دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Vadlamani Ravi (editor). Aswani Kumar Cherukuri (editor)
سری:
ISBN (شابک) : 1839530642, 9781839530647
ناشر: Institution of Engineering and Technology
سال نشر: 2021
تعداد صفحات: 390
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Handbook of Big Data Analytics: Methodologies (Volume 1) (Computing and Networks) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای تجزیه و تحلیل داده های بزرگ: روش ها (جلد 1) (محاسبات و شبکه ها) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحلیل کلان داده فرآیند پیچیده بررسی کلان داده ها برای کشف اطلاعاتی مانند همبستگی ها، الگوهای پنهان، روندها و ترجیحات کاربر و مشتری است تا به سازمان ها و کسب و کارها اجازه دهد تا تصمیمات آگاهانه تری بگیرند. این روشها و فناوریها به دلیل ظهور مدلهای مبتنی بر داده و همچنین پیشرفتهای مهندسی دادهها با استفاده از چارچوبهای تحلیل محاسباتی موازی و توزیعشده، موازیسازی دادهها و الگوریتمها و برنامهنویسی GPGPU، در همه زمینههای علوم، مهندسی، کسبوکار و مدیریت فراگیر شدهاند. با این حال، مسائل بالقوه ای وجود دارد که باید به آنها پرداخته شود تا پردازش و تجزیه و تحلیل کلان داده در زمان واقعی امکان پذیر شود.
در جلد اول این کتاب راهنمای جامع دو جلدی، نویسندگان چندین روش برای پشتیبانی از داده های بزرگ ارائه می کنند. تجزیه و تحلیل از جمله مدیریت پایگاه داده، چارچوب های پردازش و معماری، دریاچه های داده، استراتژی های بهینه سازی پرس و جو، به سمت پردازش داده ها در زمان واقعی، تجزیه و تحلیل جریان داده، محاسبات مه و لبه، و هوش مصنوعی و داده های بزرگ.
جلد دوم. به طیف گسترده ای از برنامه های کاربردی در ذخیره سازی امن داده ها، حفظ حریم خصوصی، شبکه های تعریف شده نرم افزار (SDN)، اینترنت اشیا (IoTs)، تجزیه و تحلیل رفتار، پیش بینی ترافیک، طبقه بندی جنسیتی بر اساس داده های تجارت الکترونیک، سیستم های توصیه کننده، سیستم های بزرگ اختصاص داده شده است. رگرسیون داده ها با Apache Spark، تجزیه و تحلیل احساسات بصری، شبکه عصبی موجک از طریق GPU، پیش بینی حرکت بازار سهام، و گزارش مالی.
هدف این کار دو جلدی ارائه یک پلت فرم منحصر به فرد برای محققان، مهندسان، توسعه دهندگان است. ، مربیان و دانشجویان پیشرفته در زمینه تجزیه و تحلیل داده های بزرگ.
Big Data analytics is the complex process of examining big data to uncover information such as correlations, hidden patterns, trends and user and customer preferences, to allow organizations and businesses to make more informed decisions. These methods and technologies have become ubiquitous in all fields of science, engineering, business and management due to the rise of data-driven models as well as data engineering developments using parallel and distributed computational analytics frameworks, data and algorithm parallelization, and GPGPU programming. However, there remain potential issues that need to be addressed to enable big data processing and analytics in real time.
In the first volume of this comprehensive two-volume handbook, the authors present several methodologies to support Big Data analytics including database management, processing frameworks and architectures, data lakes, query optimization strategies, towards real-time data processing, data stream analytics, Fog and Edge computing, and Artificial Intelligence and Big Data.
The second volume is dedicated to a wide range of applications in secure data storage, privacy-preserving, Software Defined Networks (SDN), Internet of Things (IoTs), behaviour analytics, traffic predictions, gender based classification on e-commerce data, recommender systems, Big Data regression with Apache Spark, visual sentiment analysis, wavelet Neural Network via GPU, stock market movement predictions, and financial reporting.
