دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Masoud Mozafari (editor)
سری: Woodhead Publishing Series in Biomaterials
ISBN (شابک) : 0081029675, 9780081029671
ناشر: Woodhead Publishing
سال نشر: 2020
تعداد صفحات: 734
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 41 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Biomaterials Biocompatibility (Woodhead Publishing Series in Biomaterials) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای زیست سازگاری بیومتریال (سری انتشارات وودهد در بیومتریال) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای زیست سازگاری بیومتریال یک مرجع سیستماتیک در مورد پاسخ میزبان به بیومواد مختلف با در نظر گرفتن خواص فیزیکی، مکانیکی و شیمیایی آنها است. این کتاب پیشرفتهای اخیر در طراحی و مطالعه زیستسازگاری زیستمواد، همراه با درک فعلی در مورد چگونگی کنترل پاسخ سیستم ایمنی را بررسی میکند. بخشها تئوریها و چالشهای اساسی زیستسازگاری زیستمواد، نقش خواص فیزیکوشیمیایی سطح زیستمواد مختلف بر پاسخهای سلولی، پاسخهای سلولی به خواص فیزیکوشیمیایی مختلف پلیمرها، سرامیکها، فلزات، کربنها و نانومواد، و بیومواد در بافتهای مختلف مانند قلب را ارائه میکنند. ، سیستم عصبی، غضروف و استخوان.
این منبع برای کسانی که در زمینههای علم مواد، مهندسی بازسازی، پزشکی، دستگاههای پزشکی و فناوری نانو کار میکنند مناسب خواهد بود.
Handbook of Biomaterials Biocompatibility is a systematic reference on host response to different biomaterials, taking into account their physical, mechanical and chemical properties. The book reviews recent progress in the design and study of biomaterials biocompatibility, along with current understanding on how to control immune system response. Sections provide the fundamental theories and challenges of biomaterials biocompatibility, the role of different biomaterials physicochemical surface properties on cell responses, cell responses to different physicochemical properties of polymers, ceramics, metals, carbons and nanomaterials, and biomaterials in different tissues, such as the cardiac, nervous system, cartilage and bone.
This resource will be suitable for those working in the fields of materials science, regenerative engineering, medicine, medical devices and nanotechnology.
Cover HANDBOOK OF BIOMATERIALS BIOCOMPATIBILITY Copyright Contents List of Contributors Preface Acknowledgments Sec1 1 Principles of biocompatibility 1.1 Introduction 1.2 Conclusion References Further reading 2 Bacterial cell–biomaterials interactions 2.1 Introduction 2.2 Theoretical theories of bacterial adhesion to biomaterial surfaces 2.3 Factors influencing bacterial adhesion to biomaterial surfaces 2.3.1 Biomaterial surface properties 2.3.2 Plasma proteins 2.3.3 Platelets 2.3.4 Fluid flow 2.4 Bacterial interaction with antibacterial biomaterial surfaces 2.5 Signaling molecules in the regulation of bacterial adhesion on biomaterial surfaces 2.6 Summary and perspectives References 3 Macrophage response to biomaterials 3.1 The macrophage 3.2 Macrophage plasticity and polarization 3.3 The macrophage response to biomaterials 3.4 The macrophages and the development of immunomodulatory biomaterials 3.4.1 Immunomodulatory biomaterials 3.4.2 Macrophages in immunomodulation References 4 Dendritic cells responses to biomaterials 4.1 Introduction 4.2 Natural polymer biomaterials 4.3 Gelatin 4.4 Alginate 4.5 Chitosan 4.6 Synthetic polymer biomaterials 4.7 Poly(lactic-co-glycolic acid) 4.8 Polyethylene glycol 4.9 Blends 4.10 Poly(lactic-co-glycolic acid)-chitosan 4.10.1 Monomethoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid) 4.11 Conclusion and future directions References 5 Impact of biomaterials’ physical properties on cellular and molecular responses Abbreviations 5.1 Introduction 5.2 Cellular and molecular response following implantation 5.2.1 Blood-materials