دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Mahlet G. Tadesse, Marina Vannucci سری: ISBN (شابک) : 2021031721, 9780367543785 ناشر: Chapman & Hall / CRC سال نشر: 2022 تعداد صفحات: [491] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 61 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of Bayesian Variable Selection به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای انتخاب متغیر بیزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Dedication Contents Preface Biography List of Contributors List of Symbols I. Spike-and-Slab Priors 1. Discrete Spike-and-Slab Priors: Models and Computational Aspects 1.1. Introduction 1.2. Spike-and-Slab Priors for Linear Regression Models 1.2.1. Stochastic Search MCMC 1.2.2. Prediction via Bayesian Model Averaging 1.3. Spike-and-Slab Priors for Non-Gaussian Data 1.3.1. Compositional Count Data 1.4. Structured Spike-and-Slab Priors for Biomedical Studies 1.4.1. Network Priors 1.4.2. Spiked Nonparametric Priors 1.5. Scalable Bayesian Variable Selection 1.5.1. Variational Inference 1.6. Conclusion Bibliography 2. Recent Theoretical Advances with the Discrete Spike-and Slab Priors 2.1. Introduction 2.2. Optimal Recovery in Gaussian Sequence Models 2.2.1. Minimax Rate in Nearly Black Gaussian Mean Models 2.2.2. Optimal Bayesian Recovery in `q-norm 2.2.3. Optimal Contraction Rate for Other Variants of Priors 2.2.4. Slow Contraction Rate for Light-tailed Priors 2.3. Sparse Linear Regression Model 2.3.1. Prior Construction and Assumptions 2.3.2. Compatibility Conditions on the Design Matrix 2.3.3. Posterior Contraction Rate 2.3.4. Variable Selection Consistency 2.3.5. Variable Selection with Discrete Spike and Zellner's g-Priors 2.3.6. Bernstein-von Mises Theorem for the Posterior Distribution 2.4. Extension to Generalized Linear Models 2.4.1. Construction of the GLM Family 2.4.2. Clipped GLM and Connections to Regression Settings 2.4.3. Construction of Sparsity Favoring Prior 2.4.4. Assumptions on Data Generating Distribution and Prior 2.4.5. Adaptive Rate-Optimal Posterior Contraction Rate in `1-norm 2.5. Optimality Results for Variational Inference in Linear Regression Models 2.6. Discussion Bibliography 3. Theoretical and Computational Aspects of Continuous Spike-and-Slab Priors 3.1. Introduction 3.2. Variable Selection in Linear Models 3.3. Continuous Spike-and-Slab Priors 3.3.1. Shrinking and Diffusing Priors 3.3.2. Spike-and-Slab LASSO 3.4. Theoretical Properties 3.4.1. Variable Selection Consistency 3.4.2. Novel Insights 3.4.3. Examples 3.5. Computations 3.5.1. Skinny Gibbs for Scalable Posterior Sampling 3.5.2. Skinny Gibbs for Non-Normal Spike-and-Slab Priors 3.6. Generalizations 3.7. Conclusion Bibliography 4. Spike-and-Slab Meets LASSO: A Review of the Spike-and-Slab LASSO 4.1. Introduction 4.2. Variable Selection in High-Dimensions: Frequentist and Bayesian Strategies 4.2.1. Penalized Likelihood Approaches 4.2.2. Spike-and-Slab Priors 4.3. The Spike-and-Slab LASSO 4.3.1. Prior Specification 4.3.2. Selective Shrinkage and Self-Adaptivity to Sparsity 4.3.3. The Spike-and-Slab LASSO in Action 4.4. Computational Details 4.4.1. Coordinate-wise Optimization 4.4.2. Dynamic Posterior Exploration 4.4.3. EM Implementation of the Spike-and-Slab LASSO 4.5. Uncertainty Quanti cation 4.5.1. Debiasing the Posterior Mode 4.5.2. Posterior Sampling for the Spike-and-Slab LASSO 4.6. Illustrations 4.6.1. Example on Synthetic Data 4.6.2. Bardet-Beidl Syndrome Gene Expression Study 4.7. Methodological Extensions 4.8. Theoretical Properties 4.9. Discussion Bibliography 5. Adaptive Computational Methods for Bayesian Variable Selection 5.1. Introduction 5.1.1. Some Reasons to be Cheerful 5.1.2. Adaptive Monte Carlo Methods 5.2. Some Adaptive Approaches to Bayesian Variable Selection 5.3. Two Adaptive Algorithms 5.3.1. Linear Regression 5.3.2. Non-Gaussian Models 5.4. Examples 5.4.1. Simulated Example: Linear Regression 5.4.2. Fine Mapping for Systemic Lupus Erythematosus 5.4.3. Analysing Environmental DNA Data 5.5. Discussion Bibliography II. Continuous Shrinkage Priors 6. Theoretical Guarantees for the Horseshoe and Other Global-Local Shrinkage Priors 6.1. Introduction 6.1.1. Model and Notation 6.1.2. Global-Local