتاب همچنین برای مهندسان در بسیاری از صنایع از جمله خودروسازی، زیست پزشکی، ساخت و ساز و بسته بندی مواد غذایی از اهمیت بالایی برخوردار خواهد بود.
Handbook of Bioplastics and Biocomposites Engineering Applications The 2nd edition of this successful Handbook explores the extensive and growing applications made with bioplastics and biocomposites for the packaging, automotive, biomedical, and construction industries. Bioplastics are materials that are being researched as a possible replacement for petroleum-based traditional plastics to make them more environmentally friendly. They are made from renewable resources and may be naturally recycled through biological processes, conserving natural resources and reducing CO2 emissions. The 30 chapters in the Handbook of Bioplastics and Biocomposites Engineering Applications discuss a wide range of technologies and classifications concerned with bioplastics and biocomposites with their applications in various paradigms including the engineering segment. Chapters cover the biobased materials; recycling of bioplastics; biocomposites modeling; various biomedical and engineering-based applications including optical devices, smart materials, cosmetics, drug delivery, clinical, electrochemical, industrial, flame retardant, sports, packaging, disposables, and biomass. The different approaches to sustainability are also treated. Audience The Handbook will be of central interest to engineers, scientists, and researchers who are working in the fields of bioplastics, biocomposites, biomaterials for biomedical engineering, biochemistry, and materials science. The book will also be of great importance to engineers in many industries including automotive, biomedical, construction, and food packaging.
Cover Title Page Copyright Page Contents Preface Part I: Bioplastics, Synthesis and Process Technology Chapter 1 An Introduction to Engineering Applications of Bioplastics 1.1 Introduction 1.2 Classification of Bioplastics 1.3 Physical Properties 1.3.1 Rheological Properties 1.3.2 Optical Properties 1.3.3 Mechanical and Thermal Properties 1.3.4 Electrical Properties 1.4 Applications of Bioplastics in Engineering 1.4.1 Bioplastics Applications in Sensors 1.4.2 Bioplastics Applications in Energy Sector 1.4.3 Bioplastics Applications in Bioengineering 1.4.4 Bioplastics Applications in “Green” Electronics 1.5 Conclusions Acknowledgement Dedication References Chapter 2 Biobased Materials: Types and Sources 2.1 Introduction 2.2 Biodegradable Biobased Material 2.2.1 Polysaccharides 2.2.2 Starch 2.2.3 Polylactic Acid 2.2.4 Cellulose 2.2.5 Esters 2.2.6 Ether 2.2.7 Chitosan 2.2.8 Alginate 2.2.9 Proteins 2.2.10 Gluten 2.2.11 Gelatine 2.2.12 Casein 2.2.13 Lipid 2.2.14 Polyhydroxyalkanoates (PHA) 2.3 Nonbiodegradable Biobased Material 2.3.1 Polyethylene (PE) 2.3.2 Polyethylene Terephthalate (PET) 2.3.3 Polyamide (PA) 2.4 Conclusion Acknowledgment References Chapter 3 Bioplastic From Renewable Biomass 3.1 Introduction 3.2 Plastics and Bioplastics 3.2.1 Plastics 3.2.2 Bioplastics 3.3 Classification of Bioplastics 3.4 Bioplastic Production 