ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Bioplastics and Biocomposites Engineering Applications

دانلود کتاب راهنمای کاربردهای مهندسی بیوپلاستیک و بیوکامپوزیت ها

Handbook of Bioplastics and Biocomposites Engineering Applications

مشخصات کتاب

Handbook of Bioplastics and Biocomposites Engineering Applications

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9781119160137 
ناشر: Wiley 
سال نشر: 2023 
تعداد صفحات: [683] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 Mb 

قیمت کتاب (تومان) : 54,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Handbook of Bioplastics and Biocomposites Engineering Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای کاربردهای مهندسی بیوپلاستیک و بیوکامپوزیت ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راهنمای کاربردهای مهندسی بیوپلاستیک و بیوکامپوزیت ها

هندبوک کاربردهای مهندسی بیوپلاستیک و بیوکامپوزیت ها ویرایش دوم این کتابچه راهنمای موفق کاربردهای گسترده و رو به رشد ساخته شده با پلاستیک های زیستی و بیوکامپوزیت ها را برای صنایع بسته بندی، خودروسازی، زیست پزشکی و ساخت و ساز بررسی می کند. پلاستیک‌های زیستی موادی هستند که به‌عنوان جایگزینی احتمالی برای پلاستیک‌های سنتی مبتنی بر نفت به منظور سازگاری بیشتر با محیط‌زیست در حال تحقیق هستند. آنها از منابع تجدیدپذیر ساخته شده اند و ممکن است به طور طبیعی از طریق فرآیندهای بیولوژیکی، حفظ منابع طبیعی و کاهش انتشار CO2 بازیافت شوند. 30 فصل در هندبوک کاربردهای مهندسی بیوپلاستیک ها و بیوکامپوزیت ها، طیف گسترده ای از فناوری ها و طبقه بندی های مربوط به پلاستیک ها و زیست کامپوزیت ها را با کاربردهای آنها در پارادایم های مختلف از جمله بخش مهندسی مورد بحث قرار می دهد. فصل ها مواد مبتنی بر زیست را پوشش می دهند. بازیافت پلاستیک های زیستی؛ مدل سازی بیوکامپوزیت ها کاربردهای مختلف زیست پزشکی و مهندسی از جمله دستگاه های نوری، مواد هوشمند، لوازم آرایشی، دارورسانی، بالینی، الکتروشیمیایی، صنعتی، بازدارنده شعله، ورزشی، بسته بندی، مواد یکبار مصرف و زیست توده. رویکردهای مختلف به پایداری نیز درمان می شود. مخاطبان کتاب راهنمای مهندسین، دانشمندان و محققانی که در زمینه‌های پلاستیک‌های زیستی، بیوکامپوزیت‌ها، بیومواد برای مهندسی زیست‌پزشکی، بیوشیمی و علم مواد کار می‌کنند، مورد توجه محوری قرار خواهد گرفت. این کتاب همچنین برای مهندسان در بسیاری از صنایع از جمله خودروسازی، زیست پزشکی، ساخت و ساز و بسته بندی مواد غذایی از اهمیت بالایی برخوردار خواهد بود.


توضیحاتی درمورد کتاب به خارجی

Handbook of Bioplastics and Biocomposites Engineering Applications The 2nd edition of this successful Handbook explores the extensive and growing applications made with bioplastics and biocomposites for the packaging, automotive, biomedical, and construction industries. Bioplastics are materials that are being researched as a possible replacement for petroleum-based traditional plastics to make them more environmentally friendly. They are made from renewable resources and may be naturally recycled through biological processes, conserving natural resources and reducing CO2 emissions. The 30 chapters in the Handbook of Bioplastics and Biocomposites Engineering Applications discuss a wide range of technologies and classifications concerned with bioplastics and biocomposites with their applications in various paradigms including the engineering segment. Chapters cover the biobased materials; recycling of bioplastics; biocomposites modeling; various biomedical and engineering-based applications including optical devices, smart materials, cosmetics, drug delivery, clinical, electrochemical, industrial, flame retardant, sports, packaging, disposables, and biomass. The different approaches to sustainability are also treated. Audience The Handbook will be of central interest to engineers, scientists, and researchers who are working in the fields of bioplastics, biocomposites, biomaterials for biomedical engineering, biochemistry, and materials science. The book will also be of great importance to engineers in many industries including automotive, biomedical, construction, and food packaging.