Shrinkage Priors and Spike-and-Slab Priors 6.1.3. Performance Measures 6.2. Global-Local Shrinkage Priors 6.3. Recovery Guarantees 6.3.1. Non-Adaptive Posterior Concentration Theorems 6.3.2. Proof Techniques 6.3.3. Adaptive Posterior Concentration Theorems 6.3.4. Other Sparsity Assumptions 6.3.5. Implications for Practice 6.4. Uncertainty Quanti cation Guarantees 6.4.1. Credible Intervals 6.4.2. Credible Balls 6.4.3. Implications for Practice 6.5. Variable Selection Guarantees 6.5.1. Thresholding on the Amount of Shrinkage 6.5.2. Checking for Zero in Marginal Credible Intervals 6.6. Discussion Bibliography 7. MCMC for Global-Local Shrinkage Priors in High-Dimensional Settings 7.1. Introduction 7.2. Global-Local Shrinkage Priors 7.3. Posterior Sampling 7.3.1. Sampling Structured High-Dimensional Gaussians 7.3.2. Blocking can be Advantageous 7.3.3. Geometric Convergence 7.4. Approximate MCMC 7.5. Conclusion Bibliography 8. Variable Selection with Shrinkage Priors via Sparse Posterior Summaries 8.1. Introduction 8.2. Penalized Credible Region Selection 8.2.1. Gaussian Prior 8.2.2. Global-Local Shrinkage Priors 8.2.3. Example: Simulation Studies 8.2.4. Example: Mouse Gene Expression Real-time PCR 8.3. Approaches Based on Other Posterior Summaries 8.4. Model Selection for Logistic Regression 8.5. Graphical Model Selection 8.6. Confounder Selection 8.7. Time-Varying Coefficients 8.8. Discussion Bibliography III. Extensions to Various Modeling Frameworks 9. Bayesian Model Averaging in Causal Inference 9.1. Introduction to Causal Inference 9.1.1. Potential Outcomes, Estimands, and Identifying Assumptions 9.1.2. Estimation Strategies Using Outcome Regression, Propensity Scores, or Both 9.1.3. Why Use BMA for Causal Inference? 9.2. Failure of Traditional Model Averaging for Causal Inference Problems 9.3. Prior Distributions Tailored Towards Causal Estimation 9.3.1. Bayesian Adjustment for Confounding Prior 9.3.2. Related Prior Distributions that Link Treatment and Outcome Models 9.4. Bayesian Estimation of Treatment Effects 9.4.1. Outcome Model Based Estimation 9.4.2. Incorporating the Propensity Score into the Outcome Model 9.4.3. BMA Coupled with Traditional Frequentist Estimators 9.4.4. Analysis of Volatile Compounds on Cholesterol Levels 9.5. Assessment of Uncertainty 9.6. Extensions to Shrinkage Priors and Nonlinear Regression 9.7. Conclusion Bibliography 10. Variable Selection for Hierarchically-Related Outcomes: Models and Algorithms 10.1. Introduction 10.2. Model Formulations, Computational Challenges and Tradeoffs 10.3. Illustrations on Published Case Studies 10.3.1. Modelling eQTL Signals across Multiple Tissues 10.3.2. Modelling eQTL Hotspots under Different Experimental Conditions 10.4. Discussion Bibliography 11. Bayesian Variable Selection in Spatial Regression Models 11.1. Introduction 11.2. Spatial Regression 11.3. Regression Coefficients as Spatial Processes 11.3.1. Spatially-Varying Coe cient Model 11.3.2. Scalar-on-Image Regression 11.4. Sparse Spatial Processes 11.4.1. Discrete Mixture Priors 11.4.2. Continuous Shrinkage Priors 11.5. Application to Microbial Fungi across US Households 11.6. Discussion Bibliography 12. Effect Selection and Regularization in Structured Additive Distributional Regression 12.1. Introduction 12.2. Structured Additive Distributional Regression 12.2.1. Basic Model Structure 12.2.2. Predictor Components 12.2.3. Common Response Distributions 12.2.4. Basic MCMC Algorithm 12.3. Effect Selection Priors 12.3.1. Challenges 12.3.2. Spike-and-Slab Priors for Effect Selection 12.3.3. Regularization Priors for Effect Selection 12.4. Application: Childhood Undernutrition in India 12.4.1. Data 12.4.2. A Main Effects Location-Scale Model 12.4.3. Decomposing an Interaction Surface 12.5. Other Regularization Priors for Functional Effects 12.5.1. Locally Adaptive Regularization 12.5.2. Shrinkage towards a Functional Subspace 12.6. Summary and Discussion Bibliography 13. Sparse Bayesian State-Space and Time-Varying Parameter Models 13.1. Introduction 13.2. Univariate Time-Varying Parameter Models 13.2.1. Motivation and Model Definition 13.2.2. The Inverse Gamma Versus the Ridge Prior 13.2.3. Gibbs Sampling in the Non-Centered