دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [I]
نویسندگان: Jean-Éric Pin
سری:
ISBN (شابک) : 9783985470020, 9783985470068
ناشر: EMS Press
سال نشر: 2021
تعداد صفحات: [898]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Handbook of Automata Theory Volume I Theoretical Foundations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای نظریه اتوماتا جلد اول مبانی نظری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents List of contributors Part I. Foundations 1. Finite automata 1. Basic algebraic structures 2. Words, languages and automata 3. Operations on recognisable languages 4. Minimal automaton and syntactic monoid 5. Rational versus recognisable 6. Algebraic approach References 2. Automata and rational expressions 1. A new look at Kleene's theorem 2. Rationality and recognisability 3. From automata to expressions: the AtEs-maps 4. From expressions to automata: the EtAs-maps 5. Changing the monoid 6. Introducing weights 7. Notes References 3. Finite transducers and rational transductions 1. Introduction 2. Basic definitions 3. Morphic representations 4. Applications 5. Undecidability in transductions 6. Further reading References 4. Weighted automata 1. Introduction 2. Weighted automata and their behaviour 3. Linear representations 4. The Kleene–Schützenberger theorem 5. Semimodules 6. Nivat's theorem 7. Weighted monadic second-order logic 8. Decidability of "r_1=r_2"? 9. Characteristic series and supports 10. Further results References 5. Max-plus automata 1. Introduction 2. Preliminaries 3. One-letter max-plus automata 4. General max-plus automata 5. Bibliographic notes References 6. ω-Automata 1. Introduction 2. Types of omega-automata 3. Basic properties of Büchi automata 4. Basic constructions 5. Run DAG’s of Büchi automata 6. Run trees of Büchi automata 7. Congruence relations 8. Loop structure 9. Alternation 10. Applications in logic 11. More complex recurrence conditions References 7. Automata on finite trees 1. Introduction 2. Fundamentals on tree automata 3. Ground-tree rewriting 4. Tree-walking automata 5. Automata on unranked trees 6. Classification of regular tree languages 7. Conclusion References 8. Automata on infinite trees 1. Introduction 2. Automata on infinite trees 3. Constructions for complementation and simulation 4. Decision problems 5. Applications in logic References 9. Two-dimensional models 1. Introduction 2. Basic concepts for picture definition 3. Tiling recognition 4. Grammars 5. Comparison of language families 6. Conclusion References Part II. Complexity issues 10. Minimisation of automata 1. Introduction 2. Definitions and notation 3. Brzozowski's algorithm 4. Moore's algorithm 5. Hopcroft's algorithm 6. Slow automata 7. Minimisation by fusion 8. Dynamic minimisation 9. Extensions and special cases References 11. Learning algorithms 1. Introduction 2. Preliminaries 3. Classical results 4. Learning from given data 5. Learning non-deterministic finite automata 6. Learning regular tree languages 7. PAC learning 8. Applications and further material References 12. Descriptional complexity of regular languages 1. Introduction 2. Descriptional complexity and lower bound techniques 3. Transformation between models for regular languages 4. Operations on regular languages 5. Some recent developments References 13. Enumerating regular expressions and their languages 1. Introduction and overview 2. On measuring the size of a regular expression 3. A simple grammar for valid regular expressions 4. Unambiguous context-free grammars and the Chomsky–Schützenberger theorem 5. Solving algebraic equations using Gröbner bases 6. Asymptotic bounds via singularity analysis 7. Lower bounds on enumeration of regular languages by regular expressions 8. Upper bounds on enumeration of regular languages by regular expressions 9. Exact enumerations 10. Conclusion and open problems References 14. Circuit complexity of regular languages 1. Introduction 2. Circuits 3. Syntactic monoid 4. Regular expressions 5. Circuit complexity of regular languages 6. Circuit size of regular languages 7. Final remarks References 15. Černý's conjecture and the road colouring problem 1. Synchronising automata, their origins and importance 2. Algorithmic and complexity issues 3. Around the Černý's conjecture 4. The road colouring problem References Part III. Algebraic and topological theory of automata 16. Varieties 1. Motivation and examples 2. Equations, identities and families of languages 3. Connections with logic 4. Operations on classes of languages 5. Varieties in other algebraic frameworks References 17. Profinite topologies 1. Introduction 2. Profinite topologies for general algebras 3. The case of semigroups 4. Relatively free profinite semigroups References 18. The factorisation forest theorem 1. Introduction 2. Some definitions 3. The factorisation forest theorem 4. Algebraic applications 5. Variants of the factorisation forest theorem 6. Applications as an accelerating structure References 19. Wadge–Wagner hierarchies 1. The Wadge hierarchy 2. The Wagner hierarchy References 20. Equational theories for automata 1. Introduction 2. Conway semirings 3. Automata in Conway semirings 4. Iteration semirings 5. Complete semirings 6. Continuous semirings 7. Completeness 8. Inductive *-semirings and Kleene algebras 9. Residuation 10. Some extensions References 21. Language equations 1. Introduction 2. General properties of operations 3. Equations with one-sided concatenation 4. Resolved systems of equations 5. Equations with constant sides 6. Equations of the general form 7. Equations with erasing operations References 22. Algebra for trees 1. Introduction 2. Trees as ground terms 3. A recipe for designing an algebra 4. Preclones 5. Forest algebra 6. Seminearring 7. Nesting algebras 8. Recent developments References Index