فهرست مطالب

Cover
Title Page
Copyright Page
Contents
Preface
Part I: Bioplastics, Synthesis and Process Technology
	Chapter 1 An Introduction to Engineering Applications of Bioplastics
		1.1 Introduction
		1.2 Classification of Bioplastics
		1.3 Physical Properties
			1.3.1 Rheological Properties
			1.3.2 Optical Properties
			1.3.3 Mechanical and Thermal Properties
			1.3.4 Electrical Properties
		1.4 Applications of Bioplastics in Engineering
			1.4.1 Bioplastics Applications in Sensors
			1.4.2 Bioplastics Applications in Energy Sector
			1.4.3 Bioplastics Applications in Bioengineering
			1.4.4 Bioplastics Applications in “Green” Electronics
		1.5 Conclusions
		Acknowledgement
		Dedication
		References
	Chapter 2 Biobased Materials: Types and Sources
		2.1 Introduction
		2.2 Biodegradable Biobased Material
			2.2.1 Polysaccharides
			2.2.2 Starch
			2.2.3 Polylactic Acid
			2.2.4 Cellulose
			2.2.5 Esters
			2.2.6 Ether
			2.2.7 Chitosan
			2.2.8 Alginate
			2.2.9 Proteins
			2.2.10 Gluten
			2.2.11 Gelatine
			2.2.12 Casein
			2.2.13 Lipid
			2.2.14 Polyhydroxyalkanoates (PHA)
		2.3 Nonbiodegradable Biobased Material
			2.3.1 Polyethylene (PE)
			2.3.2 Polyethylene Terephthalate (PET)
			2.3.3 Polyamide (PA)
		2.4 Conclusion
		Acknowledgment
		References
	Chapter 3 Bioplastic From Renewable Biomass
		3.1 Introduction
		3.2 Plastics and Bioplastics
			3.2.1 Plastics
			3.2.2 Bioplastics
		3.3 Classification of Bioplastics
		3.4 Bioplastic Production
			3.4.1 Biowaste to Bioplastic
				3.4.1.1 Lipid Rich Waste
			3.4.2 Milk Industry Waste
			3.4.3 Sugar Industry Waste
			3.4.4 Spent Coffee Beans Waste
			3.4.5 Bioplastic Agro-Forestry Residue
			3.4.6 Bioplastic from Microorganism
			3.4.7 Biomass-Based Polymers
				3.4.7.1 Biomass-Based Monomers for Polymerization Process
		3.5 Characterization of Bioplastics
		3.6 Applications of Bioplastics
			3.6.1 Food Packaging
			3.6.2 Agricultural Applications
			3.6.3 Biomedical Applications
		3.7 Bioplastic Waste Management Strategies
			3.7.1 Recycling of Poly(Lactic Acid ) (PLA)
				3.7.1.1 Mechanical Recycling of PLA
				3.7.1.2 Chemical Recycling of PLA
			3.7.2 Recycling of Poly Hydroxy Alkanoates (PHAs)
			3.7.3 Landfill
			3.7.4 Incineration
			3.7.5 Composting
			3.7.6 Anaerobic Digestion
				3.7.6.1 Anaerobic Digestion of Poly(Hydroxyalkanoates)
				3.7.6.2 Anaerobic Digestion of Poly(Lactic Acid)
		3.8 Conclusions and Future Prospects
		References
	Chapter 4 Modeling of Natural Fiber-Based Biocomposites
		4.1 Introduction
		4.2 Generality of Biocomposites
			4.2.1 Natural Matrix
			4.2.2 Natural Reinforcement
			4.2.3 Natural Fiber Classification
			4.2.4 Biocomposites Processing
				4.2.4.1 Extrusion and Injection
				4.2.4.2 Compression Molding
			4.2.5 RTM-Resin Transfer Molding
			4.2.6 Hand Lay-Up Technique
		4.3 Parameters Affecting the Biocomposites Properties
			4.3.1 Fiber’s Aspect Ratio
			4.3.2 Fiber/Matrix Interfacial Adhesion
			4.3.3 Fibers Orientation and Dispersion
				4.3.3.1 Short Fibers Orientation
				4.3.3.2 Fiber’s Orientation in Simple Shear Flow