The two-volume work is aimed at providing a unique platform for researchers, engineers, developers, educators and advanced students in the field of Big Data analytics.
Contents About the editors About the contributors Foreword Foreword Preface Acknowledgements Introduction 1. The impact of Big Data on databases | Antonio Sarasa Cabezuelo 1.1 The Big Data phenomenon 1.2 Scalability in relational databases 1.3 NoSQL databases 1.4 Data distribution models 1.5 Design examples using NoSQL databases 1.6 Design examples using NoSQL databases 1.7 Conclusions References 2. Big data processing frameworks and architectures: a survey | Raghavendra Kumar Chunduri and Aswani Kumar Cherukuri 2.1 Introduction 2.2 Apache Hadoop framework and Hadoop Ecosystem 2.3 HaLoop framework 2.4 Twister framework 2.5 Apache Pig 2.6 Apache Mahout 2.7 Apache Sqoop 2.8 Apache Flume 2.9 Apache Oozie 2.10 Hadoop 2 2.11 Apache Spark 2.12 Big data storage systems 2.13 Distributed stream processing engines 2.14 Apache Zookeeper 2.15 Open issues and challenges 2.16 Conclusion References 3. The role of data lake in big data analytics: recent developments and challenges | T. Ramalingeswara Rao, Pabitra Mitra and Adrijit Goswami 3.1 Introduction 3.2 Taxonomy of data lakes 3.3 Architecture of a data lake 3.4 Commercial-based data lakes 3.5 Open source-based data lakes 3.6 Case studies 3.7 Conclusion References 4. Query optimization strategies for big data | Nagesh Bhattu Sristy, Prashanth Kadari and Harini Yadamreddy 4.1 Introduction 4.2 Multi-way joins using MapReduce 4.3 Graph queries using MapReduce 4.4 Multi-way spatial join 4.5 Conclusion and future work References 5. Toward real-time data processing: an advanced approach in big data analytics | Shafqat Ul Ahsaan, Harleen Kaur and Sameena Naaz 5.1 Introduction 5.2 Real-time data processing topology 5.3 Streaming processing 5.4 Stream mining 5.5 Lambda architecture 5.6 Stream processing approach for big data 5.7 Evaluation of data streaming processing approaches 5.8 Conclusion Acknowledgment References 6. A survey on data stream analytics | Sumit Misra, Sanjoy Kumar Saha and Chandan Mazumdar 6.1 Introduction 6.2 Scope and approach 6.3 Prediction and forecasting 6.4 Outlier detection 6.5 Concept drift detection 6.6 Mining frequent item sets in data stream 6.7 Computational paradigm 6.8 Conclusion References 7. Architectures of big data analytics: scaling out data mining algorithms using Hadoop–MapReduce and Spark | Sheikh Kamaruddin and Vadlamani Ravi 7.1 Introduction 7.2 Previous related reviews 7.3 Review methodology 7.4 Review of articles in the present work 7.5 Discussion 7.6 Conclusion and future directions References 8. A review of fog and edge computing with big data analytics | Ch. Rajyalakshmi, K. Ram Mohan Rao and Rajeswara Rao Ramisetty 8.1 Introduction 8.2 Introduction to cloud computing with IoT applications 8.3 Importance of fog computing 8.4 Significance of edge computing 8.5 Architecture review with cloud and fog and edge computing with IoT applications 8.6 Conclusion References 9. Fog computing framework for Big Data processing using cluster management in a resource-constraint environment | Srinivasa Raju Rudraraju, Nagender Kumar Suryadevara and Atul Negi 9.1 Introduction 9.2 Literature survey 9.3 System description 9.4 Implementation details 9.5 Results and discussion 9.6 Conclusion and future work References 10. Role of artificial intelligence and big data in accelerating accessibility for persons with disabilities | Kundumani Srinivasan Kuppusamy 10.1 Introduction 10.2 Rationale for accessibility 10.3 Artificial intelligence for accessibility 10.4 Conclusions References Overall conclusions Vadlamani | Ravi and Aswani Kumar Cherukuri Index