Parametrization 13.3. Continuous Shrinkage Priors for Sparse TVP Models 13.3.1. From the Ridge Prior to Continuous Shrinkage Priors 13.3.2. Efficient MCMC Inference 13.3.3. Application to US Inflation Modelling 13.4. Spike-and-Slab Priors for Sparse TVP Models 13.4.1. From the Ridge prior to Spike-and-Slab Priors 13.4.2. Model Space MCMC 13.4.3. Application to US Inflation Modelling 13.5. Extensions 13.5.1. Including Stochastic Volatility 13.5.2. Sparse TVP Models for Multivariate Time Series 13.5.3. Non-Gaussian Outcomes 13.5.4. Log Predictive Scores for Comparing Shrinkage Priors 13.5.5. BMA Versus Continuous Shrinkage Priors 13.6. Discussion Bibliography 14. Bayesian Estimation of Single and Multiple Graphs 14.1. Introduction 14.2. Bayesian Approaches for Single Graph Estimation 14.2.1. Background on Graphical Models 14.2.2. Bayesian Priors for Undirected Networks 14.2.3. Bayesian Priors for Directed Networks 14.2.4. Bayesian Network Inference for Non-Gaussian Data 14.3. Multiple Graphs with Shared Structure 14.3.1. Likelihood 14.3.2. Prior Formulation 14.3.3. Simulation and Case Studies 14.3.4. Related Work 14.4. Multiple Graphs with Shared Edge Values 14.4.1. Likelihood 14.4.2. Prior Formulation 14.4.3. Analysis of Neuroimaging Data 14.5. Multiple DAGs and Other Multiple Graph Approaches 14.6. Related Topics 14.7. Discussion Bibliography IV. Other Approaches to Bayesian Variable Selection 15. Bayes Factors Based on g-Priors for Variable Selection 15.1. Bayes Factors 15.2. Variable Selection in the Gaussian Linear Model 15.2.1. Objective Prior Specifications 15.2.2. Numerical Issues 15.2.3. BayesVarSel and Applications 15.2.4. Sensitivity to Prior Inputs 15.3. Variable Selection for Non-Gaussian Data 15.3.1. glmBfp and Applications 15.4. Conclusion Bibliography 16. Balancing Sparsity and Power: Likelihoods, Priors, and Misspecification 16.1. Introduction 16.2. BMS in Regression Models 16.3. Interpreting BMS Under Misspeci cation 16.4. Priors 16.5. Prior Elicitation and Robustness 16.6. Validity of Model Selection Uncertainty 16.7. Finite-Dimensional Results 16.8. High-Dimensional Results 16.9. Balancing Sparsity and Power 16.10. Examples 16.10.1. Salary 16.10.2. Colon Cancer 16.10.3. Survival Analysis of Serum Free Light Chain Data 16.11. Discussion Bibliography 17. Variable Selection and Interaction Detection with Bayesian Additive Regression Trees 17.1. Introduction 17.2. BART Overview 17.2.1. Specification of the BART Regularization Prior 17.2.2. Posterior Calculation and Information Extraction 17.3. Model-Free Variable Selection with BART 17.3.1. Variable Selection with the Boston Housing Data 17.4. Model-Free Interaction Detection with BART 17.4.1. Variable Selection and Interaction Detection with the Friedman Simulation Setup 17.4.2. Interaction Detection with the Boston Housing Data 17.5. A Utility Based Approach to Variable Selection using BART Inference 17.5.1. Step 1: BART Inference 17.5.2. Step 2: Subset Search 17.5.3. Step 3: Uncertainty Assessment 17.6. Conclusion Bibliography 18. Variable Selection for Bayesian Decision Tree Ensembles 18.1. Introduction 18.1.1. Running Example 18.1.2. Possible Strategies 18.2. Bayesian Additive Regression Trees 18.2.1. Decision Trees and their Priors 18.2.2. The BART Model 18.3. Variable Importance Scores 18.3.1. Empirical Bayes and Variable Importance Scores 18.4. Sparsity Inducing Priors on s 18.4.1. The Uniform Prior on s 18.4.2. The Dirichlet Prior 18.4.3. The Spike-and-Forest Prior 18.4.4. Finite Gibbs Priors 18.5. An Illustration: The WIPP Dataset 18.6. Extensions 18.6.1. Interaction Detection 18.6.2. Structure in Predictors 18.7. Discussion Bibliography 19. Stochastic Partitioning for Variable Selection in Multivariate Mixture of Regression Models 19.1. Introduction 19.2. Mixture of Univariate Regression Models 19.2.1. Model Fitting 19.2.2. Variable Selection 19.3. Stochastic Partitioning for Multivariate Mixtures 19.3.1. Model Formulation 19.3.2. Prior Speci cation 19.3.3. Model Fitting 19.3.4. Posterior Inference 19.4. spavs and Application 19.4.1. Choice of Hyperparameters and Other Input Values 19.4.2. Post-Processing of MCMC Output and Posterior Inference 19.5. Discussion Bibliography Index