3.4.1 Biowaste to Bioplastic 3.4.1.1 Lipid Rich Waste 3.4.2 Milk Industry Waste 3.4.3 Sugar Industry Waste 3.4.4 Spent Coffee Beans Waste 3.4.5 Bioplastic Agro-Forestry Residue 3.4.6 Bioplastic from Microorganism 3.4.7 Biomass-Based Polymers 3.4.7.1 Biomass-Based Monomers for Polymerization Process 3.5 Characterization of Bioplastics 3.6 Applications of Bioplastics 3.6.1 Food Packaging 3.6.2 Agricultural Applications 3.6.3 Biomedical Applications 3.7 Bioplastic Waste Management Strategies 3.7.1 Recycling of Poly(Lactic Acid ) (PLA) 3.7.1.1 Mechanical Recycling of PLA 3.7.1.2 Chemical Recycling of PLA 3.7.2 Recycling of Poly Hydroxy Alkanoates (PHAs) 3.7.3 Landfill 3.7.4 Incineration 3.7.5 Composting 3.7.6 Anaerobic Digestion 3.7.6.1 Anaerobic Digestion of Poly(Hydroxyalkanoates) 3.7.6.2 Anaerobic Digestion of Poly(Lactic Acid) 3.8 Conclusions and Future Prospects References Chapter 4 Modeling of Natural Fiber-Based Biocomposites 4.1 Introduction 4.2 Generality of Biocomposites 4.2.1 Natural Matrix 4.2.2 Natural Reinforcement 4.2.3 Natural Fiber Classification 4.2.4 Biocomposites Processing 4.2.4.1 Extrusion and Injection 4.2.4.2 Compression Molding 4.2.5 RTM-Resin Transfer Molding 4.2.6 Hand Lay-Up Technique 4.3 Parameters Affecting the Biocomposites Properties 4.3.1 Fiber’s Aspect Ratio 4.3.2 Fiber/Matrix Interfacial Adhesion 4.3.3 Fibers Orientation and Dispersion 4.3.3.1 Short Fibers Orientation 4.3.3.2 Fiber’s Orientation in Simple Shear Flow 4.3.3.3 Fiber’s Orientation in Elongational Flow 4.4 Process Molding of Biocomposites 4.4.1 Unidirectional Fibers 4.4.1.1 Classical Laminate Theory 4.4.1.2 Rule of Mixture 4.4.1.3 Halpin-Tsai Model 4.4.1.4 Hui-Shia Model 4.4.2 Random Fibers 4.4.2.1 Hirsch Model 4.4.2.2 Self-Consistent Approach (Modified Hirsch Model) 4.4.2.3 Tsai-Pagano Model 4.5 Conclusion References Chapter 5 Process Modeling in Biocomposites 5.1 Introduction 5.2 Biopolymer Composites 5.2.1 Natural Fiber-Based Biopolymer Composites 5.2.2 Applications of Biopolymer Composites 5.2.3 Properties of Biopolymer Composites 5.3 Classification of Biocomposites 5.3.1 PLA Biocomposites 5.3.2 Nanobiocomposites 5.3.3 Hybrid Biocomposites 5.3.4 Natural Fiber-Based Composites 5.4 Process Modeling of Biocomposite Models 5.4.1 Compression Moulding 5.4.2 Injection Moulding 5.4.3 Extrusion Method 5.5 Formulation of Models 5.5.1 Types of Model 5.6 Conclusion References Chapter 6 Microbial Technology in Bioplastic Production and Engineering 6.1 Introduction 6.2 Fundamental Principles of Microbial Bioplastic Production 6.3 Bioplastics Obtained Directly from Microorganisms 6.3.1 PHA 6.3.2 Poly (ƒÁ-Glutamic Acid) (PGA) 6.4 Bioplastics from Microbial Monomers 6.4.1 Bioplastics from Aliphatic Monomers 6.4.1.1 PLA 6.4.1.2 Poly (Butylene Succinate) 6.4.1.3 Biopolyamides (Nylons) 6.4.1.4 1, 3-Propanediol (PDO) 6.4.2 Bioplastics from Aromatic Monomers 6.5 Lignocellulosic Biomass for Bioplastic Production 6.6 Conclusion References Chapter 7 Synthesis of Green Bioplastics 7.1 Introduction 7.2 Bioplastic 7.2.1 Polyhydroxyalkanoates (PHAs) 7.2.2 Poly(lactic