				4.3.3.3 Fiber’s Orientation in Elongational Flow
		4.4 Process Molding of Biocomposites
			4.4.1 Unidirectional Fibers
				4.4.1.1 Classical Laminate Theory
				4.4.1.2 Rule of Mixture
				4.4.1.3 Halpin-Tsai Model
				4.4.1.4 Hui-Shia Model
			4.4.2 Random Fibers
				4.4.2.1 Hirsch Model
				4.4.2.2 Self-Consistent Approach (Modified Hirsch Model)
				4.4.2.3 Tsai-Pagano Model
		4.5 Conclusion
		References
	Chapter 5 Process Modeling in Biocomposites
		5.1 Introduction
		5.2 Biopolymer Composites
			5.2.1 Natural Fiber-Based Biopolymer Composites
			5.2.2 Applications of Biopolymer Composites
			5.2.3 Properties of Biopolymer Composites
		5.3 Classification of Biocomposites
			5.3.1 PLA Biocomposites
			5.3.2 Nanobiocomposites
			5.3.3 Hybrid Biocomposites
			5.3.4 Natural Fiber-Based Composites
		5.4 Process Modeling of Biocomposite Models
			5.4.1 Compression Moulding
			5.4.2 Injection Moulding
			5.4.3 Extrusion Method
		5.5 Formulation of Models
			5.5.1 Types of Model
		5.6 Conclusion
		References
	Chapter 6 Microbial Technology in Bioplastic Production and Engineering
		6.1 Introduction
		6.2 Fundamental Principles of Microbial Bioplastic Production
		6.3 Bioplastics Obtained Directly from Microorganisms
			6.3.1 PHA
			6.3.2 Poly (ƒÁ-Glutamic Acid) (PGA)
		6.4 Bioplastics from Microbial Monomers
			6.4.1 Bioplastics from Aliphatic Monomers
				6.4.1.1 PLA
				6.4.1.2 Poly (Butylene Succinate)
				6.4.1.3 Biopolyamides (Nylons)
				6.4.1.4 1, 3-Propanediol (PDO)
			6.4.2 Bioplastics from Aromatic Monomers
		6.5 Lignocellulosic Biomass for Bioplastic Production
		6.6 Conclusion
		References
	Chapter 7 Synthesis of Green Bioplastics
		7.1 Introduction
		7.2 Bioplastic
			7.2.1 Polyhydroxyalkanoates (PHAs)
			7.2.2 Poly(lactic acid) (PLA)
			7.2.3 Cellulose
			7.2.4 Starch
		7.3 Renewable Raw Material to Produce Bioplastic
			7.3.1 Raw Material from Agriculture
			7.3.2 Organic Waste as Resources for Bioplastic Production
			7.3.3 Algae as Resources for Bioplastic Production
			7.3.4 Wastewater as Resources for Bioplastic Production
		7.4 Bioplastics Applications
			7.4.1 Food Industry
			7.4.2 Agricultural Applications
			7.4.3 Medical Applications
			7.4.4 Other Applications
		7.5 Conclusions
		References
	Chapter 8 Natural Oil-Based Sustainable Materials for a Green Strategy
		8.1 Introduction
		8.2 Methodology
			8.2.1 Entropy Methodology
			8.2.2 Copras Methodology
		8.3 Conclusions
		References
Part II: Applications of Bioplastics in Health and Hygiene
	Chapter 9 Biomedical Applications of Bioplastics
		9.1 Introduction
		9.2 Synthesis of Bioplastics
			9.2.1 Starch-Based Bioplastics
			9.2.2 Cellulose-Based Bioplastics
			9.2.3 Chitin and Chitosan
			9.2.4 Polyhydroxyalkanoates (PHA)
			9.2.5 Polylactic Acid (PLA)
			9.2.6 Bioplastics from Microalgae
		9.3 Properties of Bioplastics
			9.3.1 Material Strength
			9.3.2 Electrical, Mechanical, and Optical Behavior of Bioplastic
		9.4 Biological Properties of Bioplastics
		9.5 Biomedical Applications of Bioplastics
			9.5.1 Antimicrobial Property