interaction 5.2.2 Acute inflammation 5.2.3 Chronic inflammation 5.2.4 Wound healing 5.2.5 Foreign body reaction 5.2.6 Fibrous capsule formation 5.3 Impact of physical properties on modulation of the host response 5.3.1 Size 5.3.2 Configuration and topography 5.3.3 Stiffness 5.3.4 Surface chemistry 5.4 Conclusion References 6 Impact of biomaterial mechanics on cellular and molecular responses 6.1 Introduction 6.2 Host response—biomaterial interplay 6.2.1 Phase I 6.2.2 Phase II 6.2.3 Phase III 6.2.4 Phase IV 6.2.5 Phase V 6.3 Other significant players of the foreign body reaction 6.4 Impact of biomaterial surface characteristics on the sequential phases of host response 6.4.1 On protein adsorption 6.4.2 On acute inflammation 6.4.3 On chronic inflammation 6.4.4 On foreign body giant cell formation 6.4.5 On capsule formation and fibrosis 6.5 Conclusion Conflict of interest References 7 Cell–biomaterials interactions: the role of growth factors 7.1 Introduction 7.2 What are growth factors? 7.3 Growth factors in bone tissue engineering 7.4 Bone morphogenetic proteins 7.5 Transforming growth factor βs 7.6 Platelet-derived growth factors 7.7 Fibroblast growth factors 7.8 Insulin-like growth factors 7.9 Bone growth factors clinical applications 7.10 Conclusion and perspectives Conflict of interest References 8 Cell–biomaterial interactions: the role of ligand functionalization 8.1 Introduction 8.2 Ligand functionalization in the design of bioactive hydrogels 8.2.1 General functionalization strategies for hydrogels 8.2.2 Peptide functionalization of hydrogels for cardiac tissue engineering 8.3 Ligand surface functionalization in the design of scaffolds and implants 8.4 Ligand functionalization of nanoparticles for cell targeting 8.5 General discussion and conclusion References 9 On the proliferation of cell proliferation tests 9.1 Introduction 9.1.1 The need and challenge of assessing cell proliferation on biomaterials 9.1.2 Cell proliferation versus cell viability 9.2 Methods to measure cell proliferation 9.2.1 Metabolism-based assays 9.2.1.1 MTT 9.2.1.2 Other tetrazolium salts WST-1 XTT MTS CCK8 9.2.2 alamarBlue 9.2.3 Nucleic acid-based assays 9.2.3.1 PicoGreen and CyQUANT 9.2.3.2 Thymidine analogues 9.2.4 Other methods 9.2.4.1 Adenosine triphosphate 9.2.4.2 Immunofluoresence markers 9.2.4.3 Nuclei counting 9.2.4.4 Hemacytometer 9.2.4.5 Transepithelial/transendothelial electrical resistance 9.2.4.6 Flow cytometry 9.3 Comparison of proliferation tests 9.4 Special challenges and experimental design considerations 9.4.1 Cell seeding and proliferation in three-dimensional scaffolds 9.4.2 Cell density 9.4.3 Bioactive materials 9.4.4 Controls 9.5 Conclusion References 10 In vivo models for biomaterials: applications from cardiovascular tissue engineering Abbreviations 10.1 Introduction 10.2 Constructs and biomaterials used in cardiac tissue engineering 10.2.1 Materials for cell delivery to cardiac tissue 10.2.2 Cardiac tissue patches 10.2.2.1 Decellularized materials 10.2.2.2 Electrically conductive materials 10.2.3 Construct performance in vivo 10.2.3.1 Material degradation 10.2.3.2 Immunogenicity: macrophage infiltration 10.2.3.3 Neovasculature and angiogenesis 10.2.4 Scarring and arrhythmogenesis 10.2.4.1 Assessment of arrhythmogenicity 10.2.4.2 Arrhythmogenicity of biomaterials 10.2.4.3 Mitigating the risk of arrhythmogenesis 10.2.5 Challenges of biomaterials used in cardiac tissue engineering 10.3 Constructs and biomaterials used in vascular tissue engineering 10.3.1 Biomaterials used in vascular tissue engineering 10.3.2 Fabrication methods 10.3.3 Construct performance in vivo 10.3.3.1 Blood clots 10.3.3.2 Vessel integrity and aneurysm formation 10.3.3.3 Immunogenicity 10.4 In vivo applications