acid) (PLA) 7.2.3 Cellulose 7.2.4 Starch 7.3 Renewable Raw Material to Produce Bioplastic 7.3.1 Raw Material from Agriculture 7.3.2 Organic Waste as Resources for Bioplastic Production 7.3.3 Algae as Resources for Bioplastic Production 7.3.4 Wastewater as Resources for Bioplastic Production 7.4 Bioplastics Applications 7.4.1 Food Industry 7.4.2 Agricultural Applications 7.4.3 Medical Applications 7.4.4 Other Applications 7.5 Conclusions References Chapter 8 Natural Oil-Based Sustainable Materials for a Green Strategy 8.1 Introduction 8.2 Methodology 8.2.1 Entropy Methodology 8.2.2 Copras Methodology 8.3 Conclusions References Part II: Applications of Bioplastics in Health and Hygiene Chapter 9 Biomedical Applications of Bioplastics 9.1 Introduction 9.2 Synthesis of Bioplastics 9.2.1 Starch-Based Bioplastics 9.2.2 Cellulose-Based Bioplastics 9.2.3 Chitin and Chitosan 9.2.4 Polyhydroxyalkanoates (PHA) 9.2.5 Polylactic Acid (PLA) 9.2.6 Bioplastics from Microalgae 9.3 Properties of Bioplastics 9.3.1 Material Strength 9.3.2 Electrical, Mechanical, and Optical Behavior of Bioplastic 9.4 Biological Properties of Bioplastics 9.5 Biomedical Applications of Bioplastics 9.5.1 Antimicrobial Property 9.5.2 Biocontrol Agents 9.5.3 Pharmaceutical Applications of Bioplastics 9.5.4 Implantation 9.5.5 Tissue Engineering Applications 9.5.6 Memory Enhancer 9.6 Limitations 9.7 Conclusion References Chapter 10 Applications of Bioplastics in Hygiene Cosmetic 10.1 Introduction 10.2 The Need to Find an Alternative to Plastic 10.3 Bioplastics 10.3.1 Characteristic of Bioplastics 10.3.2 Types (Classification) 10.3.3 Uses of Bioplastics 10.4 Resources of Bioplastic 10.4.1 Polysaccharides 10.4.2 Starch or Amylum 10.4.3 Cellulose 10.4.3.1 Source of Cellulose 10.5 Use of Biodegradable Materials in Packaging 10.6 Bionanocomposite 10.7 Hygiene Cosmetic Packaging 10.8 Conclusion References Chapter 11 Biodegradable Polymers in Drug Delivery 11.1 Introduction 11.2 Biodegradable Polymer (BP) 11.2.1 Natural 11.2.1.1 Polysaccharides 11.2.1.2 Proteins 11.2.2 Synthetic 11.2.2.1 Polyesters 11.2.2.2 Polyanhydrides 11.2.2.3 Polycarbonates 11.2.2.4 Polyphosphazenes 11.2.2.5 Polyurethanes 11.3 Device Types 11.3.1 Three-Dimensional Printing Devices 11.3.1.1 Implants 11.3.1.2 Tablets 11.3.1.3 Microneedles 11.3.1.4 Nanofibers 11.3.2 Nanocarriers 11.3.2.1 Nanoparticles 11.3.2.2 Dendrimers 11.3.2.3 Hydrogels 11.4 Applications 11.4.1 Intravenous 11.4.2 Transdermal 11.4.3 Oral 11.4.4 Ocular 11.5 Existing Materials in the Market 11.6 Conclusions and Future Projections References Chapter 12 Microorganism-Derived Bioplastics for Clinical Applications 12.1 Introduction 12.2 Types of Bioplastics 12.2.1 Poly(3-hydroxybutyrate) (PHB) 12.2.2 Polyhydroxyalkanoate 12.2.3 Poly-Lactic Acid 12.2.4 Poly Lactic-co-Glycolic Acid (PLGA) 12.2.5 Poly (.