			9.5.2 Biocontrol Agents
			9.5.3 Pharmaceutical Applications of Bioplastics
			9.5.4 Implantation
			9.5.5 Tissue Engineering Applications
			9.5.6 Memory Enhancer
		9.6 Limitations
		9.7 Conclusion
		References
	Chapter 10 Applications of Bioplastics in Hygiene Cosmetic
		10.1 Introduction
		10.2 The Need to Find an Alternative to Plastic
		10.3 Bioplastics
			10.3.1 Characteristic of Bioplastics
			10.3.2 Types (Classification)
			10.3.3 Uses of Bioplastics
		10.4 Resources of Bioplastic
			10.4.1 Polysaccharides
			10.4.2 Starch or Amylum
			10.4.3 Cellulose
				10.4.3.1 Source of Cellulose
		10.5 Use of Biodegradable Materials in Packaging
		10.6 Bionanocomposite
		10.7 Hygiene Cosmetic Packaging
		10.8 Conclusion
		References
	Chapter 11 Biodegradable Polymers in Drug Delivery
		11.1 Introduction
		11.2 Biodegradable Polymer (BP)
			11.2.1 Natural
				11.2.1.1 Polysaccharides
				11.2.1.2 Proteins
			11.2.2 Synthetic
				11.2.2.1 Polyesters
				11.2.2.2 Polyanhydrides
				11.2.2.3 Polycarbonates
				11.2.2.4 Polyphosphazenes
				11.2.2.5 Polyurethanes
		11.3 Device Types
			11.3.1 Three-Dimensional Printing Devices
				11.3.1.1 Implants
				11.3.1.2 Tablets
				11.3.1.3 Microneedles
				11.3.1.4 Nanofibers
			11.3.2 Nanocarriers
				11.3.2.1 Nanoparticles
				11.3.2.2 Dendrimers
				11.3.2.3 Hydrogels
		11.4 Applications
			11.4.1 Intravenous
			11.4.2 Transdermal
			11.4.3 Oral
			11.4.4 Ocular
		11.5 Existing Materials in the Market
		11.6 Conclusions and Future Projections
		References
	Chapter 12 Microorganism-Derived Bioplastics for Clinical Applications
		12.1 Introduction
		12.2 Types of Bioplastics
			12.2.1 Poly(3-hydroxybutyrate) (PHB)
			12.2.2 Polyhydroxyalkanoate
			12.2.3 Poly-Lactic Acid
			12.2.4 Poly Lactic-co-Glycolic Acid (PLGA)
			12.2.5 Poly (.-caprolactone) (PCL)
		12.3 Properties of Bioplastics
			12.3.1 Physiochemical, Mechanical, and Biological Properties of Bioplastics
				12.3.1.1 Polylactic Acid
				12.3.1.2 Poly Lactic-co-Glycolic Acid
				12.3.1.3 Polycaprolactone
				12.3.1.4 Polyhydroxyalkanoates
				12.3.1.5 Polyethylene Glycol (PEG)
		12.4 Applications
			12.4.1 Tissue Engineering
			12.4.2 Drug Delivery System
			12.4.3 Implants and Prostheses
		12.5 Conclusion
		References
	Chapter 13 Biomedical Applications of Biocomposites Derived From Cellulose
		13.1 Introduction
		13.2 Importance of Cellulose in the Field of Biocomposite
		13.3 Classification of Cellulose
		13.4 Synthesis of Cellulose in Different Form
			13.4.1 Mechanical Extraction
			13.4.2 Electrochemical Method
			13.4.3 Chemical Extraction
			13.4.4 Enzymatic Hydrolysis
			13.4.5 Bacterial Production of Cellulose
		13.5 Formation of Biocomposite Using Different Form of Cellulose
		13.6 Biocomposites Derived from Cellulose and Their Application
			13.6.1 Tissue Engineering
			13.6.2 Wound Dressing
			13.6.3 Drug Delivery
			13.6.4 Dental Applications
			13.6.5 Other Applications
		13.7 Conclusion
		References
	Chapter 14 Biobased Materials for Biomedical Engineering
		14.1 Introduction
		14.2 Biomaterials