of constructs and biomaterials 10.5 Conclusion References 11 Clinical and surgical aspects of medical materials’ biocompatibility Author disclosure statement Abbreviations 11.1 Introduction 11.2 Orthopedic biomaterials 11.2.1 Fracture fixation applications 11.2.2 Joint replacement applications 11.2.3 Graft applications (auto-, allo-, xeno-) 11.2.4 Synthetic grafts and filling material applications 11.3 General and reconstructive surgery biomaterials 11.3.1 Injectable biomaterials 11.3.2 Reconstructive breast surgery and breast implants 11.3.3 Hernia repair and mesh materials 11.4 Cardiovascular biomaterials 11.4.1 Coronary stents 11.4.2 Heart valves 11.4.3 Implantable pacemakers 11.4.4 Left ventricular assist devices 11.4.5 Vascular grafts 11.5 Conclusion References 12 Standardization and regulation of biomaterials 12.1 Introduction 12.2 Biomaterials for therapeutic and regenerative medicine 12.2.1 Biomaterial design, fabrication, characterization, and documentation 12.2.2 In vitro cellular response analysis for biomaterials study 12.2.3 In vivo animal model for biomaterials study 12.3 Discussion 12.3.1 Standardization of experimental protocols 12.3.2 Biomaterial regulations and policies 12.3.3 Translation and society 12.3.4 Medico-legal and health insurance systems 12.4 Conclusion References Sec2 13 Cellular response to synthetic polymers Abbreviations 13.1 Introduction 13.2 Cellular response to synthetic nondegradable polymers 13.2.1 Poly(ethylene), poly(methyl methacrylate), and poly(tetrafluoroethylene) in bone regeneration 13.2.1.1 Inflammatory changes preceding osteolysis 13.2.1.2 Osteolysis 13.2.2 Poly(propylene), poly(tetrafluoroethylene), and poly(ethylene terephthalate) as surgical meshes 13.2.2.1 Biologic response to mesh 13.2.3 Cellular response to synthetic polymers used in cardiac surgery 13.2.3.1 Poly(vinyl chloride), poly(tetrafluoroethylene), poly(urethane), and poly(ethylene) as catheters in cardiac surgery 13.2.3.2 Poly(ethylene terephthalate) and poly(tetrafluoroethylene) used in cardiac surgery 13.2.4 Cellular response to poly(methyl methacrylate) 13.2.5 Cellular response to poly(urethane) and poly(amides) (nylon) 13.2.6 Cellular response to poly(styrene) 13.2.6.1 Poly(styrene) as a cell culture material 13.2.6.2 Surface functionalization by liquid treatment 13.2.6.3 Surface functionalization by plasma treatment 13.2.6.4 Surface functionalization by other methods 13.2.7 Cellular response to other synthetic polymers 13.2.7.1 Poly(sulfone) 13.2.7.2 Polyethersulfone 13.2.7.3 Poly(etherimide) 13.2.7.4 Poly(etheretherketone) 13.3 Cellular response to biodegradable/resorbable polymers 13.3.1 Cellular response to poly(lactic acid) 13.3.2 Cellular response to polycarbonates 13.4 Conclusion and future trends References 14 Cellular responses to zirconia 14.1 Introduction 14.2 “Aging” of zirconia 14.3 Definitions of biocompatibility, osseointegration, osteoinductivity, and osteoconductivity 14.4 In vitro zirconia biocompatibility 14.4.1 Cellular response of the fibroblasts 14.4.2 Cellular response of leukocyte cell lines 14.4.3 Cellular response of osteoblasts and osteoclast 14.5 In vivo zirconia biocompatibility 14.6 Conclusion References 15 Cellular response to alumina 15.1 Introduction 15.2 Physicochemical properties of alumina surface 15.3 Cellular responses and protein adsorption on alumina surface 15.4 Futures and conclusion References 16 Biocompatibility of graphene quantum dots and related materials Abbreviations 16.1 Introduction 16.2 In vitro biocompatibility studies 16.2.1 In vitro biocompatibility study of graphene quantum dot 16.2.2 In vitro biocompatibility study of graphene derivatives 16.3 In vivo biocompatibility studies 16.3.1 In vivo biocompatibility