-caprolactone) (PCL) 12.3 Properties of Bioplastics 12.3.1 Physiochemical, Mechanical, and Biological Properties of Bioplastics 12.3.1.1 Polylactic Acid 12.3.1.2 Poly Lactic-co-Glycolic Acid 12.3.1.3 Polycaprolactone 12.3.1.4 Polyhydroxyalkanoates 12.3.1.5 Polyethylene Glycol (PEG) 12.4 Applications 12.4.1 Tissue Engineering 12.4.2 Drug Delivery System 12.4.3 Implants and Prostheses 12.5 Conclusion References Chapter 13 Biomedical Applications of Biocomposites Derived From Cellulose 13.1 Introduction 13.2 Importance of Cellulose in the Field of Biocomposite 13.3 Classification of Cellulose 13.4 Synthesis of Cellulose in Different Form 13.4.1 Mechanical Extraction 13.4.2 Electrochemical Method 13.4.3 Chemical Extraction 13.4.4 Enzymatic Hydrolysis 13.4.5 Bacterial Production of Cellulose 13.5 Formation of Biocomposite Using Different Form of Cellulose 13.6 Biocomposites Derived from Cellulose and Their Application 13.6.1 Tissue Engineering 13.6.2 Wound Dressing 13.6.3 Drug Delivery 13.6.4 Dental Applications 13.6.5 Other Applications 13.7 Conclusion References Chapter 14 Biobased Materials for Biomedical Engineering 14.1 Introduction 14.2 Biomaterials 14.3 Biobased Materials for Implants and Tissue Engineering 14.3.1 Skin Tissue Engineering and Wound Dressings 14.3.2 Bone Tissue Engineering 14.3.3 Cartilage Tissue Engineering 14.3.4 Ligament and Tendon Implants and Tissue Engineering 14.3.5 Cardiovascular Implants and Tissue Engineering 14.3.5.1 Valve Implants 14.3.5.2 Artificial Heart/Cardiac Patches 14.3.5.3 Vascular Grafts and TE 14.3.6 Liver Tissue Engineering and Bioreactors 14.3.7 Kidney Tissue Engineering and Dialysis Devices 14.3.8 Nervous Tissue Engineering and Implants 14.4 Auxiliary Materials 14.5 Conclusion and Future Trends References Chapter 15 Applications of Bioplastics in Sports and Leisure 15.1 Introduction 15.1.1 Plastic Pollution Due to Leisure and Sports Industries 15.1.2 Bioplastics: Overview and Classification 15.1.2.1 Biobased Nonbiodegradable 15.1.2.2 Biobased, Biodegradable 15.1.2.3 Fossil-Based, Biodegradable 15.2 Bioplastic in Leisure 15.2.1 Camping 15.2.2 Eyewear 15.2.3 Toys 15.2.4 Electronic Equipment and Other 15.3 Bioplastic in Sports 15.3.1 Shoes and Sneakers 15.3.2 Ski Boots 15.3.3 Snow Goggles 15.3.4 Surfboards and Surfskates 15.3.5 Sportscar 15.3.6 Football, Baseball, Basketball, Soccer Ball, and Volleyball 15.3.7 Hockey 15.4 Conclusion References Chapter 16 Biocomposites in Active and Intelligent Food Packaging Applications 16.1 Introduction 16.2 Advances in Biocomposite Application in Active and Intelligent Food Packaging 16.2.1 Antimicrobial and Antioxidant Properties in Active Food Packaging 16.2.2 Gaseous Scavenging Activity in Active Food Packaging 16.2.3 Freshness and Food Quality Detection in Intelligent Food Packaging 16.3 Biocomposites Incorporated with Natural Compounds 16.3.1 Plant Extracts 16.3.2 Essential Oils 16.3.3 Enzymes and Bacteriocins 16.3.4 Challenges in Food Packaging Applications of Biocomposites Integrated With Natural Compounds 16.4 Biocomposites Incorporated with Inorganic Materials 16.4.1 Metal Compounds 16.4.2 Clay and Silicate-Based Mineral Compounds 16.4.3 Challenges in Food Packaging Applications of Biocomposites Integrated with Inorganic Materials 16.5 Biocomposites Incorporated with Natural Food Colorants and Pigments 16.5.1 