		14.3 Biobased Materials for Implants and Tissue Engineering
			14.3.1 Skin Tissue Engineering and Wound Dressings
			14.3.2 Bone Tissue Engineering
			14.3.3 Cartilage Tissue Engineering
			14.3.4 Ligament and Tendon Implants and Tissue Engineering
			14.3.5 Cardiovascular Implants and Tissue Engineering
				14.3.5.1 Valve Implants
				14.3.5.2 Artificial Heart/Cardiac Patches
				14.3.5.3 Vascular Grafts and TE
			14.3.6 Liver Tissue Engineering and Bioreactors
			14.3.7 Kidney Tissue Engineering and Dialysis Devices
			14.3.8 Nervous Tissue Engineering and Implants
		14.4 Auxiliary Materials
		14.5 Conclusion and Future Trends
		References
	Chapter 15 Applications of Bioplastics in Sports and Leisure
		15.1 Introduction
			15.1.1 Plastic Pollution Due to Leisure and Sports Industries
			15.1.2 Bioplastics: Overview and Classification
				15.1.2.1 Biobased Nonbiodegradable
				15.1.2.2 Biobased, Biodegradable
				15.1.2.3 Fossil-Based, Biodegradable
		15.2 Bioplastic in Leisure
			15.2.1 Camping
			15.2.2 Eyewear
			15.2.3 Toys
			15.2.4 Electronic Equipment and Other
		15.3 Bioplastic in Sports
			15.3.1 Shoes and Sneakers
			15.3.2 Ski Boots
			15.3.3 Snow Goggles
			15.3.4 Surfboards and Surfskates
			15.3.5 Sportscar
			15.3.6 Football, Baseball, Basketball, Soccer Ball, and Volleyball
			15.3.7 Hockey
		15.4 Conclusion
		References
	Chapter 16 Biocomposites in Active and Intelligent Food Packaging Applications
		16.1 Introduction
		16.2 Advances in Biocomposite Application in Active and Intelligent Food Packaging
			16.2.1 Antimicrobial and Antioxidant Properties in Active Food Packaging
			16.2.2 Gaseous Scavenging Activity in Active Food Packaging
			16.2.3 Freshness and Food Quality Detection in Intelligent Food Packaging
		16.3 Biocomposites Incorporated with Natural Compounds
			16.3.1 Plant Extracts
			16.3.2 Essential Oils
			16.3.3 Enzymes and Bacteriocins
			16.3.4 Challenges in Food Packaging Applications of Biocomposites Integrated With Natural Compounds
		16.4 Biocomposites Incorporated with Inorganic Materials
			16.4.1 Metal Compounds
			16.4.2 Clay and Silicate-Based Mineral Compounds
			16.4.3 Challenges in Food Packaging Applications of Biocomposites Integrated with Inorganic Materials
		16.5 Biocomposites Incorporated with Natural Food Colorants and Pigments
			16.5.1 Intelligent Food Packaging with Natural Food Colorants and Pigments
			16.5.2 Potential of Natural Food Colorants and Pigments as Active and Intelligent Food Packaging
			16.5.3 Challenges in Food Packaging Applications of Biocomposites Integrated with Natural Food Colorants and Pigments
		16.6 Conclusion
		References
	Chapter 17 Biofoams for Packaging Applications
		17.1 Introduction
		17.2 Biofoams from Botanical and Plant Sources
		17.3 Starch and Their Blends
		17.4 Cellulose-Based Biofoams for Packaging Application
		17.5 Packaging Foams from Animal-Based Polysaccharides
		17.6 Seaweed-Based Biofoams
		17.7 Polylactic Acid
		17.8 Tree Gum-Based Foams
		17.9 Karaya Gum-Based Foams
		17.10 Kondagogu Gum-Based Foams