study of graphene quantum dots 16.3.2 In vivo biocompatibility study of graphene derivatives 16.4 Biocompatibility study of other carbon nanostructures 16.4.1 Biocompatibility study of carbon nanotube 16.4.2 Biocompatibility study of fullerene 16.4.3 Biocompatibility study of carbon dot 16.4.4 Biocompatibility study of nanodiamond 16.5 Approaches to reduce toxicity 16.5.1 Green synthesis 16.5.2 Coating/functionalization 16.6 Conclusion References 17 Cellular response to calcium phosphate cements 17.1 Introduction 17.2 General characteristics of calcium phosphate cement 17.3 Chemistry and handling 17.4 Biological evaluation of calcium phosphate cements 17.5 Biodegradation of calcium phosphate cements 17.6 Bioactivity of calcium phosphate cements 17.7 Osteoconductivity of calcium phosphate cements 17.8 Osteoinductivity of calcium phosphate cements 17.9 Cellular response to calcium phosphate cements 17.10 Clinical applications References 18 Cellular response to bioactive glasses and glass–ceramics 18.1 Introduction 18.2 Biological responses to biomaterials 18.3 Bioactive glasses and glass–ceramics: structure and their physicochemical properties 18.3.1 Silicate-based glasses 18.3.2 Borate-based glasses 18.3.3 Phosphate-based glasses 18.4 Innovative strategies for selective contribution of bioactive glasses 18.4.1 Cellular and molecular behavior of bioactive glasses in response to different doped ions 18.4.1.1 Fluoride-containing bioactive glasses 18.4.1.2 Magnesium containing bioactive glasses 18.4.1.3 Strontium containing bioactive glasses 18.4.1.4 Silver-containing bioactive glasses 18.4.1.5 Copper-containing bioactive glasses 18.4.1.6 Zinc-containing bioactive glasses 18.4.1.7 Cobalt-containing bioactive glasses 18.4.2 Silanization 18.4.3 Surface functionalization of bioactive glasses through biological approaches 18.5 Commercialized bioactive glasses and glass–ceramics 18.6 Discussion 18.7 Conclusion References 19 Cell responses to titanium and titanium alloys 19.1 Introduction 19.2 Surface modification of titanium alloys to induce appropriate cell responses 19.2.1 Repair and regeneration of hard tissues 19.2.1.1 Surface topography and surface roughness 19.2.1.2 Surface wettability and free energy 19.2.1.3 Surface chemistry Inorganic coatings Organic coatings 19.2.2 Repair and attachment of soft tissue 19.2.3 Modulation of the immune response 19.3 Antimicrobial coatings on titanium 19.3.1 Coatings 19.3.1.1 Antibiotic coatings 19.3.1.2 Antimicrobial peptide coatings 19.3.1.3 Other organic antimicrobial coatings 19.3.1.4 Inorganic antimicrobial coatings 19.3.2 Surface nanostructures to prevent bacteria colonization 19.4 Conclusion References 20 Cellular response to metal implants 20.1 Introduction 20.2 Metallic implants 20.2.1 Orthopedic devices 20.2.2 Cardiac and endovascular implants 20.2.3 Dental and oral/maxillofacial devices 20.2.4 Neurological devices 20.2.5 Gynecological devices 20.3 Corrosion and metal ion release 20.4 Cellular response to metal implants 20.4.1 Inflammatory response 20.4.1.1 Coagulation, complement activation, and protein adsorption 20.4.1.2 Danger signals and recognition 20.4.1.3 Activation of inflammatory cells 20.4.2 Chronic inflammation 20.4.3 Adaptive immune response 20.4.3.1 Sensitization 20.4.3.2 Effects of metals in adaptive immunity 20.5 Modulation of host response to implants 20.6 Conclusion References 21 Cellular response to nanobiomaterials 21.1 Introduction 21.2 Factors affecting nanobiomaterial–cell interactions 21.2.1 Chemistry of nanobiomaterials 21.2.2 Size of nanobiomaterials 21.2.3 Shape of nanobiomaterials 21.2.4 Surface topography and stiffness of nanobiomaterials 21.2.5 Surface charge 21.2.6 Functional groups of nanobiomaterials 21.2.7 