Intelligent Food Packaging with Natural Food Colorants and Pigments 16.5.2 Potential of Natural Food Colorants and Pigments as Active and Intelligent Food Packaging 16.5.3 Challenges in Food Packaging Applications of Biocomposites Integrated with Natural Food Colorants and Pigments 16.6 Conclusion References Chapter 17 Biofoams for Packaging Applications 17.1 Introduction 17.2 Biofoams from Botanical and Plant Sources 17.3 Starch and Their Blends 17.4 Cellulose-Based Biofoams for Packaging Application 17.5 Packaging Foams from Animal-Based Polysaccharides 17.6 Seaweed-Based Biofoams 17.7 Polylactic Acid 17.8 Tree Gum-Based Foams 17.9 Karaya Gum-Based Foams 17.10 Kondagogu Gum-Based Foams 17.11 Microbial Gum-Based Packaging Foams 17.12 Conclusion and Outlooks References Chapter 18 Biobased and Biodegradable Packaging Plastics for Food Preservation 18.1 Introduction 18.2 Sources for Obtaining Polymers 18.2.1 Polymers Extracted from Natural Sources 18.2.2 Biopolymers Synthesized by Microorganisms 18.2.3 Biopolymers Obtained by Chemical Synthesis 18.3 Additives in Packaging Materials 18.3.1 Natural Origin 18.3.2 Synthetic Origin 18.4 Active Packaging 18.4.1 Antioxidants in Biobased Active Packaging 18.4.2 Active Packaging Biobased with Antimicrobial Agents 18.5 Smart Packaging 18.5.1 Indicators 18.5.2 Biosensors 18.6 Functional Properties of Biobased Packaging and Their Effect on Food Preservation 18.6.1 Physical and Mechanical Properties 18.6.2 Susceptibility to Moisture 18.6.3 Gas Barrier 18.7 Current State of the Biobased Packaging Market 18.8 Prospects for Food Packaging and the Use of Biobased Materials References Chapter 19 Bioplastics-Based Nanocomposites for Packaging Applications 19.1 Introduction 19.2 Bioplastic-Based Nanocomposites 19.2.1 PLA Bionanocomposites 19.2.2 PHA Bionanocomposites 19.2.3 Starch Bionanocomposites 19.2.4 PBS Bionanocomposites 19.3 Packaging Applications 19.4 Safety Issue and Regulations 19.5 Conclusions References Chapter 20 Applications of Bioplastics in Disposable Products 20.1 Introduction 20.2 Plastics vs Bioplastics 20.2.1 Minimum Utilization of Energy 20.2.2 Reduction of Carbon Footprint 20.2.3 Environment Friendly 20.2.4 Littering Minimization 20.2.5 Not Usage of Crude Oil 20.3 Types of Bioplastics 20.3.1 Starch-Based 20.3.2 Cellulose-Based 20.3.3 Protein-Based 20.3.4 Bioderived Polyethylene 20.3.5 Aliphatic Polyesters 20.4 Applications of Bioplast 20.4.1 Medical Applications 20.4.2 Wound Dressing Application 20.4.3 Drug Delivery Application 20.4.4 Agricultural Applications 20.4.5 3D Printing 20.4.6 Applications in Packaging Industry 20.4.7 Bioremediation Applications 20.4.8 Biofuel Applications 20.5 Conclusion References Chapter 21 Bioplastic-Based Nanocomposites for Smart Materials 21.1 Introduction 21.2 Biopolymer 21.2.1 Natural Polymers 21.2.2 Synthetic Polymers 21.3 Biopolymer-Based Nanocomposites 21.4 Bioplastics-Based Nanocomposites for Smart Materials 21.5 Physical Stimuli-Responsive Biopolymer 21.6 Chemical Stimuli-Responsive Biopolymers 21.7 Biological Stimuli-Responsive Biopolymers 21.8 Conclusion