		17.11 Microbial Gum-Based Packaging Foams
		17.12 Conclusion and Outlooks
		References
	Chapter 18 Biobased and Biodegradable Packaging Plastics for Food Preservation
		18.1 Introduction
		18.2 Sources for Obtaining Polymers
			18.2.1 Polymers Extracted from Natural Sources
			18.2.2 Biopolymers Synthesized by Microorganisms
			18.2.3 Biopolymers Obtained by Chemical Synthesis
		18.3 Additives in Packaging Materials
			18.3.1 Natural Origin
			18.3.2 Synthetic Origin
		18.4 Active Packaging
			18.4.1 Antioxidants in Biobased Active Packaging
			18.4.2 Active Packaging Biobased with Antimicrobial Agents
		18.5 Smart Packaging
			18.5.1 Indicators
			18.5.2 Biosensors
		18.6 Functional Properties of Biobased Packaging and Their Effect on Food Preservation
			18.6.1 Physical and Mechanical Properties
			18.6.2 Susceptibility to Moisture
			18.6.3 Gas Barrier
		18.7 Current State of the Biobased Packaging Market
		18.8 Prospects for Food Packaging and the Use of Biobased Materials
		References
	Chapter 19 Bioplastics-Based Nanocomposites for Packaging Applications
		19.1 Introduction
		19.2 Bioplastic-Based Nanocomposites
			19.2.1 PLA Bionanocomposites
			19.2.2 PHA Bionanocomposites
			19.2.3 Starch Bionanocomposites
			19.2.4 PBS Bionanocomposites
		19.3 Packaging Applications
		19.4 Safety Issue and Regulations
		19.5 Conclusions
		References
	Chapter 20 Applications of Bioplastics in Disposable Products
		20.1 Introduction
		20.2 Plastics vs Bioplastics
			20.2.1 Minimum Utilization of Energy
			20.2.2 Reduction of Carbon Footprint
			20.2.3 Environment Friendly
			20.2.4 Littering Minimization
			20.2.5 Not Usage of Crude Oil
		20.3 Types of Bioplastics
			20.3.1 Starch-Based
			20.3.2 Cellulose-Based
			20.3.3 Protein-Based
			20.3.4 Bioderived Polyethylene
			20.3.5 Aliphatic Polyesters
		20.4 Applications of Bioplast
			20.4.1 Medical Applications
			20.4.2 Wound Dressing Application
			20.4.3 Drug Delivery Application
			20.4.4 Agricultural Applications
			20.4.5 3D Printing
			20.4.6 Applications in Packaging Industry
			20.4.7 Bioremediation Applications
			20.4.8 Biofuel Applications
		20.5 Conclusion
		References
	Chapter 21 Bioplastic-Based Nanocomposites for Smart Materials
		21.1 Introduction
		21.2 Biopolymer
			21.2.1 Natural Polymers
			21.2.2 Synthetic Polymers
		21.3 Biopolymer-Based Nanocomposites
		21.4 Bioplastics-Based Nanocomposites for Smart Materials
		21.5 Physical Stimuli-Responsive Biopolymer
		21.6 Chemical Stimuli-Responsive Biopolymers
		21.7 Biological Stimuli-Responsive Biopolymers
		21.8 Conclusion
		References
Part III: Industrial Application, Sustainability and Recycling of Bioplastics
	Chapter 22 Applications of Biobased Composites in Optical Devices
		22.1 Introduction
		22.2 Characteristics and Advantages of Biobased Composites in Optical Devices
		22.3 Polysaccharide-Based Biocomposite
			22.3.1 Cellulose
			22.3.2 Chitin
			22.3.3 Alginate
		22.4 Protein-Based Biocomposite
			22.4.1 Silk
			22.4.2 Collagen
			22.4.3 Gelatin
		22.5 Polynucleotides and Carbonized-Based Biocomposite