Hydrophobicity/hydrophilicity of nanobiomaterials 21.3 Various interactions between nanobiomaterials and cells 21.3.1 Nanobiomaterial–ECM interactions 21.3.2 Nanobiomaterial–cell membrane interaction 21.3.3 Nanobiomaterial–cytoskeleton interactions 21.3.4 Nanobiomaterial–organelle interactions 21.3.5 Nanobiomaterial–nuclei interactions 21.4 Conclusion References Sec 3 22 Central nervous system responses to biomaterials 22.1 Introduction 22.1.1 The need for the use of biomaterials in central nervous system 22.1.2 Classification of biomaterials used in central nervous system 22.2 Polymers 22.2.1 Synthetic polymers 22.2.1.1 Poly(glycolic acid)/poly(lactic acid)/poly(lactic-co-glycolic acid) 22.2.1.2 Poly(ε-caprolactone) 22.2.1.3 Poly(ethylene glycol)/poly(ethylene oxide) 22.2.1.4 Poly(ethylene-co-vinylacetate) 22.2.1.5 Poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) 22.2.2 Natural polymers 22.2.2.1 Agarose/alginate 22.2.2.2 Chitosan/methylcellulose/nitrocellulose 22.2.2.3 Collagen 22.2.2.4 Dextran 22.2.2.5 Fibrin/fibronectin 22.2.2.6 Hyaluronan/hyaluronic acid 22.2.3 Conductive polymers 22.2.3.1 Polypyrrole 22.2.3.2 Polyaniline 22.2.3.3 Poly(3,4-ethylenedioxythiopene) 22.2.3.4 Indium phosphide 22.2.3.5 Carbon nanomaterials (i.e., graphene, carbon nanotubes) 22.3 Metals 22.3.1 Introduction and unspecific toxicities 22.3.2 Iron (Fe) 22.3.3 Chromium (Cr) 22.3.4 Cobalt (Co) 22.3.5 Molybdenum (Mo) 22.3.6 Nickel (Ni) 22.3.7 Titanium (Ti) 22.3.8 Tungsten (W) and iridium (Ir) 22.3.9 Platinum (Pt) 22.3.10 Management of metal induced toxicities 22.4 Ceramics 22.4.1 Silicon oxides 22.4.2 Aluminum oxides 22.4.3 Titanium oxides 22.5 Hybrid or composite biomaterials 22.5.1 Interaction of nanomaterials and nanoparticles with central nervous system 22.5.2 Carbon nanomaterials 22.5.2.1 Carbon nanotubes 22.5.2.2 Fullerenes 22.5.2.3 Graphene oxide and derived nanomaterials 22.5.2.4 Nanodiamonds 22.5.2.5 Carbon nanohorns and carbon nanofibers 22.5.2.6 Carbon dots 22.6 Conclusion and future directions Conflicts of interest References 23 Peripheral nervous system responses to biomaterials 23.1 Introduction 23.1.1 Non synthetic nerve guidance conduits 23.1.1.1 Autografts 23.1.1.2 Blood vessels 23.1.1.3 Muscle 23.2 Allografts 23.3 Xenografts 23.4 Natural degradable nerve guidance conduits 23.4.1 Collagen 23.4.2 Gelatin 23.4.3 Fibrin 23.4.4 Keratin 23.4.5 Silk 23.4.6 Chitosan 23.5 Synthetic nerve guidance conduits 23.6 Synthetic degradable nerve guidance conduits 23.7 Polymers 23.7.1 Poly (e-caprolactone) (PCL) 23.7.2 Polyurethanes 23.7.3 Polyglycolic acid 23.8 Summary References 24 Cardiac responses to biomaterials 24.1 Biomaterials for cardiac applications 24.2 Foreign body response 24.3 Biocompatibility testing of biomaterials 24.3.1 Identification and quantification of the foreign body response—histology 24.3.2 Identification and quantification of the foreign body response—proteomics 24.4 Biomaterials 24.4.1 Mechanical support 24.4.1.1 Alginate 24.4.1.2 Decellularized tissue 24.4.1.3 Hyaluronic acid 24.4.1.4 Synthetic biomaterials 24.4.2 Cell delivery 24.4.2.1 Fibrin 24.4.2.2 Poly(ethylene glycol) 24.4.2.3 Cardiac patches—poly(ester urethane) 24.4.2.4 Cardiac patches—polycaprolactone 24.4.2.5 Cardiac patches—collagen 24.4.2.6 Cardiac patches—poly(urethane) 24.4.3 Growth factor/small molecule delivery 24.4.3.1 Chitosan 24.4.3.2 Poly(lactide-co-glycolic acid) 24.4.3.3 N-isopropylacrylamide 24.4.4 Prosthetic valves 24.4.5 Traditional medical devices 24.4.5.1 Pacemakers and Implantable Cardioverter Defibrillators (ICDs) 24.4.5.2 Stents 24.5 State of the art approaches to reduce the foreign body response 24.5.1 Material properties 24.5.2 Device design 24.5.3 Coatings 24.5.4 Use of angiogenic agents 