References Part III: Industrial Application, Sustainability and Recycling of Bioplastics Chapter 22 Applications of Biobased Composites in Optical Devices 22.1 Introduction 22.2 Characteristics and Advantages of Biobased Composites in Optical Devices 22.3 Polysaccharide-Based Biocomposite 22.3.1 Cellulose 22.3.2 Chitin 22.3.3 Alginate 22.4 Protein-Based Biocomposite 22.4.1 Silk 22.4.2 Collagen 22.4.3 Gelatin 22.5 Polynucleotides and Carbonized-Based Biocomposite 22.5.1 DNA Origami 22.5.2 Carbon Nanomaterials 22.6 Future Trends and Perspective 22.7 Conclusion References Chapter 23 Biocomposites and Bioplastics in Electrochemical Applications 23.1 Introduction 23.2 Electrochemistry 23.2.1 General Aspects 23.3 Nanomaterials in Biocomposite Applications 23.4 Electrochemical Applications 23.4.1 Biosensors 23.4.2 Sensors 23.4.3 Corrosion 23.4.4 Energy Applications 23.5 Conclusion References Chapter 24 Biofibers and Their Composites for Industrial Applications 24.1 Introduction 24.2 Types of Biofibers 24.2.1 Seed Fibers 24.2.2 Leaf Fibers 24.2.3 Bast Fibers 24.2.4 Stalk Fibers 24.3 Chemical and Physical Modification of Biofibers as Reinforcing Materials for Biocomposites 24.3.1 Chemical Treatment Processes 24.3.1.1 Alkalization 24.3.1.2 Silanization 24.3.1.3 Acetylation 24.3.1.4 Benzoylation 24.3.2 Physical Treatment Processes 24.3.2.1 Plasma Treatment 24.3.2.2 Ultrasound Treatment 24.3.2.3 Ultraviolet Treatment 24.4 Biofiber Composites for Industrial Applications 24.5 Challenges and Perspectives for Future Research 24.6 Conclusion References Chapter 25 Bioplastics and Biocomposites in Flame-Retardant Applications 25.1 Introduction 25.2 A Brief Introduction to Bioplastics and Biocomposites 25.3 Flame Retardants Used in Polymer Materials 25.4 Action Mechanisms of Flame Retardants 25.4.1 Char-Formation 25.4.2 Inet Gas 25.4.3 Contact of Chemicals 25.4.4 Restriction of Vapor Phase Burning 25.5 Compatibility of Flame Retardants With Polymer Matrices 25.6 Preparation of Flame-Retardant Biocomposites and Bioplastics 25.7 Applications of Flame-Retardant Bioplastics and Biocomposites 25.8 Conclusions Acknowledgements References Chapter 26 Biobased Thermosets for Engineering Applications 26.1 Introduction 26.2 Sustainable Covalently Bonded Polyamides are Produced by Polycondensing a Naturally Present Functionalized Carboxyl Group (Citric Acid) with 1, 8-Octane Diol 26.3 Biodegradable Crosslinked Polyesters by Polycondensation of a Naturally Occurring Citric Acid and Glycerol 26.4 Sugar-Based Lactones to Produce Degradable Dimethacrylates 26.5 Water Facilitated, Naturally Produced Difunctional or Trifunctional Carboxyl Groups and Epoxidized Sucrose Soyate Are Made (With Sugars and Soybean Oil Lipids) 26.5.1 Learning More About the Significance of Water in the Curing Process 26.6 Isosorbide Was Employed as a Bridge in an Adhesive System After Being Introduced Into a Carbonyl Group 26.7 Thermoplastic Polymers Based on a Spiro Diacetyl Trigger Generated From Lignin 26.8 Properties of Epoxy Resin Thermosets With Acetal Addition 26.8.1 Mechanical Properties 