			22.5.1 DNA Origami
			22.5.2 Carbon Nanomaterials
		22.6 Future Trends and Perspective
		22.7 Conclusion
		References
	Chapter 23 Biocomposites and Bioplastics in Electrochemical Applications
		23.1 Introduction
		23.2 Electrochemistry
			23.2.1 General Aspects
		23.3 Nanomaterials in Biocomposite Applications
		23.4 Electrochemical Applications
			23.4.1 Biosensors
			23.4.2 Sensors
			23.4.3 Corrosion
			23.4.4 Energy Applications
		23.5 Conclusion
		References
	Chapter 24 Biofibers and Their Composites for Industrial Applications
		24.1 Introduction
		24.2 Types of Biofibers
			24.2.1 Seed Fibers
			24.2.2 Leaf Fibers
			24.2.3 Bast Fibers
			24.2.4 Stalk Fibers
		24.3 Chemical and Physical Modification of Biofibers as Reinforcing Materials for Biocomposites
			24.3.1 Chemical Treatment Processes
				24.3.1.1 Alkalization
				24.3.1.2 Silanization
				24.3.1.3 Acetylation
				24.3.1.4 Benzoylation
			24.3.2 Physical Treatment Processes
				24.3.2.1 Plasma Treatment
				24.3.2.2 Ultrasound Treatment
				24.3.2.3 Ultraviolet Treatment
		24.4 Biofiber Composites for Industrial Applications
		24.5 Challenges and Perspectives for Future Research
		24.6 Conclusion
		References
	Chapter 25 Bioplastics and Biocomposites in Flame-Retardant Applications
		25.1 Introduction
		25.2 A Brief Introduction to Bioplastics and Biocomposites
		25.3 Flame Retardants Used in Polymer Materials
		25.4 Action Mechanisms of Flame Retardants
			25.4.1 Char-Formation
			25.4.2 Inet Gas
			25.4.3 Contact of Chemicals
			25.4.4 Restriction of Vapor Phase Burning
		25.5 Compatibility of Flame Retardants With Polymer Matrices
		25.6 Preparation of Flame-Retardant Biocomposites and Bioplastics
		25.7 Applications of Flame-Retardant Bioplastics and Biocomposites
		25.8 Conclusions
		Acknowledgements
		References
	Chapter 26 Biobased Thermosets for Engineering Applications
		26.1 Introduction
		26.2 Sustainable Covalently Bonded Polyamides are Produced by Polycondensing a Naturally Present Functionalized Carboxyl Group (Citric Acid) with 1, 8-Octane Diol
		26.3 Biodegradable Crosslinked Polyesters by Polycondensation of a Naturally Occurring Citric Acid and Glycerol
		26.4 Sugar-Based Lactones to Produce Degradable Dimethacrylates
		26.5 Water Facilitated, Naturally Produced Difunctional or Trifunctional Carboxyl Groups and Epoxidized Sucrose Soyate Are Made (With Sugars and Soybean Oil Lipids)
			26.5.1 Learning More About the Significance of Water in the Curing Process
		26.6 Isosorbide Was Employed as a Bridge in an Adhesive System After Being Introduced Into a Carbonyl Group
		26.7 Thermoplastic Polymers Based on a Spiro Diacetyl Trigger Generated From Lignin
		26.8 Properties of Epoxy Resin Thermosets With Acetal Addition
			26.8.1 Mechanical Properties
			26.8.2 Thermal Properties
		26.9 Conclusions
		Acknowledgements
		References
	Chapter 27 Public Attitude Toward Recycling Routes of Bioplastics—Knowledge on Sustainable Purchase
		27.1 Introduction
		27.2 Production of Plastics
		27.3 Application of Bioplastics