24.5.5 Inhibition of TGF-β/use of corticosteroids 24.5.6 Mechanical actuation 24.5.7 Monitoring the foreign body response 24.6 Potential uses of the foreign body response 24.7 Conclusion References 25 Vascular responses to biomaterials 25.1 Introduction 25.2 Biomaterials in vascular diseases 25.2.1 Biocompatibility 25.2.2 Metals and alloys 25.2.3 Polymer-based implants 25.2.4 Biological materials 25.3 Vascular response to biomaterials 25.3.1 Biomaterials and clotting 25.3.2 Biomaterials and acute inflammation 25.3.3 Restenosis 25.3.4 Fibrosis 25.4 Vascular response to biofunctionalization of biomaterials 25.4.1 Antiproliferative strategies 25.4.2 Antithrombogenic strategies 25.4.3 Reendothelialization strategies 25.4.4 Antiinflammatory and antifibrotic strategies 25.5 Future perspectives References 26 Bone responses to biomaterials Abbreviations 26.1 Introduction 26.2 Skeletal cell response to biomaterials 26.2.1 Osteoblasts 26.2.2 Osteoclasts 26.2.3 Osteocytes 26.3 Immune cell response to biomaterials 26.3.1 Macrophages 26.3.2 Neutrophils and dendritic cells 26.3.3 T cells 26.4 Vascular cell response to biomaterials 26.5 Conclusion References 27 Tendon and muscle responses to biomaterials 27.1 Introduction 27.1.1 Composition of tendon and muscle tissues 27.1.2 Injury and healing of tendon/muscle 27.2 Management of tendon/muscle injuries and responses 27.2.1 Suture 27.2.2 Tissue grafting 27.3 Regenerative strategies for tendon/muscle injuries 27.3.1 Hydrogel biomaterials for small tissue repair 27.3.2 Natural biomaterials for large tissue repairs 27.3.2.1 Collagen 27.3.2.2 Silk 27.3.3 Synthetic materials for large tissue repairs 27.4 Conclusion References 28 Pulmonary system responses to biomaterials 28.1 Introduction 28.2 Synthetic biomaterials and their applications in pulmonary administration 28.2.1 Poly(ethylene terephthalate) 28.2.2 Poly(tetrafluoroethylene) 28.2.3 Poly(glycolic acid) 28.2.4 Polyvinyl alcohol 28.2.5 Polyethylene glycol 28.3 Synthetic biomaterials for drug delivery in lungs 28.4 Uses of synthetic biomaterials in lung tissue engineering 28.5 Natural biomaterials for pulmonary applications 28.5.1 Albumin-based biomaterials 28.5.2 Derivatives from silk 28.5.3 Chitosan and its derivatives 28.5.4 Gelatin 28.5.5 Hyaluronic acid 28.6 Conclusion References 29 Gastrointestinal response to biomaterials 29.1 Introduction 29.2 Oral cavity and pharynx 29.3 Oesophagus 29.4 Stomach 29.5 Small intestine 29.6 Large intestine 29.7 Conclusion References 30 Ocular responses to biomaterials 30.1 Introduction to biocompatibility in the eye 30.2 Anatomy and physiology of the eye in relation to biomaterial applications 30.2.1 The ocular surface 30.2.2 The anterior segment of the eye 30.2.3 The posterior segment 30.3 Ocular response to biomaterials in the anterior chamber 30.3.1 Ocular response to contact lens and artificial cornea materials 30.3.2 Ocular response to intraocular lens 30.3.3 Ocular response to glaucoma shunts and (noncontact lens) drug delivery systems in the anterior eye 30.4 Ocular response to biomaterials in the posterior segment 30.5 Conclusion References 31 Skin responses to biomaterials 31.1 Introduction 31.2 General description of the skin tissue 31.3 Skin responses to biomaterials 31.3.1 The inflammatory response induced by biomaterials on skin 31.3.2 The hypersensitivity responses induced by biomaterials on skin 31.3.3 The stimuli responses induced by biomaterials on skin 31.3.3.1 Biomaterial physical properties 31.3.3.2 Bioactive strategies 31.3.3.3 Biomaterial mechanical properties and stimulus signal 31.3.3.4 Metal ions and inorganic compounds 31.4 The role of scaffolding materials in skin tissue engineering 31.5 Future perspectives References Index Back Cover