26.8.2 Thermal Properties 26.9 Conclusions Acknowledgements References Chapter 27 Public Attitude Toward Recycling Routes of Bioplastics—Knowledge on Sustainable Purchase 27.1 Introduction 27.2 Production of Plastics 27.3 Application of Bioplastics 27.4 Recycle Route of Bioplastics 27.5 Public Contribution of Recycling 27.6 Awareness of Sustainable Purchase 27.7 Conclusion References Chapter 28 Applications of Bioplastic in Composting Bags and Planting Pots 28.1 Introduction 28.2 Biodegradable Pots (Biopots) 28.2.1 Plantable Pots 28.2.2 Composting Bags 28.3 Biodegradable Planting Pots 28.3.1 Biodegradable Planting Pots Based on Pressed Fibers 28.3.2 Biodegradable Planting Pots Based on Bioplastics 28.3.3 Biopots Based on Industry and Agriculture 28.4 Growth and Quality of Plants in Biopots 28.5 Future Trends and Challenges 28.6 Conclusion References Chapter 29 Bioplastics, Biocomposites and Biobased Polymers—Applications and Innovative Approaches for Sustainability 29.1 Introduction 29.2 Characteristics of Biobased Polymers 29.3 Biobased Polymers and Bioplastics Sustainability 29.4 Biodegradation and Standardization of Bioplastics and Biobased Polymers 29.4.1 Standard EN 13432 29.4.2 Standards for Oxodegradation 29.4.3 Australasian Bioplastics Association 29.4.4 Australian Packaging Covenant Organization 29.5 Application of Bioplastics, Biocomposites, and Biobased Polymers 29.5.1 Application in Medicine 29.5.2 Application in Packaging 29.5.3 Application in Agriculture 29.5.4 Other Applications 29.6 Conclusion References Chapter 30 Recycling of Bioplastics: Mechanism and Economic Benefits 30.1 Overview of Popular Bioplastics 30.1.1 Starch-Based Bioplastics 30.1.2 Cellulose-Based Bioplastic 30.1.3 Polylactic Acid (PLA)-Based Bioplastics 30.1.4 Polyhydroxy Alkanoate-Based Bioplastics (PHA) 30.1.5 Organic Polyethylene 30.1.6 Protein-Based Bioplastics 30.1.7 Drop-In Bioplastics 30.1.8 Fossil Fuel-Based Bioplastics 30.2 Recycling of Bioplastics 30.2.1 Background of Bioplastics Recycling 30.2.2 Options of Recycling 30.2.3 Generation of Energy From Recycling Process 30.3 Types of Recycling 30.3.1 Mechanical Recycling 30.3.1.1 Method of Mechanical Recycling 30.3.1.2 Mechanical Recycling Mechanism 30.3.1.3 Mechanical Recycling in Landscape 30.3.1.4 Sorting 30.3.2 Chemical Recycling 30.3.2.1 Solvent Purification 30.3.2.2 Chemical Depolymerization 30.3.2.3 Thermal Depolymerization 30.3.2.4 Benefits of Chemical Recycling 30.3.3 Textile Fibers Recycling Through MR or CR 30.3.4 Recycled Polyester From Plastic Bottles 30.3.5 Significance of Recycling 30.3.5.1 Significance of MR 30.3.5.2 Significance of CR 30.4 Economic Aspects of Bioplastic Recycling Industry 30.4.1 New Market and Economic Benefits 30.4.2 Disadvantages of Biodegradable Plastics for Economy 30.4.2.1 Usage of Specific Disposal Procedure 30.4.2.2 Metallic Contamination 30.4.2.3 Environmental Cooperation for Disposal 30.4.2.4 High Capital Cost 30.4.2.5 Usage of Cropland to Produce Items 30.4.2.6 Marine Pollution Problems 30.4.2.7 Guarantee of Net Savings 30.5 Conclusion References Index EULA