		27.4 Recycle Route of Bioplastics
		27.5 Public Contribution of Recycling
		27.6 Awareness of Sustainable Purchase
		27.7 Conclusion
		References
	Chapter 28 Applications of Bioplastic in Composting Bags and Planting Pots
		28.1 Introduction
		28.2 Biodegradable Pots (Biopots)
			28.2.1 Plantable Pots
			28.2.2 Composting Bags
		28.3 Biodegradable Planting Pots
			28.3.1 Biodegradable Planting Pots Based on Pressed Fibers
			28.3.2 Biodegradable Planting Pots Based on Bioplastics
			28.3.3 Biopots Based on Industry and Agriculture
		28.4 Growth and Quality of Plants in Biopots
		28.5 Future Trends and Challenges
		28.6 Conclusion
		References
	Chapter 29 Bioplastics, Biocomposites and Biobased Polymers—Applications and Innovative Approaches for Sustainability
		29.1 Introduction
		29.2 Characteristics of Biobased Polymers
		29.3 Biobased Polymers and Bioplastics Sustainability
		29.4 Biodegradation and Standardization of Bioplastics and Biobased Polymers
			29.4.1 Standard EN 13432
			29.4.2 Standards for Oxodegradation
			29.4.3 Australasian Bioplastics Association
			29.4.4 Australian Packaging Covenant Organization
		29.5 Application of Bioplastics, Biocomposites, and Biobased Polymers
			29.5.1 Application in Medicine
			29.5.2 Application in Packaging
			29.5.3 Application in Agriculture
			29.5.4 Other Applications
		29.6 Conclusion
		References
	Chapter 30 Recycling of Bioplastics: Mechanism and Economic Benefits
		30.1 Overview of Popular Bioplastics
			30.1.1 Starch-Based Bioplastics
			30.1.2 Cellulose-Based Bioplastic
			30.1.3 Polylactic Acid (PLA)-Based Bioplastics
			30.1.4 Polyhydroxy Alkanoate-Based Bioplastics (PHA)
			30.1.5 Organic Polyethylene
			30.1.6 Protein-Based Bioplastics
			30.1.7 Drop-In Bioplastics
			30.1.8 Fossil Fuel-Based Bioplastics
		30.2 Recycling of Bioplastics
			30.2.1 Background of Bioplastics Recycling
			30.2.2 Options of Recycling
			30.2.3 Generation of Energy From Recycling Process
		30.3 Types of Recycling
			30.3.1 Mechanical Recycling
				30.3.1.1 Method of Mechanical Recycling
				30.3.1.2 Mechanical Recycling Mechanism
				30.3.1.3 Mechanical Recycling in Landscape
				30.3.1.4 Sorting
			30.3.2 Chemical Recycling
				30.3.2.1 Solvent Purification
				30.3.2.2 Chemical Depolymerization
				30.3.2.3 Thermal Depolymerization
				30.3.2.4 Benefits of Chemical Recycling
			30.3.3 Textile Fibers Recycling Through MR or CR
			30.3.4 Recycled Polyester From Plastic Bottles
			30.3.5 Significance of Recycling
				30.3.5.1 Significance of MR
				30.3.5.2 Significance of CR
		30.4 Economic Aspects of Bioplastic Recycling Industry
			30.4.1 New Market and Economic Benefits
			30.4.2 Disadvantages of Biodegradable Plastics for Economy
				30.4.2.1 Usage of Specific Disposal Procedure
				30.4.2.2 Metallic Contamination
				30.4.2.3 Environmental Cooperation for Disposal
				30.4.2.4 High Capital Cost
				30.4.2.5 Usage of Cropland to Produce Items
				30.4.2.6 Marine Pollution Problems
				30.4.2.7 Guarantee of Net Savings
		30.5 Conclusion
		References
Index
EULA




نظرات کاربران